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Geometr ia . — Holomorphic automorphism groups in certain compact operator 

spaces. N o t a d i C A R L O P E T R O N I O , p resen ta ta (*) da l Socio E . V E S E N T I N I . 

ABSTRACT. — A class of Banach spaces of compact operators in Hilbert spaces is introduced, and the 
holomorphic automorphism groups of the unit balls of these spaces are investigated. 

KEY WORDS: Compact operator; Unit ball; Isometry; Non-homogeneity. 

RIASSUNTO. — Gruppi di automorfismi olomorfi in certi spazi di operatori compatti. Viene introdotta una 
classe di spazi di Banach di operatori compatti tra spazi di Hilbert e viene indagato il gruppo degli 
automorfismi olomorfi delle palle unitarie corrispondenti. 

Let H and K be complex Hilbert spaces. We denote by £{H,K) the complex 
Banach space of all bounded linear operators from H to K and by £0(H,K) the 
subspace of £{H,K) consisting of compact operators. We write £(H) and £0(H) 
instead of £(H,H) and £0(H,H). 

A theory of normed ideals in £(H) was first sistematically introduced by Schatten 
in [8] and [9], leading to the definition of a class of subspaces £P{H) of £0(H) (for 
l ^ p < o o ) ) which are Banach spaces with respect to a suitable norm. In the first 
section of this paper this definition will be slightly generalized, introducing a class of 
subspaces of JEo(H,K), denoted by £P(H,K) (for 1 ^ p < oo). In sections, 2, 3 and 4 we 
examine the holomorphic automorphism group of the unit ball of these spaces. Our 
main result can be considered as an operator analogue of the theorem proved by 
Vesentini in [11] and [12] about the total non-homogeneity of the unit ball of an LP 
space (provided £=£2, oo and the space is not isomorphic to C). 

1. The inner product and the norm will be denoted respectively by (• | •) and || • || 
in both H and K; the inner product will be linear in the first argument and anti-linear in 
the second. If <j> e H and <peKwe define an operator <p® $ e &(H,K) (the space of 
finite-rank operators) by (^® $)($i) = ($i|$)-</>. 

As is well-known (see e.g. [3, pp. 68-69]), every Te£(H,K) has a unique polar 
decomposition T = U[T], where U e£(HfK) is a partial isometry, Ker(U) = Ker(T) 
and [T] e £(H) is the unique positive square root of the positive hermitian operator 
T*T.' 

Suppose now Tis compact; since [T] = U*T, [T] is compact too, and therefore it is 
diagonalizable (see e.g. [3, pp. 86-87]): if we denote by {pn(T)} the sequence of all non­
zero eigenvalues of [T] repeated according to their geometric multiplicity and arranged 
in a non-increasing way, there exists an orthonormal sequence {^} c H such that 

n 

(*) Nella seduta del 18 novembre 1989. 
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for the norm-convergence (of course sequences are allowed to be finite). Since all the 
<f>„'s belong to the initial space of U, the sequence {U<pn} is orthonormal too. It follows 
that T can be written in the so-called «canonical form»: 

where {^} c K is an orthonormal sequence. 
Now, for Te£(H,K) and l^p<oo w e define ||T||P e [0, oo] by 

\\T\\P = \{ ' u . 
[ oo otherwise 

and we define £P(H,K) = {T e £(H,K):\\T\\P<™}. It is easily verified that 
£P{H,K)D${H,K). 

The proof of the following theorem imitates closely the argument given e.g. in [6] 
when K = H (cf. [7] for details): 

THEOREM 1. For 1 ^p < <» the natural linear structure and the map || • ||p define on 
£p(HyK) a complex Banach space structure (a complex Hilbert space structure for 
P = 2). 

The introduction of these spaces is strongly related with the problem of defining a 
trace in the infinite-dimensional case. We briefly mention an equivalent definition of 
|| • ||p which exploits this concept (for all the proofs we refer to [7]). 

PROPOSITION 1. If Te£(H), T ^ O and {<pa}aGA is an orthonormal basis of H, the 
(finite or infinite) sum of the positive-term series 

aeA 

is independent of the choice of the basis. This sum will be indicated by tr(T) and called 
the trace of T. 

Now let T e £{H, K); since [T] € £(H) is a positive operator, it can be raised to any 
positive real power, and the outcome is a positive operator again. We can then state the 
following: 

PROPOSITION 2. ||T||P = (tt([Tf))1/p. 

The proof of completeness in Theorem 1 is achieved in [7] by means of another 
result which has an independent interest. We begin with: 

PROPOSITION 3. If T e £\(H) and {$a}aeA is. an orthonormal basis of H, the series 

S (r*„|fc) 
<xeA 

is absolutely convergent and its sum is independent of the choice of the basis. Once 
again this sum will be called the trace of T. 

According to this proposition, JEi(H) is often called the «trace class on H». 

THEOREM 2. If one of the following hypothesis holds: 

a) Te£0(H,K), Se£1(K,H)> b) Te A(H,K), Se£(K9H), 
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c) Te£p(H,K),Se£q(KyH) (Kp, q< » , l/q+ 1/p = 1) 

then TS e A(K), ST e A(H) and tr (TS) = tr (ST): 
The following isometric isomorphisms hold: 

a) A(H,iC)* = A(K,H), b) j e ^ X ^ s j e ^ H ) , c) £P(H,K)* = £q(KyH) 

the action of an operator S being defined in any case by S: T^xx(TS). 

2. We investigate now the group of all holomorphic automorphisms of the open 
unit ball of the spaces £P(H,K) for p = 0 and 1 ^ p < oo. 

We begin with £0(H,K); since it is a norm-closed ideal in £(HyK), it is in particular 
a /"-algebra (see [4]) and therefore its unit ball is homogeneous: as Harris showed 
in [4] the group of all Mòbius transformations operates transitively on it. Hence we 
only have to determine the isotropy group of the origin, i.e. the group of all linear 
isometries of £0(H,K) onto itself. 

We will denote the group of all linear isometries of a normed space F onto itself by 
3(F). In[ l ] Franzoni proved the following: 

THEOREM. 1) If d im c H^dim c X then 

S(£(H,K)) = {T^ UTV:Ue3(K), Ve.3(H)} . 

2) If z is a fixed transposition on £(H) then 

3(£(H)) = {T^ UTV: U, Ve 3(H)} u { T ^ UT(T) V: U, Ve 3(H)} . 

Since two Hilbert spaces having the same complex dimension can be regarded as 
identical, the above theorem determines 3(j£(H,X)) in every case. We can now prove 
the following: 

THEOREM 3. Every element of 3(j£0(H,X)) is the restriction of an element of 
3(£(H,K))y and conversely. 

PROOF. Since it can be verified directly from Franzoni's theorem that Te£0(HyK), 
je3(£{H,K))^>j{T)e£0{H,K), we only have to prove that every element of 
3(£o(H,K)) can be extended to an element of 3(£(H,K)). It follows from theorem 2 
that the natural inclusion £0(H, K) c J£(H, K) is the inclusion of a Banach space into its 
bi-dual space; gvenje3(£o(H,K)) we have /** e3(£(H,K)), J=J**\JWI,K) and the 
proof is complete. D 

3. In this section we prove the main result of the present paper, i.e. the total non-
homogeneity of the unit ball of £P(H,K) provided this space is not a Hilbert space. 

The essential tool for this result is the following theorem proved by Stachó in [10] 
as a consequence of the general theory of bounded circular domains, first developed by 
Kaup and Upmeier in [5]. For a Banach space F, £2

S(F) denotes the space of continuous 
bi-linear symmetric functions from F X F to F. 

THEOREM. Let F be a complex Banach space and B its open unit ball. There exists a 
closed linear subspace F0 of F such that (Aut (B))(0) = F0nB. Moreover, given ce F, 
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we have ceF0 if and only if there exists Qe£2(F) such that X(Q(a,a)) = \\a\\2-X(c) 
whenever a e F, A e F* and X(a) = \\a\\ • ||A||. 

Before stating our theorem we remark that £P(H, K) is a Hilbert space if and only if 
one of the following conditions holds: a) p = 2; b) d im c H= 1; c) d im c K= 1. 

THEOREM 4. Suppose l ^ p < ° ° , p ^ 2 and H and K are at least 2-dimensional. 
Every holomorphic automorphism of the unit ball of £P(H,K) fixes the origin. 

PROOF. We must show that £P(H,K)0 = {0}. Equivalently, given ce£p(H,K) and 
Qe£2(£p(H,K)) such that X(Q(a,a)) = \\a\\2-X(c) Vae£p(H,K), Xe£p(H,K)* with 
X(a) = |kll-\\x\\, we must check that c = 0 . 

In order to prove that c— 0 it is enough to show that (c$i|</>i) = 0 for a pair of 
arbitrary unit vectors faeH and fa e K. 

We remark that fa ® fae&(K,H) c £p(H,K)* and moreover 

(#i ® WW = tr ( ^ ® fa) = tr ( ( ^ ) ®fa) = ( ^ | W . 

Let fa e H and 02 e K be unit vectors respectively orthogonal to fa and fa and for p > 0 
and_0ejR let a = fa®fa+Peiefa®fae&(H,K)c£p(H,K), X = fa®fa+pp-1e~ïdfa® 
®fae&(KyH)c£p(H,K)*. We show first that A(*) = |MHI4 in fact, if p = 1, 
A(H,K)* = £(K,H) and | H | I = 1 + P , IW|=1, A(*) = l + p while, if l < p < « > , 
4(H,K)*=£,(K,H) and | |4=( l+p_T' , ||A||,= (l+p^-1))1 /^=(l+^)1-^, X(a) = l+(f. 
It follows that X{Q{a,a))_=\\af'X{c), which, setting yy = (&® tpj)(c) • (/ = 1,2), 
i8Jfc=(#/®Â)(Q(^®^fe®fe))J>;*,/=l,2), can be re-written as {9

2fc2)e
w + 

+ (2pft\ + p > - ^ i 2 H l + p ) ^ ^ ^ ^ 
This identity holds for all 0 e R (remark that the numbers yy and pjk ate independent of 6 

and p), hence all the coefficients of the powers of éd are 0; in particular 

/3h + 2 p ^ 2
1 2 - ( l + p ) 2 / ^ = 0 Vp>0. 

Dividing by p2 and passing to the limit as p-> o° we obtain that 

lim2/32
12p^2 

p-»oo 

exists and equals yi- Since p=£2 this limit must vanish. Hence y\ — 0> i-e. {cfa\fa) = 0 
and the proof is complete. • 

4. Since £2(H,K) is a Hilbert space, its open unit ball is homogeneous (see 
e.g. [2]) and the isotropy group of the origin consists of all unitary operators. These 
operators can be explicitely constructed as soon as an orthonormal basis of £2(H,K) is 
exhibited. 

Since for T, Se£2(H,K) we have (T\S) = tr(£*T), we can easily prove the 
following: 

PROPOSITION 4. If {fa}a€A and {fa}^B are orthonormal bases of H and K 
respectively, 

{^®fc} 
is an orthonormal basis of £2{H,K). 

oceA 
peB 
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We conclude with the description of S(£i(H,K)). 

THEOREM 5. Every element of 3(£i{H,K)) is the restriction of an element of 
3{£(H,K)), and conversely. 

PROOF. Every je 3(£(H,K)) can be written in one of the following forms: 

tf) / : T»-> UTV; b) / : T"-> Ur(T) V 

Thus, for T e£x(HyK) we have respectively: 

a) 11/(7)11! = tr ([/(T)]) = tr (((UTV)* (UTV))m) = 

= tr ((V* T* TV)1/2) = tr (V*(T* T)m V) = tr ([T]) = \\T\l. 

b) 11/(̂ )1^ = IMDIU = ||r|U. 
It follows that the restriction of/ defines an element of S(£i(H}K)). 

Conversely, suppose j eS(£i(H,K)). 
Since ^(H^K)* = £(K,H)J* belongs to 3(£{K,H)), and therefore it has one of 

the following forms: 

a) j*:S>-> USV; b) j*:S*-> Ur(S) V. 

For Te£i(H,K), Se£(H,K) we have respectively: 

a) S(J(T)) = (j*(S))(T) = tr (j*(S) • T) = tr(USVT) = tr(SVTU) = S(VTU). 

b) S(J(T)) = tr (Uz(S) VT) = tr (r(T) T(V)ST(U)) = 

= tr (Sz(U) T(T) T(V)) = S(T(U) T(T) T(V)). 

It follows that, respectively, a) j:T^VTU; b) j : T^ r(U) z(T) T(V)y 

thus / is the restriction of an element of 3(£(H,K)) (remark that r(U) and T(V) are 
unitary operators). D 
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