
ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

Rita Bernabei, Silio De Angelo, Paola Marchioro

A lexical-sorting routine

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche,
Matematiche e Naturali. Rendiconti, Serie 8, Vol. 58 (1975), n.3, p. 398–404.
Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1975_8_58_3_398_0>

L’utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di
ricerca e studio. Non è consentito l’utilizzo dello stesso per motivi commerciali. Tutte le
copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma
bdim (Biblioteca Digitale Italiana di Matematica)

SIMAI & UMI
http://www.bdim.eu/

http://www.bdim.eu/item?id=RLINA_1975_8_58_3_398_0
http://www.bdim.eu/

398 Lincei - Rend. Se. fis. mat. e nat. - Vol. LVIII - marzo 1975

Scienza dell’informazione. — A lexical-sorting routine. Nota
di R ita Bern abei, S i l io d’A n gelo e P aola M archioro, presen­
t a t a d a l Socio G. S a lv in e

RIASSUNTO. — In questo lavoro si presenta una subroutine per ordinare alfabetica­
mente un elenco di 2 ~ 4 K informazioni alfanumeriche. Vengono fornite brevi istruzioni
e suggerimenti per il suo uso e sono descritti gli algoritmi utilizzati.

It is well known th a t the problem of ordering a list of data, in compli­
ance with a defined set o f rules, does not have a unique solution and the
efficiency is strongly dependent on the structure o f the data, the quantity ,
and the ordering rules (1).

The routine we have w ritten m ay be useful under the following condit­
ions:

- a “ lexical ” sorting of the records is required, according to an
alphanum eric ascending order, such tha t the hierarchy of the keys is
determ ined by their appearance on the record, from left to right, ignoring
all special characters (blanks, p e r io d s ,.. .) em bedded in them.

- all records are long and sometimes sufficiently complicated to m ake
it unpractical to rewrite them in a form handable by other sorting routines.

- the overall volume of data is such th a t it can be contained in the
internal m em ory of the computer.

A typical exam ple m ay be the catalogue of a small library, consisting
of a file of 1,000 records, each 20 words long, m ade up with surname, name
and initial o f the author, title of the book and its location on the shelves.
In this case the ordering keys will be scattered on the record because of the
different length of each element and the presence or absence of apostrophes,
blanks, commas, etc. It is also clear tha t reconstructing 1,000 auxiliary
records, in which the keys lie in fixed positions, would be a waste of time
arid space.

O ur program is m ade up of a short FO R TRA N routine which controls
an A SSE M B L E R routine for the U N I VAC, 1100 series, computers. This
second subroutine has been written in Assem bler language to speed up the
execution time. Since it does not use any peculiar feature of these computers,
it can be easily translated for any com puter and, therefore it will be described
in some detail. (*)

(*) Nella seduta delP8 marzo 1975.
(1) A systematic description and a detailed comparison of the most frequently used

algorithms can be found in Ref. [1] and [2].

R. B ern ab ei ed ALTRI, A lexical-sorting routine 399

The calling statem ent of the sort routine is the following:

CALL PTSO R T(M M ,M ,N ,N O R D ,IFIX ,IC ,N C)

where:

- M M is a m atrix dimensioned M x N , containing N records to be
sorted, each M words long.

- NORD is an array dimensioned N, used as working area and
containing, on return, the ordering of MM . This m eans tha t the content
of NO RD (I) indicates which record m ust appear in the I position of the
ordering.

- I F IX is a variable containing the num ber of top rows of MM that
one wants to “ freeze ” in their positions. U sually this value is set to zero.
On re tu rn it will contain the num ber of records in which no special characters
only appear. U sually the ou tput value is equal to N.

- IC and NC are respectively the starting character and the num ber
o f characters one w ants to scan in each record. If the entire record has to
be considered, they have to be set equal to zero and 6 X M (this value is
m achine dependent). As it will be shown in more detail later on, the value
of IC also constrains the technique employed and therefore affects the
execution time.

If IC ;= o, the first character of each record m ust contain an effective
key. In this case which, by the way, is the most frequent, the sorting is
very efficient. I f IC < o, some special symbol m ay appear as first character.
Finally, if IC > o, this m eans th a t some extraneous inform ation has been
stored before the effective key. This situation, possible in principle, is however
against the philosophy of a lexical sort and we pay for this in term s of
wasted time.

The heart of the m ethod used in this program is a bubble sort [2]
accomplished using an index table contained in the array NORD. The
algorithm works this way: at beginning the array NORD contains the num bers
from I to N, in th a t order; then we compare the record indicated by the
content of N O R D (I) with the one indicated by N O R D (I-f i) looking for
unequal keys, let them be A io and A n . I f A io comes before A n , the
ordering is right, otherwise we change the contents of N O R D (I) and
N O RD (! + i), so th a t the “ heavier ” record “ s in k s ” in the file while the
“ lighter ” ones are raised tow ard the top of the file. The first tim e we
repeat this com parison with I varying from 1 to N— 1 and store in NVV
the value o f I for which the last inversion happened. Then we repeat the
process just up to NORD(NVV) since the last N—NVV records are already
ordered. A t the end, we find, stored in N O R D (i) , NORD(2) , • • - , respect­
ively the indices o f the 1st, 2nd, • • •, N th records. T he flow-chart is shown
in fig. I . Note th a t the a-exit of the KEYS procedure represents the return
in the case th a t two records have all the keys equal.

27. — RENDICONTI 1975, Voi. LVIII, fase. 3.

4 0 0 Lincei - Rend. Se. fis. mat. e nat. - Vol. LVIII - marzo 1975

In fig. 2 is shown the flow-chart of the KEYS procedure which is designed
to obtain the first valid different key from the records indicated by NO RD (I)
and N O R D (I-j-i). T he procedure LCH and C H TEST are strongly affected
by the character representation on the com puter and, therefore, they will

Fig. I. - Flow-chart of the bubble sort algorithm.

not he discussed here. T heir task, however, is to extract the K -th character
from the record and check th a t is alphanum eric. F inally the CANCELL
procedure places records built only of special characters at the bottom of
the file and they will be ignored from now on.

R. Bernabei ed a l t r i , A lexical-sorting routine 401

The algorithm just described is fast enough, if the file is nearly ordered
but very slow if it is fully disordered. Indeed it is easy to see th a t the
execution tim e is roughly proportional to N in the most favorable case,
and N 2 in the worst case. This happens when the last record m ust replace
the first one. W e use this m ethod by itself, however, only if IC > o. U nder
these circumstances the execution tim e m ay become considerable even if
the file is only 200 records long.

Fig. 2. - Flow-chart of the KEYS procedure.

I f IC <1 Q, we guess th a t the first effective key appears “ usually ” in
the first character, but th a t this m ight be some special character “ occasion-
ally . U nder this assum ption, instead of a sequence of consecutive num bers
from I to N, we put in the array NORD a perm utation o f this sequence,
obtained from a distribution counting sort [3], [4]) exam ining only the

402 Lincei - Rend. Se. fis. mat. e nat. - Vol. LVIII - marzo 1975

first character. Fig. 3 shows the algorithm of this techniques: CONT is
an array whose components contain the num ber o f times th a t the character,
corresponding to th a t component, appears as first character on each record.
To know how m any records have the first character equal o r less (in the
sense o f the ordering) th an the one represented by th a t component, it suffices
to add each com ponent to all the preceding ones. F inally we exam inate

Fig. 3. - Flow-chart of the distribution counting sort.

the first character o f each record and store the ordering num ber of that
recojrd in the com ponent o f NORD indicated by the corresponding counter.
The counter is then decreased by one. In this way we obtain a partition of
the file in elements of length ^ (o < % < N , 2 ,- % — N) such th a t all the
records belonging to one of these elements precede or follow the records

R. B e r n a b e i ed ALTRI, A lexical-sorting routine 4 0 3

belonging to the others, execept those corresponding to a special character.
The running tim e is therefore reduced, in mean, to a value roughly proport­
ional to N -m ax (nx , n2 i- • - , n±) & (1/20) N 2.

If one can be sure th a t all the records begin with an alphanum eric
character (IC = o), we take advantage of this inform ation. Then, using the
distribution counting sort, this ex tra inform ation guarantes tha t all records,
belonging to a given element, precede or follow all the records belonging
to another one, because the elements corresponding to special characters
are em pty. Then we need only sort the records w ithin each element in
turn , starting directly with the second character.

Typical running times for sorting a file of records 20 words long, are
about 1/2 sec for 10 K-words, about 2 sec for 20 K and 10 sec for 40 K, on
the U N I VAC m o com puter.

In conclusion, we have presented here a routine which is particularly
suitable for arranging a small library, for ordering a large bibliography, for
keeping a list o f experim ental data divided, for example, by laboratory
and/or year, and so on. In o ther words this program is a useful tool for all
those scientific program m ers which need to classify some list of alphanum eric
inform ation. In fact contrary to previous m ethods we emphasize th a t the
user of this routine need not m anipulate the records containing this inform a­
tion in order to extract the keys required by the ordering process - m anipula­
tion which is tedious to do whitin a FO R TRA N program and, always, space
expensive. F inally we can note th a t the use of a distribution counting
technique, in addition to the bubble sort, allows us to m aintain an accept­
able running time, even for m oderately large files.

A P P E N D IX

W e w ant to stress the fact th a t the m atrix M M rem ains unchanged.
T he physical ordering is, in fact, contained in the NORD vector. M ore
precisely the num bers from 1 to N, have been perm uted so th a t NO RD (I)
points to the record th a t has to be Ith in the final ordering.

I f we vfant to rearrange the m atrix M M in the proper order [5] we can
use the following calling statem ent:

CALL M M O R D (M M ,M ,N ,N O R D ,M M A U X)

where:

- M IjÆ and NORD are the m atrix and the array defined above, whose
dimensions are M x N and N, respectively.

- M M A U X is an array, dimensioned M, used as tem porary storage
area, for one of the records during the re-ordering.

404 Lincei - Rend. Se. fis. mat. e nat. - Vol. LVIII - marzo 1975

This routine needs only M extra locations in the m ain program . Fig. 4
shows the flow-chart of this routine. In this figure we have dropped the
first index from the m atrix MM.

Fig. 4. - Flow-chart of the MMORD subroutine.

R e fe r e n c e s

[1] Ivan Flores (1961) - Analysis of internal computer sorting, « J. of ACM», 8, 41.
[2] Donald E. Knuth (1973) - The art of Computer programming, voi. 3. Addison-Wesley,

keading, Massachussetts, Cap. 5.
[3] Calvin C. Gotlieb (1963) - Sorting on Computers, «C. of ACM», 6, 194.
[4] D onald M. Me L aren (1966) — Internal sorting by radix plus sifting « J. of ACM », 13,

4° 4 -

fS] Donald E. Knuth (1965) - «Cybernetics», 1, 95.

