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Geometrìa. — Differential geometry of Cartan Domains of type four. Nota di 
CHIARA DE FABRITIIS, presentata (*) dal Socio E. VESENTINI. 

ABSTRACT. — In this note we compute the sectional curvature for the Bergman metric of the Cartan 
domain of type IV and we give a classification of complex totally geodesic manifolds for this metric. 

KEY WORDS: Curvature; Geodesic; Totally geodesic manifold. 

RIASSUNTO. — Geometria differenziale per domini di Cartan di tipo IV. In questa nota si calcolano le 
curvature sezionali per la metrica di Bergman del dominio di Cartan di tipo IV e si trova una classificazione 
completa delle varietà totalmente geodetiche con spazio tangente complesso per tale metrica. 

INTRODUCTION 

In E. Cartan's classification, a domain of type four is biholomorphically equivalent 
to the bounded symmetric domain Qn= {zeCn: \z\ < 1, 1 — 2\z\2 + \*zz\2 > 0} , where 
z='(zi,...,z„) and the norm \z\ is associated to the euclidean scalar product 
{uy v) =tUu = ^ UjTj, for u, v e Cn. 

The main purpose of this note will be that of developing a few elementary facts of 
the differential geometry of invariant metrics of Qn. 

In the first section we compute the sectional curvature of the Bergman metric of ®„ 
determining two bounds and investigating its planar sections, i.e. sections on which the 
sectional curvature vanishes. 

In §2 we consider totally geodesic manifolds in Q„ and exhibit a complete 
classification for totally geodesic manifolds which are complex. 

1. BERGMAN METRIC AND CURVATURE BOUNDS 

The Cartan domain Qn is a bounded symmetric domain, whose Bergman kernel 
function is bQn{z) = (1 - 2\z\2 + \fzz\2)~n. 

The group Aut Qn of all holomorphic automorphisms of QK can be described in the 
following way: 

G = f (A p\ € 0(n, 2), A e M(n, R),Be M(n, 2, R), 

CeM(2yn,R)yDeM(2,R),detD>0 

and consider the map #: G-» Aut (0)n) defined by 

where w='zz. 

(*) Nella seduta del 18 novembre 1989. 
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It is possible to prove that $ is a surjective homomorphism whose kernel is ± In+2. 
The Shïlov boundary of Qn is given by S = {z = e16 x, 0 e R, x e Rn, \x\ = 1} and the 

isotropy group of 0, (Aut ®n)0> is transitive on S. 
Since Qn is homogeneous, in order to compute the sectional curvature for the 

Bergman metric of <32n it suffices to consider one particular point of Q}n. It turns out that 
the cartesian coordinates Zi,...,z„ in Cn are geodesic coordinates at 0, up to 
renormalization, in the sense that the coefficients gjkiz) = d2lnb®n{z)/dzjdzk of the 
Bergman metric and those of the Levi-Civita connection 8\. are given at 0 by 
gjk(Q) =2$jk, 81.(0) = 0. By consequence, the Riemann curvature tensor at 0 is 

Roba (0) = — 4(Sac 8bd — Sab 8cd — Sad $bc). 

Throughout the following u and v will denote two linearly independent vectors in 
T0(0)n) ~ Cn. The sectional curvature of the plane section spanned by u and v is 

K{u,v) = (-2Re{'uulvv) + 21(«, v)\2 + («,vf + Jt^vf -

-2\u\2\v\2 - 4lm2(u, iO)(4|«|2M2 " («, v)2 - J^vf - 2|(«, ^ l 2 ) - 1 , 

where (u, v) is the standard inner product in Cn and \u\2 = (u, u). 
As K(u, v) does not depend on the choice of the two vectors in the plane spanned by 

u and v, we can suppose that Re (&£«,•"£*) = Re((&, v)) = 0. 
We deduce from that (u, v)2 + («, v)2 + 21 («, #)|2 = 0, hence 

X(^^) = ( - R e ( / ^ ^ ) - | ^ | 2 | ^ | 2 + |U,^)|2 + 3(^^)2)(2|^|2|z;|2)-^ 

Since iReC^^7^)! < |w|2|f|2, |(z/,£J")|2< |z/|2H2 and (w, t>)2 ^ 0, the sectional 
curvature is bounded by — 5/2 ̂ K(u,v) ^ 1/2. 

These estimates might possibly be improved. An indication in this direction is given 
by the fact that the bounds just found cannot be reached; K(u} v) = — 5/2 implies 
(u,v) = - \u\ \v\, so u e Cv, that is impossible. As for the upper bound, note that, if 
K(u,v) = 1/2, then Re('##W) = — H2|f|2, (u>v) = 0 a n d I (#>"*>") I = MMî fr°m this we 
deduce that ~v = e*u, then Re ((&,H)(v,v)) = Re(«, ^ef)Çv> v) = 0, showing that 1/2 is 
not reached. 

We characterize now the planar sections, i.e. plane sections determined by u and v 
on which K(u, v) = 0. To find such sections first we fix u\ then we find v such that 
K(u, v) = 0, assuming of course \u\ = \v| = 1 (notice that the square of the length of a 
vector for the Bergman metric in 0 is twice the square of its length for the euclidean 
norm). Hirzebruch proved in [5] that. 

THEOREM 1.1. For all x e C" there is A G 0(n) c (Aut Q„)0 such that Ax = 
= ei6 • '(*, iby 0,..., 0), with a,beR. 

Then, setting N(u) = {ve Cn:K(u,v) = 0, Re(u,v) = 0}, it is easily seen that, 
if A e 0(n), then v e N(u) oAv e N{Au)y hence we can suppose that u = 
= el6 • '(cos r, /sin r, 0,..., 0). 

Since ^ € N(«) oe*6ve N(e*eu), we can assume that u —l (cos r} /sin r, 0,..., 0). 
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For v = /(zi,z2,...,zn) =t(xi + iyi,...,x„ 4- iy„), with xJy yj in i? we have two distinct 
cases: 

a) If sin /-=(), />. # = '(1,0,...,0), Rt(u,v) = 0 implies Xi = 0. Hence 

0^1 + Reivv=\zi\2 + 3zi=-2y2
1^0=>y1 = 0 and R e W = - l , 

and therefore v must have the form v=t(0yiy2y...yiyn)y where 2 3>/= 1-

è) If sin r ¥= 0, Re (#, ̂ ) = 0 implies y2 = — cot rxi and '## = (cos2 r — sin2 r), 

ReW = x?-);i + . . .+x2-3;2=2(x5 + ... + 4 ) - l . 
Thus, by setting s = x\ + ... + xj;, K(uyv) = 0 o 1 + cos2r(2xi + 2 ^ + 2^ — 1) = 

= 4*i cos2 r — 2x\ sin2 r — 2y\ cos2 r + 8x2y\ sin rcos r, i.e. 

(1) 1 + 2(^2 cos2 r + y2 cos2 r — 4x2yi cosrsinr) + cos2r(2j — 1) = 2x\. 

That proves the following proposition which yields all planar sections determined 
by u and v in Cn. 

PROPOSITION 1.2. The unitary vectors u and v in Cn determine a planar section if 
and only if there exists an element 9 e (AutQ„)0 such that either 

i) 9 # = / ( l , 0 , ...,0) and <pv=t(0yiy2y...yiyn)y or ii) ç>u=t(œsr,/sinr,0,... ,0) 
and ç)f = (xi + iyly x2 i + /cot rxi,...,x„ 4- iy„), where <pv satisfies (1). 

We shall now compute the holomorphic sectional curvature determined by u in Cn
y 

that is the curvature of the plane section determined by u and v — iu. 
Since Re(«,t;) = 0, then K(u,iu) = (\'uu\2 - 2\u\4)\u\~4 = \uu^\u\~A -2 . 
Hence the bounds for the holomorphic sectional curvature are — 2 and — 1 : 

K(uyiu) = -2oiuu = 0o(uy~û) = 0, 

K(Uyiu) = — lo\'uu\ = \u\2o\(uy~û)\ = (u,u)ou = et6xy 

where xeSn~x the unit sphere in Rn. 
The holomorphic bisectional curvature at 0 e Qn along the complex plane spanned 

by u and v is given by 

Kb{uyv) = - {RaicdUaÛbVclJd){gaygâUaûbVclJd)-1 = 

= WvSw-Wbc-Wcd) uaûbvcUd{4\u\2\v\2)~l = 

= ( - \u\2\v\2 - \{uyv)\2 + \{uyU)\2){\u\2\v\2)-1. 

First of all that implies Kb(uy v) = K(u, iu) Uve Cu. 
The bounds of Ky are — 2 and 0 and they turn out to be the best possible: in fact 

Kb{uyv) = —2 if and only if |(«,"^)| = 0 and \{uyv)\ = \u\\v\, that is, if and only if, 
v = et6uy with («,«") = 0. In particular v must lie in the complex line determined by uy 

and therefore Kb{u, v) = K[u, iu). As for the lower bound, note that Ky(uyv) = §o 
o(u,v) = 0 and (uy~v) = \u\\v\y i.e. {uy~u~) = 0 and v = eie~u~. 

The results can be summarized as follows 
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PROPOSITION 1.3. The bounds for the holomorphic sectional curvature K(u, tu) are 
— 2 and — 1: the first is reached if and only if («,«") = 0, the second if and only if 
u = et6x, where xeSn~lcRn. The bounds for the holomorphic bisectional curvature 
Ky{u, v) are — 2 and 0: the first is reached if and only if v is in Cu and (uy~û) = 0, the 
second if and only if (u, ~û~) = 0 and v = éB~û. 

2 . G E O D E S I C S AND TOTALLY GEODESIC SUBMANIFOLDS 

The first part of the following theorem has been proved by Kòcher in [8] and 
Hirzebruch in [5] (see also [3], where the proof has been considerably simplified); the 
description of the geodesies for the Bergman metric of ®n follows from simple 
considerations on the proof in [3]. 

THEOREM 2.1. Let Z\ and z2 in ®„} there is a unique geodesic for the Bergman metric 
9 such that 9(0) = Z\ and 9(1) = z2. Such a geodesic is obtained as the image, by a 
suitable automorphism of ®„, of the curve <pi(t) = ((tanh/x + tanhty)2 -1, 
(tanhta-taiih/;y)(2*)~\0,...,0), where teR,x,yeR. 

This implies that ®2 is totally geodesic in ®n. 
Now we want to study the totally geodesic manifolds in ®n whose tangent spaces 

are complex subspaces of C1. From now on we shall indicate them as C.T.G.M. 
The domain ®n being homogeneous, we can limit ourselves to the costruction of a 

C.T.G.M. W with OeW. 

PROPOSITION 2.2. The C.T.G.M. in ®„ of complex dimension 1 are 

A1 = {ze®„:z=i(z1>0>...>0)}> A2 = {ze®„:z=t(z1>- izu0,...,0)}, 

and all their images under automorphisms of ®n. 

PROOF. Consider W\ in TQ(W), the tangent space of W in 0, because of Theorem 1.1 
we can suppose that wx

 =t{xx,ix2,0,...,0), with x1)x2eR,x{ + x2>0. 

It is easy to check that the restriction to ®2 of the linear map T = I _ . ) gives a 
biholomorphism between ®2 and Ax A. ^ ' 

Then we can study C.T.G.M. in A X A: the geodesic in AX A whose tangent vector 
in 0 is (xi — x2y Xi + x2) is y(t) = (tanh (t(xi — x2)), tanh (t(xi + *2))). 

Also iy(R) is in T(W), because its tangent vector in 0 is i{xx — x2iXi + x2). Let 
P - y(l) = (rur2) and Q = iP. If 0 is the geodesic such that ^(0) = P and 0(1) = Q, then 
<p(R) is contained in T(W), therefore (̂— 1) is in T(W). Then the geodesic v such that 
v(l) = 0(— 1) and v(0) = 0 must have tangent vector in C(xi — x2yx1 + x2). 

This can happen if and only if either 

i) r(W) = {zeAxA:z=i(zuz1)}> or ii) T(W) = {zeA X A-.z^ (0,z2)} . 

In fact </>(/) = (yi(/),y2M), where 7, is the geodesic such that yy(0) = ry and 

r>(l) = * W = l , 2 . Since v( l)= /((2r 1- /> 1- i f 3
1)-( l -2/r? + d r 1 , (2r2-Vr2 - i>J) • 

• ( l - 2 / r 2 + r2)_1) setting v(l) ='(e /01tanh^,^2tanhè), the tangent vector to v in 0 is 
V 0 1 ^>^b) . This vector is in C(xx - x2,Xi 4-x2) if and only if either d1 = Q2 + kn, for 
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some integer k or ab = 0. Thus we have the two manifolds of cases i) and ii). Applying 
T"1 to these manifolds we obtain the thesis. • 

We pass now to the ^-dimensional case proving 

THEOREM 2.3. The C.T.G.M. in Qn are obtained as images by Ant®n of either 

1) Mi = {ze<£„:z='(zi, . . . ,^,0,. . . ,0)} and 

2) M2 = {zeQ„:z ='(zuizi, . . . ,z2 k-uiz2k-u0,.. . ,0)}. 

We need the following 

LEMMA 2.4. W= {z e (Dy.z ='(zi,z2,tz2)} is not a C.T.G.M. 

PROOF. The vectors wx
 =t {a, 0,0) and w2

 =t (0, b, ib), where a,beRy are a complex 
base for T0(W), the tangent space of W in 0. 

Let P = ' (tgh a, 0,0) and Q = ' (0, (tgh2£) 2"1, /(tgh2£) 2"1) and let y be the geodesic 
such that P = y(0) and Q = y(l): ii y(- 1) =f (vlyv2yv3) and ^2 + iv3 ̂  0 then UP is not a 
C.T.G.M. 

Let x = tanh <? and y = tanh è; with a brief calculation we have that 

y(-l) = d-1'(l-4y2)-1 iyix2 + 1) - iy(w'2 - 1) 

j ( x 2 + l ) - 3 ; ( ^ ' 2 + l ) 

where w'2 = x4 and J is a constant factor. The condition v2 + ivò = 0 is not possible, so 
IF is not a C.T.G.M. • 

From now on ej will denote the /-th element of the standard base in C*. Then we 
have the following 

COROLLARY 2.5. If eue2 + ieò e T0(W), where IF is a C.T.G.M., then e2, e3 e T0(WO. 

PROOF (of the theorem). We prove Theorem 2.3 in two steps. First we prove that 
Mi and M2 are C.T.G.M., then we show that Mi, M2 and all their images by elements in 
Aut6D„ are the only possible C.T.G.M. 

To prove the first part of thesis, it is enough to show that Mx and M2 are C.T.G.M. 
It suffices to show that the two subgroups of Aut Qn leaving Mx and M2 invariant act 
transitively on Mi and M2 respectively, and that these manifolds are totally geodesic in 0. 

For Mi = Qk X {0}w-^ both statements are trivial. For M2 the proof is a bit more 
difficult. 

First of all we prove that M2 is totally geodesic in 0. Set w=i(zuiZi,...yz2k-iy 
tZ2k-i>0, ».>0), and chooseL= (ljk) in 0(k) such that I/(zi,23, ...,Z2k-i) =/(#>iy,0, ...,0). 
Consider 

B = 
In 
0 

0 

Ai 

lu 
0 

0 

lu 

it is evident that Bw =*(x,ix9ty, — y,0,...,0). 
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Let us define n = (x2 + fYm and 

r xn 0 

F = 

0 x/z 

0 — yn 

yn o 
> o 0 

0 

yn 

xn 

0 
0 

— yn 

0 

0 

xn 
0 

0 ì 

0 

0 

0 
Iti-4 . 

Both E and F trasform M2 onto itself and FBw = (n, in, 0,... ,0). The fact that in Q2 

M = {zeQ2:z
=t (zi, tZi)} is totally geodesic in 0, implies that M2 is totally geodesic in 

0. 
To see that M2 is homogeneous under restrictions of automorphisms of (Dn it is 

enough to check that, given z 0 ^ 0 , in M2, there exists a matrix gZo in G such that 
< ô(zo) = 0 and^ o (M 2 )cM 2 . 

With the notations of §1, 

= (A B\ 

where A = I + a\z0\~
2(zo~z0 + ZQZQ), a=(l- |z0|

2)~2_1 - 1> 

D = ( l - 2 | 4 if 0 1 

- l or 
B = AX0 and C^UX,, 

where X0 = (2(z0 - iz0))(2(z0 + z'z0))(for a proof of the fact that gZo e G and $gzo(z0) = 0 
see [6]). 

Then &gz (z) = d~l(Az — Azo), where d is a constant, for all 2 in M2, because 'zz = 0. 
Since $gzo(z)e®„, what we are left to prove is that $gzQ(z)e V~ {zeCn:z=t(zuizu-,z2k-i> 
iz2k-i>0, •••, 0)}, as V is a vector space, (zoZ0 + Fô oX* - z0) is in V iff ZQZ0(Z — z0) e V: if 
we show that this is 0 we have that M2 is a C.T.G.M. If we choose u and v in V we have 
& =/(«i,/«I,...,#2*-i>iu2k-\)0, ...,0) and f =^(f1,/f1, ...,#2*-i>ft>2*-i>0,...,0) then '## = 
= ^if14-/2^1f1 + ... + ̂ _1f2/è_1 + / 2 ^ _ 1 ^ _ 1 = 0, hence ?o^ofe—^o) = 0J and we have 
proved the first part of the thesis. 

We now come to the second step of the proof of Theorem 2.3. Let W be a 
C.T.G.M. such that 0 e W. Note that, it we T0(W) ~ C, there are three possibilities: 

i) weS, ii) lww = 0, iii) w $ S, and lww ¥= 0 

and these possibilities are preserved by the action of (Aut<3)„)0. 
We fix an orthonormal base wly...fWko£ TQ(W) containing the maximum number 

of elements which satify either i) or iii). 
Rearranging the base we can suppose that Wi,...,wr satisfy i), wr+i, ...yws satisfy ii) 

and ws+ i,...,Wk satisfy iii). Note that, if we multiply each Wj for a constant of modulus 1, 
the base we obtain has still the same properties. 

Applying a suitable element A e O(n) to wx we obtain Awx — eï6t(l, 0,..., 0); as we 
consider W modulus the action of (Aut Q„)0 we can suppose that wx

 =t (1,0,..., 0), then 
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w2y...ywk have the first coordinate equal to 0. Repeating this method acting only on the 
last non vanishing coordinates we can suppose that Wj = ^ f o r / = 1,..., r, and tot, has 
the first r coordinates equal to 0 for h = r + 1,... yk. 

Applying a suitable element of 0(n) that is the identity on the first r coordinates we 
can suppose that wr+i

 =t(0y... y0yxyixy0y... ,0), where x e i ? - { 0 } . 
lij=r + 2y...,k and tt>y='(0,... y0yzr+u... ,zn) then zr+\ = izr+2, because the base is 

orthogonal. 
For each fixed he {r + 2,...k} consider the unitary map of Ck defined by 

wr+l I-» w'r+i = cos 6wr+l + sin Owh, 

Wh*-^>Wh= — sin dwr+i + cos diVh, 

wm^wmy \£m^r+\,h. 

As 'w'r+i w'r+i = 2 cos 6 sin 6*wr+i wh + sin2 6fwh wh and ^ w'h = — 2 cos 0 sin 6'wr+i wh + 
+ cos26twhwhy then, if 'Wr+iWh^O, there is a suitable 6 for which ^ + 1 ^ + 1 ^ = 0 and 
^ w'h ¥= 0. So we can replace ^ r + i and ^ by wf

r+i and ^ none of which satisfies ii), this 
is absurd because of the choice of the base; then ^ r + 1 ^ = 0 for all h = r + 2, ...,£. 

Hence we obtain that Wh=*(0y...,0,zr+3, ...,z„), for £ e {> +2,. . . ,&}. We continue 
by the same method acting only on the last n — (r + 2) coordinates and we end up with 
T0(W) containing er+i +ier+2,...,e2s-r-i +ie2s-r and with ws+ly... fWk having the first 
2s — r coordinates equal to 0. 

Choosing a suitable element of 0(h) which is the identity map on the first 2s — r 
coordinates and applying it to ws+u we can suppose that ws+1 = ae2s-r+1 + ibe2s-r+2, 
where a,heR and a + h. Hence, by Proposition 2.2, e2s-r+i and e2s-r+2 e T0(W). We 
want to add to e2s-r+ly e2s-r+2 other elements so as to have an orthonormal base 
e2s-r+iy e2s-r+2y w's+3y... yw'k of the vector space spanned by ws+iy...ywk in which 
w's+3y ...yw'k are all in the Shilov boundary. Once this has been done, applying a suitable 
element of 0{n) which is the identity map on the first 2s — r+ 2 coordinates, we can 
suppose that w's+3y...yWk are replaced by e2s-r+3y...yek+(S-r)' 

If k — (s + r) = 2 we have such a base already. If that is not the case we can find w's+ò 

in the vector space spanned by ws+iy... yWk which is orthogonal to e^-n-i and ^-r+2-
Then we can suppose, applying a suitable element in 0{n) which is the identity map on 
the first 2s — r+ 2 coordinates, that w's+3 = ce2s-r+3 4- ide2s-r+Ay where c,deR. 

If w's+3 is in the Shilov boundary we can go to w's+4. If ^ + 3 w's+3 = 0 we can apply 
Corollary 2.5 to w's+3 and e2s-r+i. Since e2s-r+3 and e2s-r+4 are now in T0(W)y so we can 
take w's+3 = e2s-r+3 and wf

s+4 = e2s-r+4, and we can go on adding w's+5. If either w's+3 is not 
in the Shilov boundary or fwf

s+3 w's+3 =£ 0. Proposition 2.2 implies that e2s-r+3 and e2s-r+4 

are in T0(W). Then we can go on adding w's+5. 
In conclusion we have found a base of elements in the Shilov boundary for the 

complex vector space spanned by ws+iy..., Wk, then, up to the action of 0(n), we can 
suppose that T0(W) is spanned by eiy ...yejyeJ+i 4- iej+2y ...,e2m+j-i + ie2m+j, where 
k=J+ m. 

Applying again Corollary 2.5 to ex and eJ+i + iej+2 we obtain that either / = 0 or 
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m = Oy i.e. T0(W) is spanned by ely...,ek (which corresponds to Mx) or by 
ei + i€2,...,e2k-i + ie2k (which corresponds to M2). 

That proves that Mly M2 and all their images by elements of AutQn exhaust all 
C.T.G.M. • 
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