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Analisi funzionale. — Convergence results for periodic solutions of nonautonomous 
Hamiltonian systems. Nota di MARIO GIRARDI e MICHELE MATZEU, presentata (*) dal 
Corrisp. A. AMBROSETTI. 

ABSTRACT. — We prove some stability results for a certain class of periodic solutions of nonautonomous 
Hamiltonian systems in the case of Hamiltonian functions either with subquadratic growth or homogeneous 
with superquadratic growth. Thus we extend to the nonautonomous case some results recently established by 
the Authors for the autonomous case. 
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RIASSUNTO. — Risultati di convergenza per soluzioni periodiche di sistemi Hamiltoniani non autonomi. Si 
dimostrano alcuni risultati di stabilità per una certa classe di soluzioni di sistemi Hamiltoniani non autonomi 
nel caso di funzioni Hamiltoniane a crescita sottoquadratica, o a crescita superquadratica con ipotesi di 
omogeneità. Si estendono in tal modo al caso non autonomo alcuni risultati stabiliti di recente dagli Autori 
per il caso autonomo. 

INTRODUCTION 

In [4] the authors proved some convergence results for periodic solutions of 
autonomous Hamiltonian systems with Hamiltonian functions H having a subquadratic 
growth. In [5] analogous theorems were established in case that H has a superquadratic 
behaviour, in the framework of assumptions of [1]. The aim of this paper is to extend 
these results to the case of nonautonomous Hamiltonian systems, that is to the case 
where H depends on the time variable too. In this situation, the simple requirement of 
the pointwise convergence for Hamiltonian functions, which is sufficient for the 
autonomous case, is replaced by a more complicated assumption, which enables to 
apply an interesting result stated by Marcellini and Sbordone [6] in a quite different 
framework, for the study of T-convergence of convex integral functionals. We point out 
that, in a natural case where the required convergence is verified, the Hamiltonian 
system, obtained as the limit of a sequence of nonautonomous systems, is indeed 
autonomous. 

Finally, we wish to thank V. Benci for stimulating discussions about the interest and 
the meaning of this kind of problems. 

1. Let H: R+xR2N^R with H(-,z)eC°(R+) VzeR2N, H(t,-) e C\R2N) VteR+ 

and such that 

(1) Hit,-) is strictly convex on R2N \fteR+; 

(2) H(-,z) is periodic on R+, with minimal period T > 0 , VzeR2 N ; 

(*) Nella seduta del 13 maggio 1989. 
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(3) there exist three constant numbers alf a2>0, a e (1,2) such that 

ax \z\* ^ H(t, z) ^ a2 \z\a Vz e R2N, W eR+ . 

Let us consider, for every n e N, the following Hamiltonian system 

(Hn) Jz„ = H'(nt,z„(t)), T is the minimal period of zn 

where, Vz = (x,y) eRNX RN, J{x,y) = (y, - x). 
It is well known, that, under our assumptions on H, (H„) admits a solution zn which 

can be obtained through the duality principle by Clarke and Ekeland [2] (1). Precisely, 
let us consider the functional I„ defined on the space 

Lg = Lg(0, T; R2N) = iv e L'(0, T; R2N): j v{t) dt = o\ (p = aJ{* - 1)) 

as 
T 

ln{v)=\ G{nt,v(t))dt-j | {jp-lv{t),v(t)) dt neN 
0 0 

where G is the Legendre transform of H in the z-variable, i.e. 

G(t, v) = sup {{z,v)-H(tyz):z e R2N} V(t,v) eR+xR2N 

and ^? is the injective mapping / • d/dt defined from the space 

H]f = iz e H^(0, T;R2N): z(0) = z(T), Jz(t) dt = 0 j 

into L§. Then it is possible to show that I„ admits a negative minimum on L§, and that, 
if «„ is a minimum point, then zn(t) = G'(ntyun(t)) is in fact a solution of (Hn). Let us 
call, from now on, a T-minimum solution of (H„) any solution z„ of (H«) obtained in 
such a way. 

Let us suppose now, that H: R+ X R2N—> R is another function satisfying the same 
hypotheses as H. 

One can state the following: 

THEOREM 1. Let Hn(t,z)='H(nt,z), V(*,z) eR+xR2N, V^eN, ou/ let H„(-,z) 
converge to H(- ,z) in the weak ^-topology ofLT(QyT)for any z e R2N. Let us consider the 
problem 

(H) Jz(t) = H'{t,z{t)), T is the minimal period of z. 

Then one has 

(Al) If {zn} is a sequence converging to z in H1/ with zn T-minimum solutions of (Hn) 
V/zeN, then z is a T-minimum solution of (H). 

(*) Actually, in [2], the Hamiltonian function H only depends on z, but it is easy to check that the 
arguments given in [2] still hold in the present case H = H(t,z). 
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(A2) Every sequence {zn}, with z„ T-minimum solution of (H„) \fn e N, admits a 
subsequence weakly converging in H1/ to a T-minimum solution z of (H). 

(A3) The following alternative holds: 

(A3)i Any sequence {zn} with z„ 1-minimum solution of(Hn), converges weakly 
to a T-minimum solution z of(H) in the quotient space H1// ~, where ~ 
is the equivalence defined as 

VZl,z2, Z!~z2 iff Zi(t + s)= z2(t) V/ e [0, T], for some s e[0, T ] . 

(A3)2 There exist at least 2 T-minimum solutions of (H). 

REMARK 1. Conditions (1), (3) are automatically verified by H, when one requires 
the convergence assumption of Theorem 1. 

REMARK 2. The assumption H{ty-) eC^R2**) VteR+ can be indeed weakened by 
the assumption H(t, •) e C°(R2N) \/teR+. In such a case the Hamiltonian system (H) 
must be interpreted in a weak sense, that is the differential equation in (H) must be 
replaced by a differential inclusion, and (H) becomes 

(Hd) Jz(t) edH(t,z(t)), T is the minimal period of z, 

where dH denotes the subdifferential of H in the z-variable, that is the set defined as 

H(t,z) = {ve R2N: H(t, w) ^ H(t, z)+(v,z~w) Vwe R2N} . 

Of course, in this (more general) case too, one can define the concept of T-
minimum solution for (Ha), in the sense that, in analogy with the case H(t, •) e ^(R2*1), 
one can easily prove that any minimum point u of the functional 

T T 

l(v)= JG(t,v(t))dt-±j {JTlv(t)Mt))dt VveU 
0 0 

(G being the Legendre transform of H) is associated with a solution z = -%?~lu of 
(Ha), and still one can state Theorem 1. 

COROLLARY 1. Let H(t9z)=H0{z)<p{t), where H0eC\R2Nl 9 e C°(R+) and 

(4) H0 is strictly convex on R2N; 

(5) a1\z\a^H0(z)^a2\z\a V^eR2N, aXia2>% a €(1,2); 

(6) 9 is periodic on R+, with minimal period T; 

(7) 3 c > 0 : 9(t)^c>0 V/eR + . 

Let us consider the following autonomous Hamiltonian system 

(H0) Jz(t) = H'0{z(t))<po, T is the minimal period of z, 

T 

where ç>o=(l/T) J <p(t)dt. Then (Al), (A2), (A3) hold with H(t,z) = H(z) =H0(z)<p0 

and (H) = (H0). ° 
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REMARK 3. Let us note that, by Corollary 1, the sequence of nonautonomous 
Hamiltonian systems (H„) «converges» (in the sense of T-minimum solutions) to an 
autonomous Hamiltonian system, such as (H0). 

PROOF OF COROLLARY 1. It is enough to observe that the sequence Hn(t,z) = 
= H(nt,z) = H0(z)<p(nt) converges in the weak *-topology of L°°(0, T) to H0(z)<p0, for 
any z e R2N. 

For the proof of Theorem 1, one uses the following basic 

LEMMA 1. Under the assumptions of Theorem 1, the sequence of functional {In} 
T-converges to the functional 1 in L%-weak} that is (see [3] e.g.) 

(A) Vz7e Lg, 3 {v„} c Lg, with vn--^~v, s.t.IH(v„)-*7(v), 

(T2) VveU,V{vn}cU, with ^ - ^ ^ , ^ J ( 7 7 ) ^ l i m J > J . 

PROOF. One can verify that it is possible to apply the following general result due to 
Marcellini and Sbordone, in the framework of T- convergence of convex integral 
functionals: 

PROPOSITION 1 ([6, Thm. 3.4.]). Let fn{x,z) and f{x,z) he measurable functions in 
xeQ (a bounded open subset of Rk), convex in zeRh{2) and such that h\z\p ^fn{x>z), 
X\z\p ^f(x, z), for some A > 0, p > 1, f„(x9 0) =/(*, 0) = 0, Vx e Q, Vz e Rh. Putting, on 
Lp(Q;Rh), 

Fn(v) = J f„(x, v{x)) dx, F(v) = J f{x, v(x)) dx 
Q Q 

then {Fn} T-converges to F in Lp(Q;Rb) -weak, if and only if{f*(m
yz)} converges tof*(-,z) 

in the weak ^-topology ofL*{Q\Rh) VzeR^, where f*(-,z) andf*(-,z) are the Legendre 
transforms of f„ and f in z. 

In our present case, one chooses k= 1, Q = (0, T), h = 2N,fn(x,z) =f„{t,z) = G{nt,z), 
f(x, z) =f(t, z) = G(t, z), A = aup= jS,/* = Hn. So Proposition 1 yields theT-convergen­
ce in ZZ-weak of the functionals 

T 

F„(v)= JG(nt,v(t))dt 
o 

to the functional 
T 

F(v)= j~G{t,v(t))dt. 
0 

Finally, the compactness property of j ? " 1 gives the T-convergence of {In} to I in 
lAweak and the T-convergence in Lg-weak, as a consequence of the fact that Lg is 
closed in IA 

(2) Actually the result is proved with k = hm[6], but it still holds for any arbitrary choice of k and h in 
N, as one can verify. 
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PROOF OF THEOREM 1. Lemma 1 permits to use arguments which are analogous to 
the ones given in the proof of Thm. 1 of [4]. Hence the proof of the actual theorem 
follows. 

2. Let now H(t,z) = H0(z)<p(t), where H0eC\R2N), ? e C°(R+) and 

(8) H0 is strictly convex on R2N ; 

(9) H0 is positively homogeneous with degree /3 > 2, that is 

H0(Xz) = |A|̂ H0fe) V* e R2N, VA e R ; 

(10) 9 is periodic on R+, with minimal period T; 

(11) 3c>0:9(t)^c>0 V / e R + . 

Putting H„(t,z) = H0(z)?{nt), V«eN, V(t,z) eR+xR2N, conditions (8)+ (11) 
enable us to apply a result due to Ambrosetti and Mancini [1] (3) to the Hamiltonian 
system 

(H„) Jz„(t) = H'„{t,z„(t)) = Hó(z„(t)) (p{nt), Tis the minimal period of z„ 

in order to state that, for any neN, (H„) admits a solution z„ obtained as z„ = 
= j(?~lun where j ? is the injective mapping J-d/dt from the space 

H]f = J z e H^iO, T;R2N): z(0) = z(T), \ z(t) dt = 0 1 (a = p/(p - 1)) 

into the space 

Ll = J v e La(0, T; R2N) : \ v(t) dt = 0 I 

and u„ is a minimum point of the functional 

T T 

In(v)= \ G{ntMt))dt-^\{^-lv{t),v{t))dt VveLî 
0 0 

(G being the Legendre transform of H in the z-variable), on the smooth manifold 

Mn = J v eL«0\{0}: \ {jp~lv{t)yv(t)) dt=\ (G'(ntyv(t)),v(t)) dt\. 

Analogously as in [1], let us call a T-minimum solution of (H„) any solution z„ obtained 
in such a way. 

Putting, as in § 1, 

?0 = (1/T) j 9(t)dt 
0 

(3) The same remark in (*), related to the result by Clarke and Ekeland [2], must be done in this case too. 



2 6 M. GIRARDI - M. MATZEU 

let us consider the following autonomous Hamiltonian system 

(H0) ]z(t) = H'(z{t)) 9o> T is the minimal period of z. 

Of course, (H0) too, as (HJ, admits a T-minimum solution related to the 
minimization of the functional 

T T 

(12) I0(v)= \ GMt))dt-^\{^-lv{t)Mt))dt VveL«0 
0 ^ 0 

(Go(-) being the Legendre transform of H0(*)9o)> on the smooth manifold 

(13) Mo = iven\{0}: j (JTMt)Mt))dt= J (G&v(t)Mt)))dtï. 

As for the convergence of T-minimum solutions of (Hn) to T-minimum solutions of 
(H0), one can state an analogous result as that of §1, given by the following 

THEOREM 2. Let (8) + (11) be assumed. Then one has: 

(Al) If {zn} is a sequence weakly converging to z in Hlj*} with zn T-minimum solution 
of (H„) "in eN, then z is a T-minimum solution of (H0). 

(A2) Every sequence {zn}> with zn T-minimum solution of (HJ Vn e N, admits a 
subsequence weakly converging in HJf to a T-minimum solution of (Ho). 

(A3) The following alternative holds: 

(A3)i Any sequence {z„}, with z„ T-minimum solution of(Hn) converges weakly 
to a T-minimum solution z of (H0), in the quotient space H}f/~, where ~ 
is the equivalence defined as 

Vzi,z2, Zi ~z2 iff Z\(t + s)= z2(t) Vt e [0, T] for some s e [0, T] . 

(A3)2 There exist at least 2 T-minimum solutions of (H0). 

PROOF OF THEOREM 2. First of all, let us prove that, if z„ is a T-minimum solution of 
(HJ V/zeN, and zn-^z in H^a, then z solves the differential equation in (H0), so 
u = ̂ z belongs to M0. Indeed, for any v €!}{§, T;R2N), one has 

T T 

\ (m(zM) 9(nt)9 v(t)) dt-> \ (W(z(t)) 9o, v(t)) dt, 
0 0 

and, since Jzn^Jz then z solves the differential equation in (H0). At this point, in order 
to state (Al), it is enough to prove the following statement: 

(14) Vz7eM 0 ,3^eM„ s.t. v„-^U in Lg and I„(vn)-*I0Çv). 

Let us prove (14). Let wneL% be such that wn-^U in Lg and 
T T 

J G{nt, wn(t)) dt--> | G0{~v(t)) dt: 
0 0 
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the existence of such a sequence {w„} in ensured by the T-convergence of the 
functional 

T 

$ G(ntyv(t))dt 
o 

to the functional 
T 

lGMt))dt 
o 

in the weak topology of Lg (which can be proved by the same arguments, given in the 
proof of Lemma 1 of §1). 

Let now {rn} cR be such that vn — rnwn belongs to Mn (for the proof of the 
existence and uniqueness of such a number rni in a more general framework, see El]). 
The sequence {rn} is bounded in R and \r„\^ const > 0: in fact the ^-homogeneity of 
H0 (so the a-homogeneity of G0 as well) implies that, as v„eM„, there exist some 
numbers dly d2>0 such that: 

T T T 

(15) dx\rn\* \ \wn{t)\*dt^r2
n J {JFlu>n(t),wn(f)) dt^d2\rn\« \ \wn{t)\adt. 

0 0 0 

On the other side, {w„} is bounded in Lg and | | ^ J | ^ const>0, as wn-^'viz(ò. 
T T T 

Since {$ (JFli»n(t),wn(t)) dt\ convergeste J (Jp-lv{t\v{t)) dt= J <G£(ïty)),F(/))<&, 
0 0 0 

which is different from 0, it follows, as a < 2 , that the first inequality in (15) implies 
\r„\ ^ const > 0 , the second one implies the boundedness of {rn}. 

Let now {r„.} be a subsequence of {rn} converging to some 7 e R \ { 0 } , so 
Vn^VnjWni weakly converges to v = J~viz§. It remains to prove that 

(16) r = l (so v„ = rnwn-^v = U)) 

T T 

(17) JG(nt,v„(t))dt^j G0(v(t))dt. 
0 0 

Observe that (17) implies that I^V^—ïIQÇV), as a consequence of the compactness 
property of Jf?~l. 

As for (16), one has to show that v belongs to M0. Indeed, since wneM„, one has 
T 

{Jp-lvnj{t), vn.(t))dt = ri. \ {j?-lwnj{t)y wnj{t))dt = 
0 0 

T T T 

= J {G'(njt9 rn.wn.(t)), rn.wn.{t))dt = a J G(«,-f, rn.wnj{t)) dt = ara
n. J G(njt, wn.{i)) dt. 

0 0 0 

So, by passing to the limit as / - * + o°, one gets 

T T T T 

\ (#-lv(t), m)dt = a?a J G0(v{t)) dt = a\ GQ{7U{t)) dt= \ {G'Mt))y v(t)) dty 

0 0 0 0 

therefore, as Vï^O, v belongs to M0, and (16) follows. 
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Let us now prove (17). One has 

T T T 

J G(nt, vn{tj) dt = ra
n\ G{nt, w„(t)) dt-+ J G0{~v{t)) dt 

0 0 0 

and (17) is proved. 
The statement (A2) can be deduced from the compactness property of jf_1 and by 

proving the boundedness, in Lg, of the set 

^ T = U {weMn:In(w)^In(v) VveMH}. 

[Indeed, if we^M and w minimizes In on Mni then it easily follows that 
T 

ln(w)>0 and J (^~lw{t)yw{t))dt>0, so that, for some du d2>0, 
o 

0<In(w)d1\\wtL«-d2\\wM«, 

which implies the boundedness of ^S~9 as a < 2 ] . 
Finally (A3) follows from (Al) and (A2) by an obvious argument. 

Partially supported by G.N.A.F.A.-C.N.R. and M.P.I. 40%. 
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