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Equazioni a derivate parziali. — Some problems of parabolic type with discontinuous 
nonlinearities on convex constraints. Nota (*) di MARLENE FRIGON, ANTONIO MARINO e 
CLAUDIO SACCON, presentata dal Socio E. D E GIORGI. 

ABSTRACT. — We study semilinear equations and inequalities of parabolic type with discontinuous 
nonlinearities, possibly subjected to convex or even nonconvex constraint conditions. To prove some 
existence theorems we regard the solutions as «curves of maximal relaxed slope» for a suitable functional on 
the given constraint. 

KEY WORDS: Curves of maximal slope; Partial differential equations; Discontinuity; Nonconvex 
constraints. 

RIASSUNTO. — Alcuni problemi di tipo parabolico semilineare con termini non lineari discontinui su vincoli 
non convessi. Si studiano alcune equazioni e disequazioni di tipo parabolico semilineare con termine non 
lineare discontinuo, in presenza di condizioni di vincolo anche non convesse. Per ottenere dei teoremi di 
esistenza si interpretano le soluzioni come «curve di massima pendenza rilassata» per un opportuno 
funzionale sul vincolo considerato. 

I N T R O D U C T I O N 

We deal with a real function g: R—» R, possibly discontinuous, an open subset Q in 
RN a function <p:X2—»R (the obstacle) and a real number p>0. 

We consider the following evolution problems: find absolutely continuous curves 
l l : I -»L 2(û) (I is an interval) such that: 

f U(t) e Hh(Q) Vt in I and a.e. in I: 
(P.l) 

(P.2) 

(P.3) 

V,'{t)=AVtt)+g(U{t)); 

U{t) e HJ(Û), U(t) ^ 9 a.e. in Q W in I and a.e. in I: 

cU'(t)=AU(t)+g(U(t)) a.e. in {x\U(t)(x) > <p(x)} , 

^ U'(t) = [AU(t) + gCU(/))]+ a.e. in {x\U(t)(x) = <p(x)} , 
(here the convex constraint {u^<p} is involved); 

U(t) e Hh(Q), U(t) ^ 9 a.e. in Q, J U{tf dx = p2 V/ in I 
Q 

and there exists A:I^>R such that a.e. in I: 

U'{t) = AU{t) + g(V,(t)) +A{t)U(t) a.e. in {x\U(t)(x) > <p(x)} , 

Wit) = \AU(t) + g(U(t)) + A(t)U(t)]+ a.e. in {x\U(t)(x) = ?(*)} , 

(here the nonconvex constraints {u^<py }u2dx = p2} is involved). 

(*) Pervenuta all'Accademia il 28 agosto 1989. 
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The main results we get are theorems (1.3), (2.1) and (3.3). We remark that their 
statements are invariant with respect to the replacement of g with an equivalent 
function. For the sake of simplicity we assume g not to depend on x in Q and to have at 
most a linear growth; such condition could be easily weakened adding some 
technicality. We also point out that in (P.2), instead of considering the «one-side 
constraint» {u ^ 9}, one could as well take into account the «two obstacle constraint» 
{91 ^ # ^ 9 2 } , and solve the corresponding problem. 

We recall that the variational inequalities involved in (P.l) and (P.2) was already 
studied in [23], with techniques of differential inclusions (see[l], [2]). 

We treat this kind of problems with the variational methods introduced in [9], 
which allowed to face and solve other problems involving non convex constraints 
(see [5], [6], [10], [11], [17], [19], [21]). Also in this paper we use the concepts of 
slope and subdifferential (see[9], [12], [18]) and, for each problem (P.l), (P.2) and 
(P.3), we find solutions as «curves of maximal relaxed slope» for a suitable functional/ 
defined in a Hilbert space H. We point out that: 

a) since g is not continuous, / is not 9-convex nor belongs to the classes 
X(H;r,s) introduced in [18]; 

b) we use compactness arguments which would not be required, if / were 9-
convex or fe X(H; r,s); 

c) we obtain existence theorems without uniqueness. 

In particular, for what concerns point a), we point out that in the problems we are 
going to consider, we do not have the property: 

if (ub)b> u are such that u^-^u, f(uh)->f(u) 
and ((Xh)h > a a fe such that a/, is in the subdifferential of / a t Uh, 
oLh-^(x weakly, then a is in the subdifferential of / at u; 

such a property holds, on the contrary for 9-convex functions and for functions in the 
classes X(H; r, s). 

1. T H E UNCONSTRAINED PROBLEM 

Let g: R-»R, Q cRN be as in the introduction. 

(1.1) We shall consider the following assumptions on g. 

(g.l) there exist a, b in R such that \g(s)\ ^a + b\s\, V^eR; 

(g.2) there exists E c R such that meas (E) = 0 and g\R\E is continuous on R \ E . 

We wish to remark that the growth condition (g.l) could be further weakened, 
adding some technical complications. For what concerns (g.2) observe that it is 
certainly verified if g is a function with bounded variation. We also recall that, for a g 
bounded on bounded intervals (which is the case, if (g.l) holds), then (g.2) is 
equivalent to saying that g is Riemann integrable on any bounded intervals. 
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(1.2) DEFINITION. We define G, g, g:R—>R as follows 
•*• 

0 

g(s) = in£{h(s)\h:R->R is continuous, h^g almost everywhere), 

g(s) = sup {h{s)\h: R—>R is continuous, h^g almost everywhere} . 

Observe that, if (g.2) holds, then g(s) = g(s) = g(s) = G'(s) for all s in R \ E . 

(1.3) THEOREM (Problem (P.l)). Assume (g.l) and (g.2) of (1.1). Then for all u0 in 
HQ{Q) there exists 11: [0, + °°[—>L2(0), an absolutely continuous curve such that 
11(0) = u0 and 

U(t) eHl
0(Q) "it ̂  0 and for a.e. t ^ 0: 

ll'(/) = AU (t)+g(U{t)) a.e. in {x\U(t)(x) $ E}, 

k Wit) = AU(t) = 0 e [g(U{t)), g(U(t))] a.e. in {x\U(t)(x) e E} ; 

b) the function / «—> i J |DU(/)|2 dx — J G{U(t)) dx is continuous and non 
Q Q 

increasing; 
c) if in particular, essinf g > 0 or esssup g < 0 then U is a solution of (P. 1) and the 

set {x\U(t){x) eE} is negligible for almost all t^O. 

2. THE PROBLEM ON A CONVEX CONSTRAINT 

Let g: R-»R, Q c RN, p: 0—>R be as in the introduction. 
We set K = {u e L2(Q)\u^<p a.e. in Q} and for u in K we define the «contact set» 

C(u) by C(u) = {x e Q | «(*) = p(x)}. 

(2.1) THEOREM (Problem (P.2)). Assume (g.l) and (g.2) 0/ (1.1) <wi suppose 

?eW2>2(Q). 
Then for all u0 in Hl(Q) n K there exists 11: [0, + °°[—>L2(Q), an absolutely 

continuous curve such that 11(0) = u0 and 

U(t) eHh(Q) nK V / ^ 0 and for a.e. t^0: 

in {x\U(t)(x) f E} 

v,(f) = J M>(t) + g(U(t)) in Q\C(U(t)), 
U[n \[AU(t)+g(U(t))]+ inC(U(t)), 

in {x\U(t)(x) e E} 

n,,(f) « A-i(A _ 0 , J UmW), imW)] /» Û\C(1X(/)), 

z/ we do not assume that 9 e W2'2(D)> then the corresponding variational inequalities 
hold\ 

b) the function t*-+%f\DU(t)\2dx — j G(U(t)) dx is continuous and non 
Û Q 

increasing; 
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c) if in particular, essinf g > 0 or esssup g < 0 then V is a solution of (P.2). In the 
first case ( g > 0 in E) the set {x\U(t)(x) eE} is negligible for almost all t^O. 

3. THE CASE WITH A NONCONVEX CONSTRAINT 

Let g: R->R, Q cRN, <p: Q^>R, p > 0 be as in the introduction. 
We set 

Sp = \ueL2{Q) ju2dx = p2i, PK=( j (?+)2dx\ =mmllju2dx\ ueK\ 

(3.1) We shall consider the following assumptions. 
If u0eKnSp, we say that (N.T.u0) holds at u0, if: 

J u\dx >PK> 
(N.T.«o) 

^ meas {{x\cp(x) < u0(x) < 0} u {x\u0(x) > 0}) > 0 . 

Sometimes we require: 

f P>PK> <peW2>2{Q)r\C{Q)y there esist no û ' c û , £ ' open, 
(N.T.) 

[ such that 9 ̂  0 in Û', 9 6 HJ(Û'). 

The meaning of (N.T. u0) and (N.T.) is cleared by the following statement (see [6]). 

(3.2) PROPOSITION: 

a) Let u0eKnSp. Then (N.T. u0) holds if and only ifK and Sp are not tangent at 
u0, in the sense that the tangent plane to Sp at u0 is not tangent to K. 

b) If (N.T.) holds, then K and Sp are not tangent at any u of KnSpnHl(Q). 

(3.3) THEOREM (Problem (P.3)). Assume (g.l) and (g.2) of (1.1) and suppose 
<peW2>2(Q). 

Then for all u0 in Hl{Q)r\K such that (N.T.u0) holds at u0 there exist T > 0 , 
Vi: [0, T [—> L2(Q), an absolutely continuous curve and A: [0, T[—» R such that 11(0) = uQ 

and 

' U(t) e Hb(Q) nKnSp Mt e [0, T[ and for a.e. in [0, T[ : 

in {x\VL(t)(x) $ E} 

a) 
f()=\mt)+g(m)+A(t)U(t) in Q\C(U(t))y 
U 1 [AU(t) + g{U(t)) + A(t)VL(t)]+ in C(U(t)), 

in {x\VL(t){x)eE} 

• 1 [|(1i(/)) + A(t) U(t), + 00 [ ^ C(U(t)) ; 

//z^e Jo #0/ assume that ç>eW2,2(Q)> then the corresponding variational inequalities 
hold; if (N.T.) is assumed, then T = 4- °°; 

1 l 'M=41lM = 0 e -
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b) the function t*->ij\DU(t)\2dx — }G(c\l(t))dx is continuous and non 
Q Q 

increasing; 

c) if, in particular, we have 

\Du\2 dx 
3 ^ 0 , 

g(s) 
II with £ < i n f 

u2 dx 
u e Hl(Q) 

>>. 

g(0) — 0, g(s)s^O (it would suffice g(s)s^ 0 and gs(s) ^ 0 in E), 

then it can be proved that 11 solves problem (P.3). 

4. T H E CURVES OF MAXIMAL RELAXED SLOPE 

The abstract framework, in which the theorems of the previous sections can be 
proved, can be divided into two parts. In the first one, which is treated in this section, 
we introduce the notion of curve of maximal relaxed slope and give an existence 
theorem under quite general assumptions. In the second one, which is in section 5, we 
show that, under suitable conditions, such curves solve an evolution equation similar to 
the classical IT — - grad/o 11. 

Let (X, d) be a metric space and / :X—»Ru{+oo} > be a function. We set 
<3)(/) = {ueX\f(u) < 4- o°}. Sometimes we shall consider in Q(f) the «graph metric» 
d* defined by d*(v, u) = d(v, u) + \f(v) -f(u)\. 

(4.1) DEFINITION. Let ue(J)(f).Wesetxu(p) = inf {f(v)\d(vy u)^p},forp^0.We 
define (see[9~\) the «slope of f at u», denoted by |V/|(«), by 

|V/|(«) = - l i m i n f [ z . ( p ) - z , ( 0 ) ] p - 1 . 

We define the «relaxed slope of f at u», denoted by |V/|(«) by 

|y/ i(«)= liminf \Vf\(v). 

(4.2) DEFINITION. Let I be an interval with non empty interior and let 11:1 —» X be a 
curve. We say that 11 is a curve of maximal relaxed slope almost everywhere for f (see [9] 
and [18]) if 

a) 11 is continuous; 

b) / o U(t) < oo V/ in I with I > inf J, 

/ol i( /) =^/oll(/0) V/ in I if there exists t0 = mini; 

c) d(U(t2), U(h)) ^ | |V/| (U(t)) dt Vtu t2 in I with h^h; 
h 

d) there exists / : !—»Ru{4-<»}, equivalent to / o i l , such that 
h 

Ah) -Ah) ^ - / ( Wf\ (^(t)))2 dt V/i, t2 in I with t^t2. 
h 

If d) holds with f = / o i l , we say that 11 is a curve of maximal relaxed slope for f. 
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(4.3) REMARK. It is easy to see that 

1) [Y/] (U(t)) < + oo for a.e. t in I; 

2) Vi is absolutely continuous on any compact subsets of I\mil (of I if I has a 
minimum and f(minl) < oo). 

(4.4) REMARK. If, for instance, X is an open subset of a Hilbert space H and fis a C1 

function, then l i is a curve of maximal relaxed slope almost everywhere for f if and only if 
l i 'M = -grad/( l iM) V/ in I. 

Iff is a convex function, then l i is a curve of maximal relaxed slope almost everywhere 
for f if and only if [see [3]) l i 'M e df(U(t)) a.e. in I. 

For the existence and for a first regularity theorem we need the following 
definitions. 

(4.5) DEFINITION. We say that f is «\'-continuous» if for all u in Q(f) and for all C 
in Ry we have 

lim f(v) =f{u). 
v—*u 

Av)^C,\Vf\(v)^C 

We say that f is «dV-continuous», if for all u in Q(f), for all sequences (un)n in (D(f) 
converging to u and such that 

supf{un) < + oo f lim d(un, u) | V/| (u„) = 0, 
n n 

we have lim/(&„) =f(u). 
n 

It is easy to see that /JV-continuous =>/ V-continuous. 
We also need the following compactness assumption. 

(4.6) DEFINITION. We say that f is coercive in X if for all C in R the set 
{v e X\f(v) ^ C} is compact. We say that fis locally coercive, if for all u in X there exists 
p > 0 such that f is coercive in {v e X\ d(v, u)^p}. 

(4.7) THEOREM (existence). Assume that 

a) f is locally coercive; 

b) f is ^-continuous. 

Then for all u0 in Q(f) there exist T > 0 and Vi: [0, T[—»X a curve of maximal 
relaxed slope almost everywhere for f such that 11(0) = u0. 

The proof of (4.7) is essentially given in theorem (4.10) of [18] (see also [15]). 
The following proposition adds some informations on the behaviour of/ along the 

curve l i (see [15]). 

(4.8) PROPOSITION. Assume that fis dV-continuous and let l i : I—>X be a curve of 
maximal relaxed slope almost everywhere for f. Then / o l i is continuous, hence it is non 
increasing and l i is a curve of maximal relaxed slope for f 

We introduce now a class of functions which are dV-continuous. Let H be a 
Hilbert space and M be a smooth manifold in H. 
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(4.9) DEFINITION. IfK is a convex subset ofH, we say that M and K are not tangent, 
if for all u in KnM the tangent plane to M at u is not tangent to K. 

We shall denote by IM the function with value 0 on M and value + °° outside. 

(4.10) THEOREM. Let X be an open subset o/H, yô:H—>Ru{+o°} be a convex, 
lower semicontinuous function and h:M^R a locally lipschitzian function. Then 

a) /o + h is dV-continuous; ^ 

b) if M is C1 and has finite codimension, if (&(fo) and M are non tangent, then 
/o + h 4- 1M is dV continuous and 

\V(f0 + h)\(u)^a(u) + b(u)\V(f0 + h + IM)\(u) Vu in ®(f0)nM, 

where a and b are suitable continuous functions on (D(/o) c\M. 

We remark briefly that a) and b) follow from the fact that, if/ is as above, then the 
inequality 

/( i ;)^y(«)-!r(«, t ;)( l + |V/|(«))||f;-«|| Vu, v in Q(f) with |V/|(«)< + oo 

holds (for a suitable continuous function Y) and therefore / is dV-continuous. 

5. AN EVOLUTION EQUATION 

To study problems concerning parabolic equations and inequalities, like those 
considered in the first three sections, it is important to find conditions ensuring that the 
curve of maximal relaxed slope satisfy an equation analogous to the classical 
W = - gtadfoU. 

To this aim we shall introduce some operators that play the role of the gradient of/ 
for non regular / ' s . 

Let H be a Hilbert space, with inner product ( -, • ) and norm ||• ||, let X be a subset 
of H and / : X—»i?u {+ o°} be a given function. Remember that ®(f) = 
= {ueX\f(u) < + *>}. 

(5.1) DEFINITION. Let Ci be a multivalued map, CI: 63(/) —>2H. We say that CI is a 
«subdifferential along curves for f», if 

for all absolutely continuous curves 11:1 —» X such that 

sup/oi i ( / )< + oo? a(U(t))^0 a.e. in J, 
tel 

one has for almost all t in I 

liminf [foU(t + h) -foU(t)] h'1 ^ (a, «U/(/)> Va in <3L(U(t)). 

The following lemma establishes the link between the curves of maximal relaxed 
slope and an equation of the type written above. 

(5.2) LEMMA. Let (D( |V/| ) = {ue 6D(/)| |V/| («) < + œ} and suppose that 
A: (D(|V/|)—»H is an operator such that 
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a) A is a sub differential along curves for / ; 

b) ||A(«)||=s|v/î(«) v«*»a>(|yÂ). 

Then, if Vi: I^Xis a curve of maximal relaxed slope almost everywhere forf one has 
for a.e. t in I 

(E) 

U'{t) = -A{U(t)), 

/W = -||irw||2, 

[\\A(u{t))\\=wi\mt)), 
(f is a non increasing function equivalent to f° Vi, which does exist by d) of definition 
(4.2)). 

Now we show how one can find an operator A satisfying b) of lemma (5.2). We 
recall the definition of subdifferential. 

(5.3) DEFINITION. Let ueQ(f), we define the «subdifferential» of f at u as the set 
d~f{u) of all a in H such that 

limmf [f(v) -f(u) - (a, v - «)]| | t>- u\\~x^0. 

It can be easily seen that d~f(u) is closed and convex; if d~f(u) =£ 0, we can define the 
subgradient of f at u, denoted by grad~/(z/), as the unique element of d~f{u) which has 
minimal norm. 

We remark that, as one can easily see, |V/|(«) ^ ||a|| for all a in d~f(u). In general it 
can happen that |V/|(«) <||grad~"/(#)||, but i f / i s smooth or it is convex (see [18]), 
then the equality holds. It is also evident that, for two given functions 
fg: H - » R u {+ oo}? w e have d~f(u) + d~g(u) c d~(f+g)(u) and that the equality 
holds, if g is differentiate. 

A result, which is useful to understand the properties of the subdifferential and the 
forecoming definitions, is the following one. 

(5.4) PROPOSITION. If fis lower semicontinuous, then the set {u e (D(f)\d~ f(u) # 0} 
is dense in Q(f). 

If/is locally coercive (which is the main assumption of this paper), the above result 
is easily proved by considering, for u in (D(/), the minimizers of the function 
v*-^f(v) + k\[V — &||2, for k large. 

We also remark that the subdifferential certainly is a subdifferential along curves for 
/(see lemma (1.10) of [18]), but in general does not satisfy b) of lemma (5.2) (it would if 
/were p-convex): this is the situation arising in the study of the problems of sections 1, 
2 and 3. The operators that we are going to introduce are built up so as to verify b) of 
(5.2); in the concrete problems they also are subdifferentials along curves. 

(5.5) DEFINITION. We introduce the multivalued map, &(/): (D(f)^>2H, defined 
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by: 

*ea(f)(u)o < 

there exist a sequence {un)n in (D(f), such that 

lim un = uy lim f(u„) =f(u) 

and a sequence (<*„)„ in H such that 

0Ln e d~f(un) V«, a„ —> a weakly in H. 

(5.6) LEMMA. Iff is locally coercive (see definition (4.6)), then for allu in (D(f) with 

|V/| (u) < + °° one has: 

a) there exists a in QL{f)(u) such that | |a | |^ |V/|(«); 

b) Wf\(u) = liminf ||grad-/M||. 
d-f(v)¥=0 

As a consequence we have: 

c) f is V-continuous (see definition (4.5)), if and only if for all u in (D(f): 

liminf f(v)=f(u)y VC in R; 
v—>u 

/(v)^C,d-f(v)^0,\\gtad-f(v)\\^C 

d) f is dV-continuous (see definition (4.5)), if and only if for all u in G)(f),for all 
sequences (u„)„ in Q(f) such that: 

un->uy sup/(#„) < + oo , d~f(un)
z£0 Mny lim ||grad"/(«„)||||«„ —«|| = 0, 

one has: lim f(u„) =f(u). 

The results of sections 4 and 5 give the following theorem. 
(5.7) THEOREM. Assume f to be locally coercive, ^-continuous (see (5.6) c)) and 

GL{f) to be a subdifferential along curves for f 
Then, for all u0 in Q(f), there exist T > 0 and an absolutely continuous curve 

It: [0, T[^>H, such that Vi is a curve of maximal relaxed slope for f 11(0) = u0 and: 
a) / o i l is equivalent to a non increasing function f: [0, T[—>Ru{+o°} such 

that: f'(t) = - Hit'(f)||2 for a.e. t in [0, T[; if f is d\1-continuous (see (5.6) d)), then 
foc[i=f is continuous; 

b) for a.e. t in [0, T[ d(f)(Vi(t)) =£ 0, &(/) has in Vi(t) a unique minimal section, 
denoted by A(U(t))y and W(t) = A(U(t)); 

c) moreover, if d: Q(f)-^2H is a multivalued map with the properties: 

[ a(f)(u) ca(u) \/u in (£>(/), 
(5.8) 

[ Ci is a subdifferential along curves for / , 

then, for a.e. t Cl(clt(^)) =£ 0 and A(Vi(t)) is its unique minimal section. 

For what concerns constrained problems, let us consider a smooth manifold M, 
contained in H; we denote by N:M—>2H the multivalued map defined by: 
N(u) = {v e H\ v is orthogonal to M at u). 
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(5.9) LEMMA. Letf=f0 + h, where f0: H-+Rv {+ <*>} is a convex function and h is 
a locally lipschitzian real function, defined in an open subset X of H. 

Assume f to be locally coercive•, M to be a C1 manifold with finite codimension, M and 
(D(f) not to be tangent {see (4.9)). 

Then-. 

a) GL(f+IM)(u) cCL(f)(u) + N(u) for every u in Q(f) nM; 

b) as a consequence, ifd: Q(f)-*2H is a multivalued map such that (5.8) hold for 
the pair £1, f then (5.8) hold for the pair 6L + N, / + IM. 

The following theorem is an immediate consequence of the previous lemma. 

(5.10) THEOREM. Suppose that f and M satisfy the assumptions of lemma (5.9) and 
that &(/) is a subdifferential along curves for f Then, for every u0 in 
® ( / + J M ) —($(f) n M , there exist T>0 and an absolutely continuous curve 
11: [0, T[—>H such that Vi is a curve of maximal relaxed slope for f (see (4.2)) with 
U(0) = u0. 

Moreover. 

a) foU is continuous and (foUY(t) = - \\U'(t)\\2 a.e. in [0, T[; 

b) for a.e. t in [0, T[ CL(f+IM){cli(t))iz& and -W(t) is its unique minimal 
section; in particular there exist v{U(t)) in N(U{t)) and d(1l(/)) in d(/)(cU(/)) with the 
property U'(t) = -à{U(t)) + v(U(t)); 

c) furthermore, if d: Q{f)-^2H is a multivalued map satisfying (5.8), then for 
a.e. t in [0, T[ cl(ll(^)) =£0, and â(Xt(/)) + v(ll(£)) is the unique minimal section of 
a(1i(/)) + N(ll(/)). 

6. SKETCH OF THE PROOFS 

We wish to show the functionals and the operators involved in problems (P.l), 
(P.2) and (P.3). As in sections 1, 2 and 3 let Q be a bounded open subset of RN, 
g:R—»R, <p: Q-+JL given functions and p > 0 a real number. 

We consider the Hilbert space H = L2{Q) with the usual inner product 

(«, v) — \uvdx and norm ||z/||2 = J u2 dx. 
Q Q 

Assuming (g.l) of (1.1) we can introduce the functionals fu f2, 
/ 3 :L 2 (D)-^Ru{+oo} by 

ì j\Du\2dx- JG(u)dx if ueHKQ), 

/ i (« ) = \ Q Q 

+ oo if ueL2(Q)\Hl
0(Q); 

where 

K={ueL2(Q)\u^cp a.e. in Q), Sp=jueL2(U)J JU2dx=p2\ 

(in general if V c H, then Iv is the function which has value 0 on V and + oo outside). 
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Moreover, if (g.l) of (1.1) holds, we can define the multivalue maps GLX and (3L2 as 
follows: 

' a 1 : H J W ^ 2 L 2 ( û ) , 

aedi(u)o I DuD(v — u)dx— I [g(u)(v —u)+— g(u)(v —u)~]dx^ 

! a(v — u) dx Vv in HQ(Q) ; 

a2:Hl{Q)nK-*2L2{Q\ 

ae(3L2(u)o J DuD(v- )dx - J lg(u)(v- •g(u)(v- ] dxl 

J *(v - u) dx Vv in HJ(û) n JSC. 

(6.1) Sketch of the proofs of theorems (1.3), (2.1) ^W (3.3). Theorems (1.3) and 
(2.1) can be easily obtained from theorem (5.7) and a) of (4.10), just considering the 
functional f and f2 and the operators Gii and (3L2 respectively. The solutions are curves 
of maximal relaxed slope for f and f2 respectively. 

Theorem (3.3) is obtained from theorem (5.10), considering the functional f2 the 
manifold Sp and the operator d2. The solutions are curves of maximal relaxed slope for 

7. SOME OPEN PROBLEMS 

(7.1) CAN (g.2) BE REMOVED? We remark that the existence theorem (4.7) gives the 
existence of a curve of maximal relaxed slope for the functionals/x,^ and/3 (defined in 
section 6) even if the assumption (g.2) of. (1.1) [g continuous almost everywhere) does 
not hold. Assumption (g.2) is needed only for ensuring that such curves are solutions of 
the corresponding equations (P.l), (P.2) and (P.3). One can ask oneself whether this 
fact is true without assuming (g.2). We remark that some results concerning differential 
inclusions, which are in some sense generalizations of (P.l) and (P.2), were proved 
in [23] with no use of (g.2). 

It is not clear, however, whether the solutions found in [23] are the same that one 
finds using theorem (4.7). 

(7.2) UNIQUENESS. It is easy to see that, in general, solutions of (P.l) with a given 
initial datum u0 are not unique: take for instance Q = ]0, 1[, g(s) = sgn (s) and u0 = 0, 
then there are infinitely many solutions. 

One could ask oneself whether it is possible to establish conditions on the solutions 
or individuate a class of initial data such that the solutions are unique. 
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