ATTI ACCADEMIA NAZIONALE LINCEI CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI LINCEI MATEMATICA E APPLICAZIONI

SAAD ADNAN

On factorisable soluble groups

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Serie 9, Vol. 1 (1990), n.2, p. 97–99.

Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLIN_1990_9_1_2_97_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Teoria dei gruppi. — On factorisable soluble groups. Nota di Saad Adnan, presentata (*) dal Socio G. Zappa.

ABSTRACT. — The intention of this paper is to provide an elementary proof of the following known results: Let G be a finite group of the form G = AB. If A is abelian and B has a nilpotent subgroup of index at most 2, then G is soluble.

KEY WORDS: Finite group; Soluble group; Factorisable group.

RIASSUNTO. — Semigruppi risolubili fattorizzabili. Lo scopo di questa nota è di fornire una dimostrazione elementare del seguente teorema: Sia G un gruppo finito nella forma G = AB. Se A è abeliano e B ha un sottogruppo nilpotente di indice al più 2, allora G è risolubile.

Introduction

In [1] the following theorem has been proved:

THEOREM. Suppose G = AB where G is a finite group. If A is abelian and B has a nilpotent subgroup of index at most 2, then G is soluble.

However, in proving the above theorem, the author uses the deep results of Gorenstein and Walter [2]. In this short note we provide a very elementary proof of the above theorem, using only results fully proved in [3] and [4]. The notation used is standard and may be found in [3] or [4].

The case where A has even order has been proved in [1] without employing [2]. Thus in proving the above theorem, we shall assume that A has odd order.

PROOF. The proof shall be broken in several lemmas. If N is a normal subgroup of G = AB, (|A|, |B|) = 1, then a simple induction on |G| shows that N is factorisable (in AN) in G. Let G be a minimal counterexample to the above theorem. If M is a proper subgroup of G containing B, then $H = (M \cap A)^G \subseteq M$. Since M is soluble (by the minimality of G), H is soluble. Hence H = 1, B is a maximal subgroup of G and (|A|, |B|) = 1. Thus G is simple. Since $1 \neq Z(S) \cap O_2(B) \subseteq Z(B)$, $S \in Syl_2(B)$, by means of a theorem by Burnside [4, p. 334], A is not primary. We have thus proved all parts of the following lemma.

Lemma 1. (|A|, |B|) = 1, G is simple and B is a maximal subgroup of G. Further, A is not primary.

LEMMA 2. A is a T.I. subgroup.

PROOF. If $D = A \cap A^g \neq 1$, then $K = N_G(D) \supseteq \langle A, A^g \rangle$. Since K is soluble and G is simple $F(K) \subseteq A$. Thus $C_K(F(K)) \subseteq F(K)$ gives $A = F(K) = A^g$.

LEMMA 3.

- i) If $1 \neq C \subseteq A$, $1 \neq D \in \text{Syl}_p(O(B))$, then $\langle C, D \rangle = G$.
- (*) Nella seduta del 18 novembre 1989.

98 S. ADNAN

ii) If $1 \neq H \triangleleft F(B)$, then $N_G(H) \in B$.

PROOF. We may assume that C is a q-group for some prime q. If $\langle C, D \rangle \subset G$, then $N = N_G \langle C, D \rangle$ is factorisable and so is soluble. Thus DQ^g , with $Q \in \operatorname{Syl}_q(N)$, is a proper subgroup of G for all $g \in G$. By a theorem of Kegel [4, p. 382] G is not simple, contrary to lemma 1. This proves (i).

If $1 \neq H \triangleleft F(B)$, then $F(B) \subseteq N_G(H)$. Applying (i), $N_G(H)$ is a $\pi(B)$ -group. Thus $[N_G(H):F(B)] \leq 2$ and so $N_G(H) \subseteq N_G(F(B)) = B$.

Lemma 4: $O_2(B)$ is a T.I. subgroup.

PROOF. Deny and choose $a \in A^{\#}$ such that $D = O_2(B) \cap O_2(B^a)$ has maximal order. Set $N = N_G(D)$. Since $O(B) \subseteq N$, lemma 3 implies N is a $\pi(B)$ -group. Since [N:O(B)] is a power of 2, N is soluble by a theorem of Wielandt [4, p. 379].

If $O(N) \neq 1$, then $O(N) \triangleleft F(B)$ and so $N \subseteq B$ by lemma 3. Thus $O(B^a) \subseteq B$ giving $a \in B$, a contradiction. Thus O(N) = 1. If $D^* = O_2(N)$, then $N \subseteq N_G(D^*)$ and it is clear that $C_G(D^*) \subseteq D^*$. In particular, if T_1 , T_2 are S_2 -subgroups of G containing D^* , then T_1 and T_2 do not lie in the same conjugate of B.

Now if K is a Hall 2'-subgroup of $O_{2,2'}(N)$, $K \subseteq O(B)$, then $L \subseteq C_N(K) \subseteq O_{2,2'}(N)$ where $L = O_2(B) \cap N$ i.e. $L \subseteq D^*$.

If $D \triangleleft F(B)$, the lemma follows from lemma 3. Hence an S_2 -subgroup of G is non-abelian. Now if D^* lies in a unique S_2 -subgroup of G, T say, then $\langle O(B), O(B^a) \rangle \subseteq C \cap S_G(T') \subseteq S_G(T') = S_G(T') = S_G(T') = S_G(T') = S_G(T') = S_G(T')$.

Thus $D^* \subseteq T_1 \cap T_2$ where T_1 , T_2 are S_2 -subgroups of G lying in distinct conjugates B_1 , B_2 of B. Since $[T_1: O_2(B_1)] = 2$, we have $[T_1 \cap T_2: O_2(B_1) \cap O_2(B_2)] \le 4$ *i.e.* $[D^*: D] \le 4$ and so $[D^*: L] \le 2$. Since O(B) centralises L and normalises D^* , it follows that O(B) centralises D^* contrary to $C_G(D^*) \subseteq D^*$.

LEMMA 5. If $1 \neq H \subseteq O(B)$, then $N_G(H)$ is a $\pi(B)$ -group.

Proof. Deny. Since O(B) is nilpotent, we may assume H is a p-subgroup of P, where $P \in \text{Syl}_p(B)$. Choose an H of maximal order such that $A \cap N_G(H)$ contains a nontrivial S_r -subgroup R of $N_G(H)$. Then $\langle R, O_2(B) \rangle \subseteq N$, $N = N_G(H)$. Since $N_G \langle R, O_2(B) \rangle$ is soluble, K = DS is a Hall $\{2, r\}$ -subgroup of $N_G \langle R, O_2(B) \rangle$, $S \supseteq O_2(B)$. If $O_r(K) \ne 1$, then $N_G(O_r(K)) \supseteq \langle A, O_2(B) \rangle$ contrary to the simplicity of G. Thus $O_r(K) = 1 \neq O_2(K)$. If $O_2(K) \subseteq O_2(B)$ then $N_G(O_2(K)) \supseteq \langle D, O(B) \rangle = G$ by lemma 3, another contradiction. Hence, $O_2(K) \not\subseteq O_2(B)$, S is an S_2 -subgroup of G, $[O_2(K):O_2(K)\cap O_2(B)]=2$ and $[O_2(K): O_2(K) \cap O_2(B^x)] = 2$ for all $x \in D$. By lemma 4, $|O_2(K)| \le 4$. Since $C_K(O_2(K)) \subseteq$ $\subseteq O_2(K), |O_2(K)| = 4$ and $|S| \le 8$ is dihedral. Thus G has a unique class of involutions ([3, p. 262]) and hence $N_G(D)$ has odd order (otherwise $N_G(D) \supseteq \langle A, u \rangle$ where u is a central involution in B). It follows from a theorem by Burnside ([4, p. 137]) that $S \triangleleft K$. If |S| = 8, then Aut (S) is a 2-group and so K = SXD contrary to $N_G(D)$ has odd order. Thus |S| = 4and since $O_r(K) = 1$, |D| = 3 = |R| and $N = N_G(H)$ has a normal Hall subgroup of index 3. By the Frattini argument, a conjugate of R in N normalises P^* , where P^* is an S_p subgroup of N containing $N_P(H)$. Maximality of H now forces H = P giving $R \subseteq N_G(P) =$ = B, a contradiction.

LEMMA 6. O(B) is a T.I. subgroup.

PROOF. Deny. If O(B) = P is an S_p -subgroup of G, then choose $g \in G - B$ such that $D = P \cap P^g$ has maximal order. Hence $R = N_P(D)$, $U = N_{P^g}(D)$ are S_p -subgroups of $N_G(D)$. By lemma 5, $[N_G(D): O_2(B)R] \le 2$. Since $O_2(B)R = O_2(B)XR$, R = U, a contradiction.

We may assume $\pi(O(B)) \supseteq \{p,q\}, p \neq q$. We first assert that if $\pi(K \cap Z(O(B))) = \pi_0$ for any subgroup K of G, then $K \cap O(B)$ contains a Hall π_0 -subgroup of K. For if Q_0 is a q-subgroup of G such that $Q_0 \cap Z(Q) \neq 1$, $Q \in \operatorname{Syl}_q(B)$, then by lemma 3, $C_G \langle t \rangle \subseteq B$ where $t \in Q_0^{\#} \cap Z(Q)$. If P is an S_p -subgroup of S_p

Now assume $|\pi(B)| \ge 3$ and let $1 \ne D = O(B) \cap O(B^g)$ be of maximal order, $g \in G - B$. Then Z(O(B)), $O_2(B) \subseteq N_G(D)$ and so by lemma 5 and the assertion above $[N_G(D): B \cap N_G(D)] \le 2$. Thus $O(N_G(D)) = O(B) \cap N_G(D) = O(B^g) \cap N_G(D) = D$, a contradiction.

Lemma 7. G does not exist.

PROOF. Let |A| = a, |F(B)| = b and |N| = ar where $N = N_G(A)$. Let $U_1 = G - B$, $U_2 = G - N$ and $U_3 = A^x N$, $A^x \neq A$. By lemmas 2, 4 and 6, both F(B) and A are T.I. subgroups of G. Hence, on considering the double coset decomposition of G one time by F(B) and F(B) and another time by A and A we get: $|U_1| = kh^2$, $|U_2| = la^2$, $k, l \ge 1$. Further, $|U_3| = a^2 r$.

If a > h, then $|U_2| < |G|$ implies $|a|^2 < 2ah < 2a^2$ i.e. l = 1. Thus $|G| = 2ah = a(r + a) < a(ar) = |U_3|$, a contradiction.

If h > a, then $|U_1| < |G|$ gives k = 1 and $|G| = 2ah = 2h + h^2$ i.e. h = 2(a - 1). Also $|U_3| < |G|$ implies ra < 2h < 4a and so $r \le 3$. Similarly $|U_2| < |G|$ gives $l \le 3$. We conclude: $2ah = 4a(a - 1) = |N| + |U_2| = ra + la^2 \le 3a(a + 1)$ giving $a \le 7$ i.e. A is primary, contrary to lemma 1.

The author started writing this paper during a visit to Italy (July, 1987) as associate of the International Centre for Theoretical Physics, Trieste.

References

- [1] J. G. CARR, A solubility criterion for factorised groups. Arch. Math., 27, 1976, 225-231.
- [2] D. GORENSTEIN J. H. WALTER, The characterisation of finite groups with dihedral Sylow 2-subgroups I, II, III. J. Algebra, 2, 1965, 85-151, 218-270, 334-393.
- [3] D. Gorenstein, Finite Groups. New York 1968.
- [4] W. R. Scott, Group theory. Englewood Cliffs 1964.

Department of Mathematics University of Umm Algura Makkah (Arabia Saudita)