ATTI ACCADEMIA NAZIONALE LINCEI CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI LINCEI MATEMATICA E APPLICAZIONI

Chiara De Fabritiis

Differential geometry of Cartan domains of type four

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Serie 9, Vol. 1 (1990), n.2, p. 131–138.

Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLIN_1990_9_1_2_131_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Accademia Nazionale dei Lincei, 1990.

Rend. Mat. Acc. Lincei s. 9, v. 1:131-138(1990)

Geometria. — Differential geometry of Cartan Domains of type four. Nota di Chiara de Fabritiis, presentata (*) dal Socio E. Vesentini.

ABSTRACT. — In this note we compute the sectional curvature for the Bergman metric of the Cartan domain of type IV and we give a classification of complex totally geodesic manifolds for this metric.

KEY WORDS: Curvature; Geodesic; Totally geodesic manifold.

RIASSUNTO. — Geometria differenziale per domini di Cartan di tipo IV. In questa nota si calcolano le curvature sezionali per la metrica di Bergman del dominio di Cartan di tipo IV e si trova una classificazione completa delle varietà totalmente geodetiche con spazio tangente complesso per tale metrica.

INTRODUCTION

In E. Cartan's classification, a domain of type four is biholomorphically equivalent to the bounded symmetric domain $\mathcal{O}_n = \{z \in \mathbb{C}^n : |z| < 1, 1 - 2|z|^2 + |^t z z|^2 > 0\}$, where $z = {}^t(z_1, ..., z_n)$ and the norm |z| is associated to the euclidean scalar product $(u, v) = {}^t \overline{v} u = \sum u_i \overline{v}_i$, for $u, v \in \mathbb{C}^n$.

The main purpose of this note will be that of developing a few elementary facts of the differential geometry of invariant metrics of \mathcal{O}_n .

In the first section we compute the sectional curvature of the Bergman metric of \mathcal{O}_n determining two bounds and investigating its planar sections, *i.e.* sections on which the sectional curvature vanishes.

In §2 we consider totally geodesic manifolds in \mathcal{Q}_n and exhibit a complete classification for totally geodesic manifolds which are complex.

1. Bergman metric and curvature bounds

The Cartan domain \mathcal{O}_n is a bounded symmetric domain, whose Bergman kernel function is $b_{\mathcal{D}}(z) = (1-2|z|^2 + |^t z z|^2)^{-n}$.

The group Aut \mathcal{O}_n of all holomorphic automorphisms of \mathcal{O}_n can be described in the following way:

$$G = \left\{ \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in O(n,2), A \in M(n, \mathbf{R}), B \in M(n,2, \mathbf{R}), \\ C \in M(2, n, \mathbf{R}), D \in M(2, \mathbf{R}), \det D > 0 \right\},$$

and consider the map $\Phi: G \rightarrow \operatorname{Aut}(\mathcal{O}_n)$ defined by

$$\Phi_{g}(z) = \left(Az + B\left(\frac{(1/2)(w+1)}{(i/2)(w-1)}\right)\right) \cdot \left((1\,i)\left(Cz + D\left(\frac{(1/2)(w+1)}{(i/2)(w-1)}\right)\right)\right)^{-1},$$

where w = tzz.

(*) Nella seduta del 18 novembre 1989.

It is possible to prove that Φ is a surjective homomorphism whose kernel is $\pm I_{n+2}$. The Shilov boundary of \mathcal{O}_n is given by $\mathcal{S} = \{z = e^{i\theta}x, \theta \in \mathbb{R}, x \in \mathbb{R}^n, |x| = 1\}$ and the isotropy group of 0, (Aut \mathcal{O}_n)₀, is transitive on \mathcal{S} .

Since \mathcal{O}_n is homogeneous, in order to compute the sectional curvature for the Bergman metric of \mathcal{O}_n it suffices to consider one particular point of \mathcal{O}_n . It turns out that the cartesian coordinates $z_1, ..., z_n$ in \mathbb{C}^n are geodesic coordinates at 0, up to renormalization, in the sense that the coefficients $g_{j\bar{k}}(z) = \partial^2 \ln b_{\mathcal{O}_n}(z)/\partial z_j \partial \overline{z}_k$ of the Bergman metric and those of the Levi-Civita connection Θ : are given at 0 by $g_{j\bar{k}}(0) = 2\delta_{jk}, \Theta: (0) = 0$. By consequence, the Riemann curvature tensor at 0 is

$$R_{a\bar{b}c\bar{d}}(0) = -4(\delta_{ac}\,\delta_{bd} - \delta_{ab}\,\delta_{cd} - \delta_{ad}\,\delta_{bc}).$$

Throughout the following u and v will denote two linearly independent vectors in $T_0(\mathcal{Q}_n) \sim \mathbb{C}^n$. The sectional curvature of the plane section spanned by u and v is

$$K(u,v) = (-2\operatorname{Re}({}^{t}uu\,\overline{{}^{t}vv}) + 2|(u,\overline{v})|^{2} + (u,v)^{2} + \overline{(u,v)^{2}} - 2|u|^{2}|v|^{2} - 4\operatorname{Im}^{2}(u,v))(4|u|^{2}|v|^{2} - (u,v)^{2} - \overline{(u,v)^{2}} - 2|(u,v)|^{2})^{-1},$$

where (u, v) is the standard inner product in \mathbb{C}^n and $|u|^2 = (u, u)$.

As K(u, v) does not depend on the choice of the two vectors in the plane spanned by u and v, we can suppose that $\operatorname{Re}(g_{i\bar{k}}u_{j}\overline{v}_{k}) = \operatorname{Re}((u, v)) = 0$.

We deduce from that $(u, v)^2 + \overline{(u, v)^2} + 2|(u, v)|^2 = 0$, hence

$$K(u,v) = (-\operatorname{Re}({}^{t}uu\,\overline{{}^{t}vv}) - |u|^{2}|v|^{2} + |(u,\overline{v})|^{2} + 3(u,v)^{2})(2|u|^{2}|v|^{2})^{-1}.$$

Since $|\operatorname{Re}({}^{t}uu\,\overline{{}^{t}vv})| < |u|^{2}|v|^{2}$, $|(u,\overline{v})|^{2} < |u|^{2}|v|^{2}$ and $(u,v)^{2} \leq 0$, the sectional curvature is bounded by $-5/2 \leq K(u,v) \leq 1/2$.

These estimates might possibly be improved. An indication in this direction is given by the fact that the bounds just found cannot be reached: K(u, v) = -5/2 implies (u, v) = -|u| |v|, so $u \in Cv$, that is impossible. As for the upper bound, note that, if K(u, v) = 1/2, then Re $({}^{t}uu {}^{\overline{t}}vv) = -|u|^2 |v|^2$, (u, v) = 0 and $|(u, \overline{v})| = |u| |v|$; from this we deduce that $\overline{v} = e^{i\theta}u$, then Re $((u, \overline{u})(\overline{v}, v)) = \text{Re}(u, e^{i\theta}v)(\overline{v}, v) = 0$, showing that 1/2 is not reached.

We characterize now the planar sections, *i.e.* plane sections determined by u and v on which K(u, v) = 0. To find such sections first we fix u; then we find v such that K(u, v) = 0, assuming of course |u| = |v| = 1 (notice that the square of the length of a vector for the Bergman metric in 0 is twice the square of its length for the euclidean norm). Hirzebruch proved in [5] that.

THEOREM 1.1. For all $x \in \mathbb{C}^n$ there is $A \in O(n) \subset (\operatorname{Aut} \mathcal{O}_n)_0$ such that $Ax = e^{i\theta \cdot t}(a, ib, 0, \dots, 0)$, with $a, b \in \mathbb{R}$.

Then, setting $N(u) = \{v \in \mathbb{C}^n : K(u, v) = 0, \text{ Re } (u, v) = 0\}$, it is easily seen that, if $A \in O(n)$, then $v \in N(u) \Leftrightarrow Av \in N(Au)$, hence we can suppose that $u = e^{i\theta \cdot t}(\cos r, i \sin r, 0, ..., 0)$.

Since $v \in N(u) \Leftrightarrow e^{i\theta} v \in N(e^{i\theta} u)$, we can assume that $u = t(\cos r, i \sin r, 0, ..., 0)$.

DIFFERENTIAL GEOMETRY OF CARTAN DOMAINS OF TYPE FOUR

For $v = (z_1, z_2, ..., z_n) = (x_1 + iy_1, ..., x_n + iy_n)$, with x_j, y_j in R we have two distinct cases:

a) If sin
$$r = 0$$
, *i.e.* $u = {}^{t}(1, 0, ..., 0)$, Re $(u, v) = 0$ implies $x_1 = 0$. Hence

 $0 \le 1 + \operatorname{Re}^{t} vv = |z_1|^2 + 3z_1^2 = -2y_1^2 \le 0 \Rightarrow y_1 = 0 \quad \text{and} \quad \operatorname{Re}^{t} vv = -1,$ and therefore v must have the form $v = {}^{t} (0, iy_2, \dots, iy_n)$, where $\sum_{i=2}^{n} y_i^2 = 1$.

b) If sin $r \neq 0$, Re (u, v) = 0 implies $y_2 = -\cot rx_1$ and ${}^tuu = (\cos^2 r - \sin^2 r)$, Re ${}^tvv = x_1^2 - y_1^2 + \dots + x_n^2 - y_n^2 = 2(x_1^2 + \dots + x_n^2) - 1$.

Thus, by setting $s = x_3^2 + ... + x_n^2$, $K(u, v) = 0 \Leftrightarrow 1 + \cos 2r (2x_1^2 + 2x_2^2 + 2s - 1) = 4x_1^2 \cos^2 r - 2x_2^2 \sin^2 r - 2y_1^2 \cos^2 r + 8x_2 y_1 \sin r \cos r$, *i.e.*

(1)
$$1 + 2(x_2^2 \cos^2 r + y_1^2 \cos^2 r - 4x_2 y_1 \cos r \sin r) + \cos 2r(2s - 1) = 2x_1^2.$$

That proves the following proposition which yields all planar sections determined by u and v in C^n .

PROPOSITION 1.2. The unitary vectors u and v in C^n determine a planar section if and only if there exists an element $\varphi \in (\operatorname{Aut} \mathcal{O}_n)_0$ such that either

i) $\varphi u = {}^{t}(1, 0, ..., 0)$ and $\varphi v = {}^{t}(0, iy_2, ..., iy_n)$, or ii) $\varphi u = {}^{t}(\cos r, i \sin r, 0, ..., 0)$ and $\varphi v = (x_1 + iy_1, x_2 i + i \cot rx_1, ..., x_n + iy_n)$, where φv satisfies (1).

We shall now compute the holomorphic sectional curvature determined by u in C^n , that is the curvature of the plane section determined by u and v = iu.

Since Re (u, v) = 0, then $K(u, iu) = (|^{t}uu|^{2} - 2|u|^{4})|u|^{-4} = |^{t}uu|^{2}|u|^{-4} - 2$.

Hence the bounds for the holomorphic sectional curvature are -2 and -1:

$$K(u, iu) = -2 \Leftrightarrow {}^{t}uu = 0 \Leftrightarrow (u, \overline{u}) = 0,$$

$$K(u, iu) = -1 \Leftrightarrow |{}^{t}uu| = |u|^2 \Leftrightarrow |(u, \overline{u})| = (u, u) \Leftrightarrow u = e^{i\theta}x,$$

where $x \in S^{n-1}$ the unit sphere in \mathbb{R}^n .

The holomorphic bisectional curvature at $0 \in \mathcal{O}_n$ along the complex plane spanned by u and v is given by

$$K_{b}(u,v) = -(R_{a\bar{b}c\bar{d}} u^{a} \overline{u}^{b} v^{c} \overline{v}^{d})(g_{a\bar{b}} g_{c\bar{d}} u^{a} \overline{u}^{b} v^{c} \overline{v}^{d})^{-1} =$$

$$= 4(\delta_{ac} \delta_{bd} - \delta_{ad} \delta_{bc} - \delta_{ab} \delta_{cd}) u^{a} \overline{u}^{b} v^{c} \overline{v}^{d} (4|u|^{2}|v|^{2})^{-1} =$$

$$= (-|u|^{2}|v|^{2} - |(u,v)|^{2} + |(u,\overline{v})|^{2})(|u|^{2}|v|^{2})^{-1}.$$

First of all that implies $K_b(u, v) = K(u, iu)$ if $v \in Cu$.

The bounds of K_b are -2 and 0 and they turn out to be the best possible: in fact $K_b(u, v) = -2$ if and only if $|(u, \overline{v})| = 0$ and |(u, v)| = |u||v|, that is, if and only if, $v = e^{i\theta}u$, with $(u, \overline{u}) = 0$. In particular v must lie in the complex line determined by u, and therefore $K_b(u, v) = K(u, iu)$. As for the lower bound, note that $K_b(u, v) = 0 \Leftrightarrow (u, v) = 0$ and $(u, \overline{v}) = |u||v|$, *i.e.* $(u, \overline{u}) = 0$ and $v = e^{i\theta}\overline{u}$.

The results can be summarized as follows

PROPOSITION 1.3. The bounds for the holomorphic sectional curvature K(u, iu) are -2 and -1: the first is reached if and only if $(u, \overline{u}) = 0$, the second if and only if $u = e^{i\theta}x$, where $x \in S^{n-1} \subset \mathbb{R}^n$. The bounds for the holomorphic bisectional curvature $K_b(u, v)$ are -2 and 0: the first is reached if and only if v is in Cu and $(u, \overline{u}) = 0$, the second if and only if $(u, \overline{u}) = 0$ and $v = e^{i\theta}\overline{u}$.

2. Geodesics and totally geodesic submanifolds

The first part of the following theorem has been proved by Köcher in [8] and Hirzebruch in [5] (see also [3], where the proof has been considerably simplified); the description of the geodesics for the Bergman metric of \mathcal{O}_n follows from simple considerations on the proof in [3].

THEOREM 2.1. Let z_1 and z_2 in \mathcal{O}_n , there is a unique geodesic for the Bergman metric φ such that $\varphi(0) = z_1$ and $\varphi(1) = z_2$. Such a geodesic is obtained as the image, by a suitable automorphism of \mathcal{O}_n , of the curve $\varphi_1(t) = ((\tanh tx + \tanh ty) 2^{-1}, (\tanh tx - \tanh ty)(2t)^{-1}, 0, ..., 0)$, where $t \in \mathbf{R}$, $x, y \in \mathbf{R}$.

This implies that \mathcal{O}_2 is totally geodesic in \mathcal{O}_n .

Now we want to study the totally geodesic manifolds in \mathcal{O}_n whose tangent spaces are complex subspaces of C^n . From now on we shall indicate them as C.T.G.M.

The domain \mathcal{O}_n being homogeneous, we can limit ourselves to the costruction of a C.T.G.M. W with $0 \in W$.

PROPOSITION 2.2. The C.T.G.M. in \mathcal{O}_n of complex dimension 1 are

 $A_1 = \{z \in \mathcal{O}_n : z = {}^t(z_1, 0, \dots, 0)\}, \qquad A_2 = \{z \in \mathcal{O}_n : z = {}^t(z_1, -iz_1, 0, \dots, 0)\},\$

and all their images under automorphisms of \mathcal{O}_n .

PROOF. Consider w_1 in $T_0(W)$, the tangent space of W in 0, because of Theorem 1.1 we can suppose that $w_1 = {}^t(x_1, ix_2, 0, ..., 0)$, with $x_1, x_2 \in \mathbb{R}$, $x_1^2 + x_2^2 > 0$.

It is easy to check that the restriction to \mathcal{O}_2 of the linear map $\tau = \begin{pmatrix} 1 & i \\ 1 & -i \end{pmatrix}$ gives a biholomorphism between \mathcal{O}_2 and $\Delta \times \Delta$.

Then we can study C.T.G.M. in $\Delta \times \Delta$: the geodesic in $\Delta \times \Delta$ whose tangent vector in 0 is $(x_1 - x_2, x_1 + x_2)$ is $\gamma(t) = (\tanh(t(x_1 - x_2)), \tanh(t(x_1 + x_2)))$.

Also $i\gamma(\mathbf{R})$ is in $\tau(W)$, because its tangent vector in 0 is $i(x_1 - x_2, x_1 + x_2)$. Let $P = \gamma(1) = (r_1, r_2)$ and Q = iP. If ψ is the geodesic such that $\psi(0) = P$ and $\psi(1) = Q$, then $\psi(\mathbf{R})$ is contained in $\tau(W)$, therefore $\psi(-1)$ is in $\tau(W)$. Then the geodesic ν such that $\nu(1) = \psi(-1)$ and $\nu(0) = 0$ must have tangent vector in $C(x_1 - x_2, x_1 + x_2)$.

This can happen if and only if either

i) $\tau(W) = \{z \in \Delta \times \Delta : z = {}^{t}(z_1, z_1)\}, \text{ or } ii) \tau(W) = \{z \in \Delta \times \Delta : z = {}^{t}(0, z_2)\}.$

In fact $\psi(t) = (\gamma_1(t), \gamma_2(t))$, where γ_j is the geodesic such that $\gamma_j(0) = r_j$ and $\gamma_j(1) = ir_j, j = 1, 2$. Since $\nu(1) = {}^t((2r_1 - ir_1 - ir_1^3) \cdot (1 - 2ir_1^2 + r_1^2)^{-1}, (2r_2 - ir_2 - ir_2^3) \cdot (1 - 2ir_2^2 + r_2^2)^{-1})$ setting $\nu(1) = {}^t(e^{i\theta_1} \tanh a, e^{i\theta_2} \tanh b)$, the tangent vector to ν in 0 is ${}^t(e^{i\theta_1}a, e^{i\theta_2}b)$. This vector is in $C(x_1 - x_2, x_1 + x_2)$ if and only if either $\theta_1 = \theta_2 + k\pi$, for

some integer k or ab = 0. Thus we have the two manifolds of cases i) and ii). Applying τ^{-1} to these manifolds we obtain the thesis. \Box

We pass now to the k-dimensional case proving

THEOREM 2.3. The C.T.G.M. in \mathcal{O}_n are obtained as images by Aut \mathcal{O}_n of either

1)
$$M_1 = \{z \in \mathcal{O}_n : z = {}^t(z_1, \dots, z_k, 0, \dots, 0)\}$$
 and

2)
$$M_2 = \{z \in \mathcal{O}_n : z = {}^t(z_1, iz_1, \dots, z_{2k-1}, iz_{2k-1}, 0, \dots, 0)\}.$$

We need the following

LEMMA 2.4. $W = \{z \in \mathcal{O}_3 : z = t(z_1, z_2, iz_2)\}$ is not a C.T.G.M.

PROOF. The vectors $w_1 = {}^t(a, 0, 0)$ and $w_2 = {}^t(0, b, ib)$, where $a, b \in \mathbb{R}$, are a complex base for $T_0(W)$, the tangent space of W in 0.

Let $P = {}^{t}(\operatorname{tgh} a, 0, 0)$ and $Q = {}^{t}(0, (\operatorname{tgh} 2b) 2^{-1}, i(\operatorname{tgh} 2b) 2^{-1})$ and let γ be the geodesic such that $P = \gamma(0)$ and $Q = \gamma(1)$: if $\gamma(-1) = {}^{t}(v_1, v_2, v_3)$ and $v_2 + iv_3 \neq 0$ then W is not a C.T.G.M.

Let $x = \tanh a$ and $y = \tanh b$; with a brief calculation we have that

$$\gamma(-1) = d^{-1} \cdot (1 - 4y^2)^{-1} \begin{pmatrix} * \\ iy(x^2 + 1) - iy(w'^2 - 1) \\ y(x^2 + 1) - y(w'^2 + 1) \end{pmatrix},$$

where $w'^2 = x^4$ and *d* is a constant factor. The condition $v_2 + iv_3 = 0$ is not possible, so *W* is not a C.T.G.M. \Box

From now on e_j will denote the *j*-th element of the standard base in C^n . Then we have the following

COROLLARY 2.5. If $e_1, e_2 + ie_3 \in T_0(W)$, where W is a C.T.G.M., then $e_2, e_3 \in T_0(W)$.

PROOF (of the theorem). We prove Theorem 2.3 in two steps. First we prove that M_1 and M_2 are C.T.G.M., then we show that M_1 , M_2 and all their images by elements in Aut \mathcal{O}_n are the only possible C.T.G.M.

To prove the first part of thesis, it is enough to show that M_1 and M_2 are C.T.G.M. It suffices to show that the two subgroups of Aut \mathcal{Q}_n leaving M_1 and M_2 invariant act transitively on M_1 and M_2 respectively, and that these manifolds are totally geodesic in 0.

For $M_1 = \mathcal{O}_k \times \{0\}^{n-k}$ both statements are trivial. For M_2 the proof is a bit more difficult.

First of all we prove that M_2 is totally geodesic in 0. Set $w = {}^t(z_1, iz_1, ..., z_{2k-1}, iz_{2k-1}, 0, ..., 0)$, and choose $L = (l_{jk})$ in O(k) such that $L^t(z_1, z_3, ..., z_{2k-1}) = {}^t(x, iy, 0, ..., 0)$. Consider

$$B = \left(\begin{array}{cccc} l_{11} & 0 & l_{12} & 0 & \dots \\ 0 & l_{11} & 0 & l_{12} & \dots \\ \vdots & \vdots & \vdots & \ddots & \vdots \end{array} \right);$$

it is evident that $Bw = {}^{t}(x, ix, iy, -y, 0, \dots, 0)$.

Let us define $n = (x^2 + y^2)^{-1/2}$ and

$$F = \begin{pmatrix} xn & 0 & 0 & -yn & 0\\ 0 & xn & yn & 0 & 0\\ 0 & -yn & xn & 0 & 0\\ yn & 0 & 0 & xn & 0\\ 0 & 0 & 0 & 0 & I_{n-4} \end{pmatrix}$$

Both B and F trasform M_2 onto itself and FBw = (n, in, 0, ..., 0). The fact that in \mathcal{O}_2 $M = \{z \in \mathcal{O}_2 : z = {}^{t}(z_1, iz_1)\}$ is totally geodesic in 0, implies that M_2 is totally geodesic in 0.

To see that M_2 is homogeneous under restrictions of automorphisms of \mathcal{O}_n it is enough to check that, given $z_0 \neq 0$, in M_2 , there exists a matrix g_{z_0} in G such that $\Phi_{g_{z_0}}(z_0) = 0$ and $\Phi_{g_{z_0}}(M_2) \subset M_2$.

With the notations of \$1,

$$g_{z_0} = \begin{pmatrix} A & B \\ C & D \end{pmatrix},$$

where $A = I + a|z_0|^{-2}(z'_0 \overline{z}_0 + \overline{z}'_0 z_0), \quad a = (1 - |z_0|^2)^{-2^{-1}} - 1,$
 $D = (1 - 2|z_0|^2)^{-2^{-1}} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad B = AX_0 \quad \text{and} \quad C = D^t X_0$

where $X_0 = (2(z_0 - i\overline{z}_0))(2(z_0 + i\overline{z}_0))$ (for a proof of the fact that $g_{z_0} \in G$ and $\Phi_{g_{z_0}}(z_0) = 0$ see [6]).

Then $\Phi_{g_{z_0}}(z) = d^{-1}(Az - Az_0)$, where *d* is a constant, for all *z* in M_2 , because '*zz* = 0. Since $\Phi_{g_{z_0}}(z) \in \mathcal{Q}_n$, what we are left to prove is that $\Phi_{g_{z_0}}(z) \in V = \{z \in C^n : z = i(z_1, iz_1, \dots, z_{2k-1}, iz_{2k-1}, 0, \dots, 0)\}$, as *V* is a vector space, $(z_0^t \overline{z}_0 + \overline{z}_0^t z_0)(z - z_0)$ is in *V* iff $\overline{z}_0^t z_0(z - z_0) \in V$: if we show that this is 0 we have that M_2 is a C.T.G.M. If we choose *u* and *v* in *V* we have $u = i(u_1, iu_1, \dots, u_{2k-1}, iu_{2k-1}, 0, \dots, 0)$ and $v = i(v_1, iv_1, \dots, v_{2k-1}, iv_{2k-1}, 0, \dots, 0)$ then '*uv* = $u_1v_1 + i^2u_1v_1 + \dots + u_{2k-1}v_{2k-1} + i^2u_{2k-1}v_{2k-1} = 0$, hence $\overline{z}_0^t z_0(z - z_0) = 0$, and we have proved the first part of the thesis.

We now come to the second step of the proof of Theorem 2.3. Let W be a C.T.G.M. such that $0 \in W$. Note that, if $w \in T_0(W) \sim C^n$, there are three possibilities:

i)
$$w \in S$$
, ii) $^{t}ww = 0$, iii) $w \notin S$, and $^{t}ww \neq 0$

and these possibilities are preserved by the action of $(\operatorname{Aut} \mathcal{O}_n)_0$.

We fix an orthonormal base $w_1, ..., w_k$ of $T_0(W)$ containing the maximum number of elements which satify either i) or iii).

Rearranging the base we can suppose that $w_1, ..., w_r$ satisfy i), $w_{r+1}, ..., w_s$ satisfy ii) and $w_{s+1}, ..., w_k$ satisfy iii). Note that, if we multiply each w_j for a constant of modulus 1, the base we obtain has still the same properties.

Applying a suitable element $A \in O(n)$ to w_1 we obtain $Aw_1 = e^{i\theta t}(1, 0, ..., 0)$; as we consider W modulus the action of $(\operatorname{Aut} \mathcal{O}_n)_0$ we can suppose that $w_1 = t(1, 0, ..., 0)$, then

 $w_2, ..., w_k$ have the first coordinate equal to 0. Repeating this method acting only on the last non vanishing coordinates we can suppose that $w_j = e_j$ for j = 1, ..., r, and w_k has the first r coordinates equal to 0 for b = r + 1, ..., k.

Applying a suitable element of O(n) that is the identity on the first *r* coordinates we can suppose that $w_{r+1} = {}^{t}(0, ..., 0, x, ix, 0, ..., 0)$, where $x \in \mathbf{R} - \{0\}$.

If j = r + 2, ..., k and $w_j = t(0, ..., 0, z_{r+1}, ..., z_n)$ then $z_{r+1} = iz_{r+2}$, because the base is orthogonal.

For each fixed $h \in \{r+2, ..., k\}$ consider the unitary map of C^k defined by

$$w_{r+1} \mapsto w'_{r+1} = \cos \theta w_{r+1} + \sin \theta w_b,$$

$$w_b \mapsto w'_b = -\sin \theta w_{r+1} + \cos \theta w_b,$$

$$w_m \mapsto w_m,$$

if $m \neq r+1, b.$

As ${}^{t}w'_{r+1}w'_{r+1} = 2\cos\theta\sin\theta {}^{t}w_{r+1}w_{b} + \sin^{2}\theta {}^{t}w_{b}w_{b}$ and ${}^{t}w'_{b}w'_{b} = -2\cos\theta\sin\theta {}^{t}w_{r+1}w_{b} + \cos^{2}\theta {}^{t}w_{b}w_{b}$, then, if ${}^{t}w_{r+1}w_{b} \neq 0$, there is a suitable θ for which ${}^{t}w'_{r+1}w'_{r+1} \neq 0$ and ${}^{t}w'_{b}w'_{b} \neq 0$. So we can replace w_{r+1} and w_{b} by w'_{r+1} and w'_{b} none of which satisfies ii), this is absurd because of the choice of the base; then ${}^{t}w_{r+1}w_{b} = 0$ for all b = r+2, ..., k.

Hence we obtain that $w_b = {}^t (0, ..., 0, z_{r+3}, ..., z_n)$, for $b \in \{r+2, ..., k\}$. We continue by the same method acting only on the last n - (r+2) coordinates and we end up with $T_0(W)$ containing $e_{r+1} + ie_{r+2}, ..., e_{2s-r-1} + ie_{2s-r}$ and with $w_{s+1}, ..., w_k$ having the first 2s - r coordinates equal to 0.

Choosing a suitable element of O(n) which is the identity map on the first 2s - r coordinates and applying it to w_{s+1} , we can suppose that $w_{s+1} = ae_{2s-r+1} + ibe_{2s-r+2}$, where $a, b \in \mathbb{R}$ and $a \neq b$. Hence, by Proposition 2.2, e_{2s-r+1} and $e_{2s-r+2} \in T_0(W)$. We want to add to e_{2s-r+1}, e_{2s-r+2} other elements so as to have an orthonormal base $e_{2s-r+1}, e_{2s-r+2}, w'_{s+3}, \dots, w'_k$ of the vector space spanned by w_{s+1}, \dots, w_k in which w'_{s+3}, \dots, w'_k are all in the Shilov boundary. Once this has been done, applying a suitable element of O(n) which is the identity map on the first 2s - r + 2 coordinates, we can suppose that w'_{s+3}, \dots, w'_k are replaced by $e_{2s-r+3}, \dots, e_{k+(s-r)}$.

If k - (s + r) = 2 we have such a base already. If that is not the case we can find w'_{s+3} in the vector space spanned by $w_{s+1}, ..., w_k$ which is orthogonal to e_{2s-r+1} and e_{2s-r+2} . Then we can suppose, applying a suitable element in O(n) which is the identity map on the first 2s - r + 2 coordinates, that $w'_{s+3} = ce_{2s-r+3} + ide_{2s-r+4}$, where $c, d \in \mathbb{R}$.

If w'_{s+3} is in the Shilov boundary we can go to w'_{s+4} . If $'w'_{s+3} w'_{s+3} = 0$ we can apply Corollary 2.5 to w'_{s+3} and e_{2s-r+1} . Since e_{2s-r+3} and e_{2s-r+4} are now in $T_0(W)$, so we can take $w'_{s+3} = e_{2s-r+3}$ and $w'_{s+4} = e_{2s-r+4}$, and we can go on adding w'_{s+5} . If either w'_{s+3} is not in the Shilov boundary or $'w'_{s+3} w'_{s+3} \neq 0$. Proposition 2.2 implies that e_{2s-r+3} and e_{2s-r+4} are in $T_0(W)$. Then we can go on adding w'_{s+5} .

In conclusion we have found a base of elements in the Shilov boundary for the complex vector space spanned by w_{s+1}, \ldots, w_k , then, up to the action of O(n), we can suppose that $T_0(W)$ is spanned by $e_1, \ldots, e_j, e_{j+1} + ie_{j+2}, \ldots, e_{2m+j-1} + ie_{2m+j}$, where k = j + m.

Applying again Corollary 2.5 to e_1 and $e_{j+1} + ie_{j+2}$ we obtain that either j = 0 or

m = 0, *i.e.* $T_0(W)$ is spanned by e_1, \ldots, e_k (which corresponds to M_1) or by $e_1 + ie_2, \ldots, e_{2k-1} + ie_{2k}$ (which corresponds to M_2).

That proves that M_1 , M_2 and all their images by elements of Aut \mathcal{O}_n exhaust all C.T.G.M. \Box

References

- [1] M. ABATE, Complex geodesics in classical domains. Scuola Norm. Sup., Pisa 1985.
- [2] T. FRANZONI E. VESENTINI, *Holomorphic maps and invariant distances*. North-Holland, Amsterdam 1980.
- [3] G. GENTILI, Invariant Riemannian geometry on convex cones. Tesi di perfezionamento, Scuola Norm. Sup., Pisa 1981.
- [4] L. A. HARRIS, Bounded symmetric homogeneous domains in infinite dimensional holomorphy. Proceedings on infinite dimensional holomorphy. Springer Verlag, Lect. Notes in Math., 346, 1973, 13-40.
- [5] H. HIRZEBRUCH, Halbräume und ihre holomorphische Automorphismen. Math. Ann., 153, 1964, 395-417.
- [6] L. K. HUA, Harmonic analysis of functions of several variables in the classical domains. Transl. of Am. Math. Soc., R.I., 1963.
- [7] S. KOBAYASHI, Hyperbolic manifolds and holomorphic mappings. Dekker, New York 1970.
- [8] M. KÖCKER, Die Geodätischen von Positivitätsbereichen. Math. Ann., 135, 1958, 192-202.
- [9] H. REIFFEN, Die Carathéodorysche Distanz und ihre zugehörige Differentialmetrik. Math. Ann., 161, 1965, 315-324.
- [10] H. L. ROYDEN, Complex Finsler metrics. Contemp. Math., 49, 1986, 119-124.

Scuola Normale Superiore Piazza dei Cavalieri 7 - 56100 PISA