Rendiconti Lincei

 Matematica E Applicazioni
Chiara De Fabritiis

Differential geometry of Cartan domains of type four

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Serie 9, Vol. 1 (1990), n.2, p. 131-138.

Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLIN_1990_9_1_2_131_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> http://www.bdim.eu/

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Accademia Nazionale dei Lincei, 1990.

Geometria. - Differential geometry of Cartan Domains of type four. Nota di Chiara de Fabritiis, presentata (*) dal Socio E. Vesentini.

Abstract. - In this note we compute the sectional curvature for the Bergman metric of the Cartan domain of type IV and we give a classification of complex totally geodesic manifolds for this metric.

Key words: Curvature; Geodesic; Totally geodesic manifold.

Riassunto. - Geometria differenziale per domini di Cartan di tipo IV. In questa nota si calcolano le curvature sezionali per la metrica di Bergman del dominio di Cartan di tipo IV e si trova una classificazione completa delle varietà totalmente geodetiche con spazio tangente complesso per tale metrica.

Introduction

In E. Cartan's classification, a domain of type four is biholomorphically equivalent to the bounded symmetric domain $\mathscr{\sigma}_{n}=\left\{z \in C^{n}:|z|<1,1-2|z|^{2}+\left|{ }^{t} z z\right|^{2}>0\right\}$, where $z=^{t}\left(z_{1}, \ldots, z_{n}\right)$ and the norm $|z|$ is associated to the euclidean scalar product $(u, v)={ }^{t} \bar{v} u=\sum u_{j} \bar{v}_{j}$, for $u, v \in C^{n}$.

The main purpose of this note will be that of developing a few elementary facts of the differential geometry of invariant metrics of \mathscr{O}_{n}.

In the first section we compute the sectional curvature of the Bergman metric of \circlearrowleft_{n} determining two bounds and investigating its planar sections, i.e. sections on which the sectional curvature vanishes.

In $\mathbb{\$} 2$ we consider totally geodesic manifolds in \mathscr{O}_{n} and exhibit a complete classification for totally geodesic manifolds which are complex.

1. Bergman metric and curvature bounds

The Cartan domain \otimes_{n} is a bounded symmetric domain, whose Bergman kernel function is $b_{\omega_{n}}(z)=\left(1-2|z|^{2}+\left|{ }^{t} z z\right|^{2}\right)^{-n}$.

The group Aut $\mathscr{ゐ}_{n}$ of all holomorphic automorphisms of $\mathscr{\bowtie}_{n}$ can be described in the following way:

$$
\begin{aligned}
& G=\left\{\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right) \in O(n, 2), A \in M(n, R), B \in M(n, 2, R),\right. \\
&C \in M(2, n, R), D \in M(2, R), \operatorname{det} D>0\},
\end{aligned}
$$

and consider the map $\Phi: G \rightarrow$ Aut $\left(\mathscr{D}_{n}\right)$ defined by

$$
\Phi_{g}(z)=\left(A z+B\binom{(1 / 2)(w+1)}{(i / 2)(w-1)}\right) \cdot\left((1 i)\left(C z+D\binom{(1 / 2)(w+1)}{(i / 2)(w-1)}\right)\right)^{-1}
$$

where $w=^{t} z z$.
(*) Nella seduta del 18 novembre 1989.

It is possible to prove that Φ is a surjective homomorphism whose kernel is $\pm I_{n+2}$.
The Shilov boundary of \mathscr{O}_{n} is given by $\mathcal{S}=\left\{z=e^{i \theta} x, \theta \in R, x \in R^{n},|x|=1\right\}$ and the

Since \mathscr{O}_{n} is homogeneous, in order to compute the sectional curvature for the Bergman metric of $\mathscr{\mathscr { O }}_{n}$ it suffices to consider one particular point of $\mathscr{\partial}_{n}$. It turns out that the cartesian coordinates z_{1}, \ldots, z_{n} in C^{n} are geodesic coordinates at 0 , up to renormalization, in the sense that the coefficients $g_{j \bar{k}}(z)=\partial^{2} \ln b_{\Theta_{n}}(z) / \partial z_{j} \partial \bar{z}_{k}$ of the Bergman metric and those of the Levi-Civita connection $\Theta:$. are given at 0 by $g_{j \bar{k}}(0)=2 \delta_{j k}, \theta . .(0)=0$. By consequence, the Riemann curvature tensor at 0 is

$$
R_{a \bar{b} c \bar{d}}(0)=-4\left(\delta_{a c} \delta_{b d}-\delta_{a b} \delta_{c d}-\delta_{a d} \delta_{b c}\right) .
$$

Throughout the following u and v will denote two linearly independent vectors in $T_{0}\left(\mathscr{D}_{n}\right) \sim C^{n}$. The sectional curvature of the plane section spanned by u and v is

$$
\begin{aligned}
& K(u, v)=\left(-2 \operatorname{Re}\left({ }^{t} u u^{\bar{T}} v v\right)+2|(u, \bar{v})|^{2}+(u, v)^{2}+\overline{(u, v)^{2}}-\right. \\
& \left.\quad-2|u|^{2}|v|^{2}-4 \operatorname{Im}^{2}(u, v)\right)\left(4|u|^{2}|v|^{2}-(u, v)^{2}-\overline{(u, v)^{2}}-2|(u, v)|^{2}\right)^{-1},
\end{aligned}
$$

where (u, v) is the standard inner product in C^{n} and $|u|^{2}=(u, u)$.
As $K(u, v)$ does not depend on the choice of the two vectors in the plane spanned by u and v, we can suppose that $\operatorname{Re}\left(g_{j, k} u_{j} \bar{v}_{k}\right)=\operatorname{Re}((u, v))=0$.

We deduce from that $(u, v)^{2}+\overline{(u, v)^{2}}+2|(u, v)|^{2}=0$, hence

$$
K(u, v)=\left(-\operatorname{Re}\left({ }^{t} u u^{\bar{T}} v v\right)-|u|^{2}|v|^{2}+|(u, \bar{v})|^{2}+3(u, v)^{2}\right)\left(2|u|^{2}|v|^{2}\right)^{-1} .
$$

Since $\left|\operatorname{Re}\left({ }^{t} u u^{\bar{v} v v}\right)\right|<|u|^{2}|v|^{2}, \quad|(u, \bar{v})|^{2}<|u|^{2}|v|^{2} \quad$ and $\quad(u, v)^{2} \leqslant 0$, the sectional curvature is bounded by $-5 / 2 \leqslant K(u, v) \leqslant 1 / 2$.

These estimates might possibly be improved. An indication in this direction is given by the fact that the bounds just found cannot be reached: $K(u, v)=-5 / 2$ implies $(u, v)=-|u||v|$, so $u \in C v$, that is impossible. As for the upper bound, note that, if $K(u, v)=1 / 2$, then $\operatorname{Re}\left({ }^{t} u u^{\bar{t}} v v\right)=-|u|^{2}|v|^{2},(u, v)=0$ and $|(u, \bar{v})|=|u||v|$; from this we deduce that $\bar{v}=e^{i \theta} u$, then $\operatorname{Re}((u, \bar{u})(\bar{v}, v))=\operatorname{Re}\left(u, e^{i \theta} v\right)(\bar{v}, v)=0$, showing that $1 / 2$ is not reached.

We characterize now the planar sections, i.e. plane sections determined by u and v on which $K(u, v)=0$. To find such sections first we fix u; then we find v such that $K(u, v)=0$, assuming of course $|u|=|v|=1$ (notice that the square of the length of a vector for the Bergman metric in 0 is twice the square of its length for the euclidean norm). Hirzebruch proved in [5] that.

Theorem 1.1. For all $x \in C^{n}$ there is $A \in O(n) \subset\left(\operatorname{Aut} \mathscr{\partial}_{n}\right)_{0}$ such that $A x=$ $=e^{i \theta} \cdot t(a, i b, 0, \ldots, 0)$, with $a, b \in R$.

Then, setting $N(u)=\left\{v \in C^{n}: K(u, v)=0, \operatorname{Re}(u, v)=0\right\}$, it is easily seen that, if $A \in O(n)$, then $v \in N(u) \Leftrightarrow A v \in N(A u)$, hence we can suppose that $u=$ $=e^{i \theta} \cdot t(\cos r, i \sin r, 0, \ldots, 0)$.

Since $v \in N(u) \Leftrightarrow e^{i \theta} v \in N\left(e^{i \theta} u\right)$, we can assume that $u={ }^{t}(\cos r, i \sin r, 0, \ldots, 0)$.

For $v=^{t}\left(z_{1}, z_{2}, \ldots, z_{n}\right)=^{t}\left(x_{1}+i y_{1}, \ldots, x_{n}+i y_{n}\right)$, with x_{j}, y_{j} in R we have two distinct cases:
a) If $\sin r=0$, i.e. $u=^{t}(1,0, \ldots, 0), \operatorname{Re}(u, v)=0$ implies $x_{1}=0$. Hence

$$
0 \leqslant 1+\operatorname{Re}^{t} v v=\left|z_{1}\right|^{2}+3 z_{1}^{2}=-2 y_{1}^{2} \leqslant 0 \Rightarrow y_{1}=0 \quad \text { and } \quad \operatorname{Re}^{t} v v=-1,
$$

and therefore v must have the form $v=^{t}\left(0, i y_{2}, \ldots, i y_{n}\right)$, where $\sum_{j=2}^{n} y_{j}^{2}=1$.
b) If $\sin r \neq 0, \operatorname{Re}(u, v)=0$ implies $y_{2}=-\cot r x_{1}$ and ${ }^{t} u u=\left(\cos ^{2} r-\sin ^{2} r\right)$, $\operatorname{Re}^{t} v v=x_{1}^{2}-y_{1}^{2}+\ldots+x_{n}^{2}-y_{n}^{2}=2\left(x_{1}^{2}+\ldots+x_{n}^{2}\right)-1$.

Thus, by setting $s=x_{3}^{2}+\ldots+x_{n}^{2}, K(u, v)=0 \Leftrightarrow 1+\cos 2 r\left(2 x_{1}^{2}+2 x_{2}^{2}+2 s-1\right)=$ $=4 x_{1}^{2} \cos ^{2} r-2 x_{2}^{2} \sin ^{2} r-2 y_{1}^{2} \cos ^{2} r+8 x_{2} y_{1} \sin r \cos r$, i.e.

$$
\begin{equation*}
1+2\left(x_{2}^{2} \cos ^{2} r+y_{1}^{2} \cos ^{2} r-4 x_{2} y_{1} \cos r \sin r\right)+\cos 2 r(2 s-1)=2 x_{1}^{2} . \tag{1}
\end{equation*}
$$

That proves the following proposition which yields all planar sections determined by u and v in C^{n}.

Propostrion 1.2. The unitary vectors u and v in C^{n} determine a planar section if and only if there exists an element $\varphi \in\left(\operatorname{Aut} \mathscr{\omega}_{n}\right)_{0}$ such that either

$$
\text { i) } \varphi u=^{t}(1,0, \ldots, 0) \text { and } \varphi v=^{t}\left(0, i y_{2}, \ldots, i y_{n}\right) \text {, or ii) } \varphi u=^{t}(\cos r, i \sin r, 0, \ldots, 0)
$$ and $\varphi v=\left(x_{1}+i y_{1}, x_{2} i+i \cot r x_{1}, \ldots, x_{n}+i y_{n}\right)$, where φv satisfies (1).

We shall now compute the holomorphic sectional curvature determined by u in C^{n}, that is the curvature of the plane section determined by u and $v=i u$.

Since $\operatorname{Re}(u, v)=0$, then $K(u, i u)=\left(\left.\left.\right|^{t} u u\right|^{2}-\left.2|u|^{4}| | u\right|^{-4}=\left|{ }^{t} u u\right|^{2}|u|^{-4}-2\right.$.
Hence the bounds for the holomorphic sectional curvature are -2 and -1 :

$$
\begin{gathered}
K(u, i u)=-2 \Leftrightarrow{ }^{t} u u=0 \Leftrightarrow(u, \bar{u})=0, \\
K(u, i u)=-1 \Leftrightarrow|t u u|=|u|^{2} \Leftrightarrow|(u, \bar{u})|=(u, u) \Leftrightarrow u=e^{i \theta} x,
\end{gathered}
$$

where $x \in S^{n-1}$ the unit sphere in R^{n}.
The holomorphic bisectional curvature at $0 \in \mathscr{\bowtie}_{n}$ along the complex plane spanned by u and v is given by

$$
\begin{aligned}
& K_{b}(u, v)=-\left(R_{a b \bar{d} d} u^{a} \bar{u}^{b} v^{c} \bar{v}^{d}\right)\left(g_{a b} \bar{c}_{c d} u^{a} u^{b} \bar{u}^{b} v^{c} v^{d}\right)^{-1}= \\
&=4\left(\left(_{a_{a c}} \delta_{b d}-\delta_{a d} \delta_{b c}-\delta_{a b} \delta_{c d}\right) u^{a} \bar{u}^{b} v^{c} \bar{v}^{d}\left(4|u|^{2} \mid v v^{2}\right)^{-1}=\right. \\
&=\left(-|u|^{2}|v|^{2}-|(u, v)|^{2}+\mid(u, \bar{v})^{2}\right)\left(|u|^{2}|v|^{2}\right)^{-1} .
\end{aligned}
$$

First of all that implies $K_{b}(u, v)=K(u, i u)$ if $v \in C u$.
The bounds of K_{b} are -2 and 0 and they turn out to be the best possible: in fact $K_{b}(u, v)=-2$ if and only if $|(u, \bar{v})|=0$ and $|(u, v)|=|u||v|$, that is, if and only if, $v=e^{i \theta} u$, with $(u, \bar{u})=0$. In particular v must lie in the complex line determined by u, and therefore $K_{b}(u, v)=K(u, i u)$. As for the lower bound, note that $K_{b}(u, v)=0 \Leftrightarrow$ $\Leftrightarrow(u, v)=0$ and $(u, \bar{v})=|u||v|$, i.e. $(u, \bar{u})=0$ and $v=e^{i \theta} \bar{u}$.

The results can be summarized as follows

Proposition 1.3. The bounds for the holomorphic sectional curvature $K(u, i u)$ are -2 and -1 : the first is reached if and only if $(u, \bar{u})=0$, the second if and only if $u=e^{i \theta} x$, where $x \in S^{n-1} \subset R^{n}$. The bounds for the holomorphic bisectional curvature $K_{b}(u, v)$ are -2 and 0 : the first is reached if and only if v is in $C u$ and $(u, \bar{u})=0$, the second if and only if $(u, \bar{u})=0$ and $v=e^{i \theta} \bar{u}$.

2. Geodesics and totally geodesic submanifolds

The first part of the following theorem has been proved by Köcher in [8] and Hirzebruch in [5] (see also [3], where the proof has been considerably simplified); the description of the geodesics for the Bergman metric of $\mathscr{ゐ}_{n}$ follows from simple considerations on the proof in [3].

Theorem 2.1. Let z_{1} and z_{2} in \mathscr{O}_{n}, there is a unique geodesic for the Bergman metric φ such that $\varphi(0)=z_{1}$ and $\varphi(1)=z_{2}$. Such a geodesic is obtained as the image, by a suitable automorphism of $\mathscr{\partial}_{n}$, of the curve $\varphi_{1}(t)=\left((\tanh t x+\tanh t y) 2^{-1}\right.$, $\left.(\tanh t x-\tanh t y)(2 i)^{-1}, 0, \ldots, 0\right)$, where $t \in R, x, y \in R$.

This implies that \mathscr{O}_{2} is totally geodesic in \circlearrowleft_{n}.
Now we want to study the totally geodesic manifolds in $\mathscr{\bowtie}_{n}$ whose tangent spaces are complex subspaces of C^{n}. From now on we shall indicate them as C.T.G.M.

The domain \circlearrowleft_{n} being homogeneous, we can limit ourselves to the costruction of a C.T.G.M. W with $0 \in W$.

Proposition 2.2. The C.T.G.M. in ω_{n} of complex dimension 1 are

$$
A_{1}=\left\{z \in \mathscr{O}_{n}: z=^{t}\left(z_{1}, 0, \ldots, 0\right)\right\}, \quad A_{2}=\left\{z \in \mathscr{ळ}_{n}: z==^{t}\left(z_{1},-i z_{1}, 0, \ldots, 0\right)\right\}
$$

and all their images under automorphisms of \circlearrowleft_{n}.
Proof. Consider w_{1} in $T_{0}(W)$, the tangent space of W in 0 , because of Theorem 1.1 we can suppose that $w_{1}=^{t}\left(x_{1}, i x_{2}, 0, \ldots, 0\right)$, with $x_{1}, x_{2} \in R, x_{1}^{2}+x_{2}^{2}>0$.

It is easy to check that the restriction to $\mathscr{\partial}_{2}$ of the linear map $\tau=\left(\begin{array}{cc}1 & i \\ 1 & -i\end{array}\right)$ gives a biholomorphism between σ_{2} and $\Delta \times \Delta$.

Then we can study C.T.G.M. in $\Delta \times \Delta$: the geodesic in $\Delta \times \Delta$ whose tangent vector in 0 is $\left(x_{1}-x_{2}, x_{1}+x_{2}\right)$ is $\gamma(t)=\left(\tanh \left(t\left(x_{1}-x_{2}\right)\right), \tanh \left(t\left(x_{1}+x_{2}\right)\right)\right)$.

Also $i \gamma(\boldsymbol{R})$ is in $\tau(W)$, because its tangent vector in 0 is $i\left(x_{1}-x_{2}, x_{1}+x_{2}\right)$. Let $P=\gamma(1)=\left(r_{1}, r_{2}\right)$ and $Q=i P$. If ψ is the geodesic such that $\psi(0)=P$ and $\psi(1)=Q$, then $\psi(\boldsymbol{R})$ is contained in $\tau(W)$, therefore $\psi(-1)$ is in $\tau(W)$. Then the geodesic v such that $\nu(1)=\psi(-1)$ and $v(0)=0$ must have tangent vector in $C\left(x_{1}-x_{2}, x_{1}+x_{2}\right)$.

This can happen if and only if either

$$
\text { i) } \tau(W)=\left\{z \in \Delta \times \Delta: z={ }^{t}\left(z_{1}, z_{1}\right)\right\}, \quad \text { or } \quad \text { ii) } \tau(W)=\left\{z \in \Delta \times \Delta: z={ }^{t}\left(0, z_{2}\right)\right\} \text {. }
$$

In fact $\psi(t)=\left(\gamma_{1}(t), \gamma_{2}(t)\right)$, where γ_{j} is the geodesic such that $\gamma_{j}(0)=r_{j}$ and $\gamma_{j}(1)=i r_{j}, j=1,2$. Since $\quad \nu(1)=^{t}\left(\left(2 r_{1}-i r_{1}-i r_{1}^{3}\right) \cdot\left(1-2 i r_{1}^{2}+r_{1}^{2}\right)^{-1}, \quad\left(2 r_{2}-i r_{2}-i r_{2}^{3}\right)\right.$. $\left.\cdot\left(1-2 i r_{2}^{2}+r_{2}^{2}\right)^{-1}\right)$ setting $\nu(1)=^{t}\left(e^{i \theta_{1}} \tanh a, e^{i \theta_{2}} \tanh b\right)$, the tangent vector to ν in 0 is ${ }^{t}\left(e^{i \theta_{1}} a, e^{i \theta_{2}} b\right)$. This vector is in $C\left(x_{1}-x_{2}, x_{1}+x_{2}\right)$ if and only if either $\theta_{1}=\theta_{2}+k \pi$, for
some integer k or $a b=0$. Thus we have the two manifolds of cases i) and ii). Applying τ^{-1} to these manifolds we obtain the thesis.

We pass now to the k-dimensional case proving
Theorem 2.3. The C.T.G.M. in \mathscr{O}_{n} are obtained as images by Aut \mathscr{O}_{n} of either

1) $M_{1}=\left\{z \in \mathscr{\partial}_{n}: z={ }^{t}\left(z_{1}, \ldots, z_{k}, 0, \ldots, 0\right)\right\}$ and
2) $M_{2}=\left\{z \in \mathscr{D}_{n}: z=^{t}\left(z_{1}, i z_{1}, \ldots, z_{2 k-1}, i z_{2 k-1}, 0, \ldots, 0\right)\right\}$.

We need the following
Lemma 2.4. $W=\left\{z \in \mathscr{O}_{3}: z=^{t}\left(z_{1}, z_{2}, i z_{2}\right)\right\}$ is not a C.T.G.M.
Proof. The vectors $w_{1}={ }^{t}(a, 0,0)$ and $w_{2}={ }^{t}(0, b, i b)$, where $a, b \in R$, are a complex base for $T_{0}(W)$, the tangent space of W in 0 .

Let $P=^{t}(\operatorname{tgh} a, 0,0)$ and $Q=^{t}\left(0,(\operatorname{tgh} 2 b) 2^{-1}, i(\operatorname{tgh} 2 b) 2^{-1}\right)$ and let γ be the geodesic such that $P=\gamma(0)$ and $Q=\gamma(1)$: if $\gamma(-1)={ }^{t}\left(v_{1}, v_{2}, v_{3}\right)$ and $v_{2}+i v_{3} \neq 0$ then W is not a C.T.G.M.

Let $x=\tanh a$ and $y=\tanh b$; with a brief calculation we have that

$$
\gamma(-1)=d^{-1} \cdot\left(1-4 y^{2}\right)^{-1}\left[\begin{array}{c}
* \\
i y\left(x^{2}+1\right)-i y\left(w^{\prime 2}-1\right) \\
y\left(x^{2}+1\right)-y\left(w^{\prime 2}+1\right)
\end{array}\right)
$$

where $w^{\prime 2}=x^{4}$ and d is a constant factor. The condition $v_{2}+i v_{3}=0$ is not possible, so W is not a C.T.G.M.

From now on e_{j} will denote the j-th element of the standard base in C^{n}. Then we have the following

Corollary 2.5. If $e_{1}, e_{2}+i e_{3} \in T_{0}(W)$, where W is a C.T.G.M., then $e_{2}, e_{3} \in T_{0}(W)$.
Proof (of the theorem). We prove Theorem 2.3 in two steps. First we prove that M_{1} and M_{2} are C.T.G.M., then we show that M_{1}, M_{2} and all their images by elements in Aut \mathscr{O}_{n} are the only possible C.T.G.M.

To prove the first part of thesis, it is enough to show that M_{1} and M_{2} are C.T.G.M. It suffices to show that the two subgroups of Aut $\mathscr{\partial}_{n}$ leaving M_{1} and M_{2} invariant act transitively on M_{1} and M_{2} respectively, and that these manifolds are totally geodesic in 0 .

For $M_{1}=\mathscr{O}_{k} \times\{0\}^{n-k}$ both statements are trivial. For M_{2} the proof is a bit more difficult.

First of all we prove that M_{2} is totally geodesic in 0 . Set $w=^{t}\left(z_{1}, i z_{1}, \ldots, z_{2 k-1}\right.$, $\left.i z_{2 k-1}, 0, \ldots, 0\right)$, and choose $L=\left(l_{j k}\right)$ in $O(k)$ such that $L^{t}\left(z_{1}, z_{3}, \ldots, z_{2 k-1}\right)=^{t}(x, i y, 0, \ldots, 0)$. Consider

$$
B=\left(\begin{array}{ccccc}
l_{11} & 0 & l_{12} & 0 & \ldots \\
0 & l_{11} & 0 & l_{12} & \ldots \\
\vdots & \vdots & \vdots & \ddots & \vdots
\end{array}\right)
$$

it is evident that $B w=^{t}(x, i x, i y,-y, 0, \ldots, 0)$.

Let us define $n=\left(x^{2}+y^{2}\right)^{-1 / 2}$ and

$$
F=\left(\begin{array}{ccccc}
x n & 0 & 0 & -y n & 0 \\
0 & x n & y n & 0 & 0 \\
0 & -y n & x n & 0 & 0 \\
y n & 0 & 0 & x n & 0 \\
0 & 0 & 0 & 0 & I_{n-4}
\end{array}\right) .
$$

Both B and F trasform M_{2} onto itself and $F B w=(n, i n, 0, \ldots, 0)$. The fact that in \mathscr{O}_{2} $M=\left\{z \in \mathscr{O}_{2}: z=^{t}\left(z_{1}, i z_{1}\right)\right\}$ is totally geodesic in 0 , implies that M_{2} is totally geodesic in 0.

To see that M_{2} is homogeneous under restrictions of automorphisms of \mathscr{J}_{n} it is enough to check that, given $z_{0} \neq 0$, in M_{2}, there exists a matrix $g_{z_{0}}$ in G such that $\Phi_{g_{z_{0}}}\left(z_{0}\right)=0$ and $\Phi_{g_{z_{0}}}\left(M_{2}\right) \subset M_{2}$.

With the notations of $\$ 1$,

$$
g_{z_{0}}=\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)
$$

where $A=I+a\left|z_{0}\right|^{-2}\left(z_{0}^{t} \bar{z}_{0}+\bar{z}_{0}^{t} z_{0}\right), \quad a=\left(1-\left|z_{0}\right|^{2}\right)^{-2^{-1}}-1$,

$$
D=\left(1-2\left|z_{0}\right|^{2}\right)^{-2^{-1}}\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), \quad B=A X_{0} \quad \text { and } \quad C=D^{t} X_{0}
$$

where $X_{0}=\left(2\left(z_{0}-i \bar{z}_{0}\right)\right)\left(2\left(z_{0}+i \bar{z}_{0}\right)\right)\left(\right.$ for a proof of the fact that $g_{z_{0}} \in G$ and $\Phi_{g_{z_{0}}}\left(z_{0}\right)=0$ see [6]).

Then $\Phi_{g_{0}}(z)=d^{-1}\left(A z-A z_{0}\right)$, where d is a constant, for all z in M_{2}, because ${ }^{t} z z=0$. Since $\Phi_{g_{z_{0}}}(z) \in \mathscr{\partial}_{n}$, what we are left to prove is that $\Phi_{g_{z_{0}}}(z) \in V=\left\{z \in C^{n}: z=^{t}\left(z_{1}, i z_{1}, \ldots, z_{2 k-1}\right.\right.$, $\left.\left.i z_{2 k-1}, 0, \ldots, 0\right)\right\}$, as V is a vector space, $\left(z_{0}^{t} \bar{z}_{0}+\bar{z}_{0}^{t} z_{0}\right)\left(z-z_{0}\right)$ is in V iff $\bar{z}_{0}^{t} z_{0}\left(z-z_{0}\right) \in V$: if we show that this is 0 we have that M_{2} is a C.T.G.M. If we choose u and v in V we have $u={ }^{t}\left(u_{1}, i u_{1}, \ldots, u_{2 k-1}, i u_{2 k-1}, 0, \ldots, 0\right)$ and $v={ }^{t}\left(v_{1}, i v_{1}, \ldots, v_{2 k-1}, i v_{2 k-1}, 0, \ldots, 0\right)$ then ${ }^{t} u v=$ $=u_{1} v_{1}+i^{2} u_{1} v_{1}+\ldots+u_{2 k-1} v_{2 k-1}+i^{2} u_{2 k-1} v_{2 k-1}=0$, hence $\bar{z}_{0}^{t} z_{0}\left(z-z_{0}\right)=0$, and we have proved the first part of the thesis.

We now come to the second step of the proof of Theorem 2.3. Let W be a C.T.G.M. such that $0 \in W$. Note that, if $w \in T_{0}(W) \sim C^{n}$, there are three possibilities:

$$
\text { i) } w \in S, \quad \text { ii) }{ }^{t} w w=0, \quad \text { iii) } w \notin S, \quad \text { and } \quad{ }^{t} w w \neq 0
$$

and these possibilities are preserved by the action of $\left(\operatorname{Aut} \mathscr{\sigma}_{n}\right)_{0}$.
We fix an orthonormal base w_{1}, \ldots, w_{k} of $T_{0}(W)$ containing the maximum number of elements which satify either i) or iii).

Rearranging the base we can suppose that w_{1}, \ldots, w_{r} satisfy i), w_{r+1}, \ldots, w_{s} satisfy ii) and w_{s+1}, \ldots, w_{k} satisfy iii). Note that, if we multiply each w_{j} for a constant of modulus 1 , the base we obtain has still the same properties.

Applying a suitable element $A \in O(n)$ to w_{1} we obtain $A w_{1}=e^{i \theta t}(1,0, \ldots, 0)$; as we

w_{2}, \ldots, w_{k} have the first coordinate equal to 0 . Repeating this method acting only on the last non vanishing coordinates we can suppose that $w_{j}=e_{j}$ for $j=1, \ldots, r$, and w_{b} has the first r coordinates equal to 0 for $b=r+1, \ldots, k$.

Applying a suitable element of $O(n)$ that is the identity on the first r coordinates we can suppose that $w_{r+1}=^{t}(0, \ldots, 0, x, i x, 0, \ldots, 0)$, where $x \in R-\{0\}$.

If $j=r+2, \ldots, k$ and $w_{j}=^{t}\left(0, \ldots, 0, z_{r+1}, \ldots, z_{n}\right)$ then $z_{r+1}=i z_{r+2}$, because the base is orthogonal.

For each fixed $b \in\{r+2, \ldots k\}$ consider the unitary map of C^{k} defined by

$$
\begin{aligned}
& w_{r+1} \mapsto w_{r+1}^{\prime}=\cos \theta w_{r+1}+\sin \theta w_{b}, \\
& w_{h} \mapsto w_{b}^{\prime}=-\sin \theta w_{r+1}+\cos \theta w_{b}, \\
& w_{m} \mapsto w_{m}, \quad \text { if } m \neq r+1, b .
\end{aligned}
$$

As ${ }^{t} w_{r+1}^{\prime} w_{r+1}^{\prime}=2 \cos \theta \sin \theta^{t} w_{r+1} w_{b}+\sin ^{2} \theta^{t} w_{b} w_{b}$ and ${ }^{t} w_{b}^{\prime} w_{b}^{\prime}=-2 \cos \theta \sin \theta^{t} w_{r+1} w_{b}+$ $+\cos ^{2} \theta^{t} w_{b} w_{b}$, then, if ${ }^{t} w_{r+1} w_{b} \neq 0$, there is a suitable θ for which ${ }^{t} w_{r+1}^{\prime} w_{r+1}^{\prime} \neq 0$ and ${ }^{t} w_{b}^{\prime} w_{b}^{\prime} \neq 0$. So we can replace w_{r+1} and w_{b} by w_{r+1}^{\prime} and w_{b}^{\prime} none of which satisfies ii), this is absurd because of the choice of the base; then ${ }^{t} w_{r+1} w_{b}=0$ for all $b=r+2, \ldots, k$.

Hence we obtain that $w_{b}=^{t}\left(0, \ldots, 0, z_{r+3}, \ldots, z_{n}\right)$, for $b \in\{r+2, \ldots, k\}$. We continue by the same method acting only on the last $n-(r+2)$ coordinates and we end up with $T_{0}(W)$ containing $e_{r+1}+i e_{r+2}, \ldots, e_{2 s-r-1}+i e_{2 s-r}$ and with w_{s+1}, \ldots, w_{k} having the first $2 s-r$ coordinates equal to 0 .

Choosing a suitable element of $O(n)$ which is the identity map on the first $2 s-r$ coordinates and applying it to w_{s+1}, we can suppose that $w_{s+1}=a e_{2 s-r+1}+i b e_{2 s-r+2}$, where $a, b \in R$ and $a \neq b$. Hence, by Proposition 2.2, $e_{2 s-r+1}$ and $e_{2 s-r+2} \in T_{0}(W)$. We want to add to $e_{2 s-r+1}, e_{2 s-r+2}$ other elements so as to have an orthonormal base $e_{2 s-r+1}, e_{2 s-r+2}, w_{s+3}^{\prime}, \ldots, w_{k}^{\prime}$ of the vector space spanned by w_{s+1}, \ldots, w_{k} in which $w_{s+3}^{\prime}, \ldots, w_{k}^{\prime}$ are all in the Shillov boundary. Once this has been done, applying a suitable element of $O(n)$ which is the identity map on the first $2 s-r+2$ coordinates, we can suppose that $w_{s+3}^{\prime}, \ldots, w_{k}^{\prime}$ are replaced by $e_{2 s-r+3}, \ldots, e_{k+(s-r)}$.

If $k-(s+r)=2$ we have such a base already. If that is not the case we can find w_{s+3}^{\prime} in the vector space spanned by w_{s+1}, \ldots, w_{k} which is orthogonal to $e_{2 s-r+1}$ and $e_{2 s-r+2}$. Then we can suppose, applying a suitable element in $O(n)$ which is the identity map on the first $2 s-r+2$ coordinates, that $w_{s+3}^{\prime}=c e_{2 s-r+3}+i d e_{2 s-r+4}$, where $c, d \in \boldsymbol{R}$.

If w_{s+3}^{\prime} is in the Shilov boundary we can go to w_{s+4}^{\prime}. If ${ }^{t} w_{s+3}^{\prime} w_{s+3}^{\prime}=0$ we can apply Corollary 2.5 to w_{s+3}^{\prime} and $e_{2 s-r+1}$. Since $e_{2 s-r+3}$ and $e_{2 s-r+4}$ are now in $T_{0}(W)$, so we can take $w_{s+3}^{\prime}=e_{2 s-r+3}$ and $w_{s+4}^{\prime}=e_{2 s-r+4}$, and we can go on adding w_{s+5}^{\prime}. If either w_{s+3}^{\prime} is not in the Shǐlov boundary or ${ }^{t} w_{s+3}^{\prime} w_{s+3}^{\prime} \neq 0$. Proposition 2.2 implies that $e_{2 s-r+3}$ and $e_{2 s-r+4}$ are in $T_{0}(W)$. Then we can go on adding w_{s+5}^{\prime}.

In conclusion we have found a base of elements in the Shilov boundary for the complex vector space spanned by w_{s+1}, \ldots, w_{k}, then, up to the action of $O(n)$, we can suppose that $T_{0}(W)$ is spanned by $e_{1}, \ldots, e_{j}, e_{j+1}+i e_{j+2}, \ldots, e_{2 m+j-1}+i e_{2 m+j}$, where $k=j+m$.

Applying again Corollary 2.5 to e_{1} and $e_{j+1}+i e_{j+2}$ we obtain that either $j=0$ or
$m=0$, i.e. $T_{0}(W)$ is spanned by e_{1}, \ldots, e_{k} (which corresponds to M_{1}) or by $e_{1}+i e_{2}, \ldots, e_{2 k-1}+i e_{2 k}$ (which corresponds to M_{2}).

That proves that M_{1}, M_{2} and all their images by elements of Aut \bowtie_{n} exhaust all C.T.G.M.

References

[1] M. Abate, Complex geodesics in classical domains. Scuola Norm. Sup., Pisa 1985.
[2] T. Franzoni - E. Vesentini, Holomorphic maps and invariant distances. North-Holland, Amsterdam 1980.
[3] G. Gentili, Invariant Riemannian geometry on convex cones. Tesi di perfezionamento, Scuola Norm. Sup., Pisa 1981.
[4] L. A. Harris, Bounded symmetric bomogeneous domains in infinite dimensional bolomorphy. Proceedings on infinite dimensional holomorphy. Springer Verlag, Lect. Notes in Math., 346, 1973, 13-40.
[5] H. Hirzebruch, Halbräume und ibre bolomorphische Automorphismen. Math. Ann., 153, 1964, 395-417.
[6] L. K. Hua, Harmonic analysis of functions of several variables in the classical domains. Transl. of Am. Math. Soc., R.I., 1963.
[7] S. Kobayashi, Hyperbolic manifolds and bolomorphic mappings. Dekker, New York 1970.
[8] M. Köcker, Die Geodätischen von Positivitätsbereichen. Math. Ann., 135, 1958, 192-202.
[9] H. Reiffen, Die Carathéodorysche Distanz und ibre zugehörige Differentialmetrik. Math. Ann., 161, 1965, 315-324.
[10] H. L. Royden, Complex Finsler metrics. Contemp. Math., 49, 1986, 119-124.

Scuola Normale Superiore Piazza dei Cavalieri 7-56100 PisA

