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Teoria dei gruppi. — On factorisable soluble groups. Nota di Saap Apbnan,
presentata (*) dal Socio G. Zappa. :

Asstract. — The intention of this paper is to provide an elementary proof of the following known
results: Let G be a finite group of the form G = AB. If A is abelian and B has a nilpotent subgroup of index at
most 2, then G is soluble.

Key worps: Finite group; Soluble group; Factorisable group.

Ruassunto. — Semigruppi risolubili fattorizzabili. Lo scopo di questa nota & di fornire una dimostrazione
elementare del seguente teorema: Sia G un gruppo finito nella forma G = AB. Se A & abeliano e B ha un
sottogruppo nilpotente di indice al pit 2, allora G & risolubile.

InTrRODUCTION

In[1] the following theorem has been proved:

Tueorem. Suppose G = AB where G is a finite group. If A is abelian and B has a
nilpotent subgroup of index at most 2, then G is soluble.

However, in proving the above theorem, the author uses the deep results of
Gorenstein and Walter [2]. In this short note we provide a very elementary proof of the
above theorem, using only results fully proved in[3] and[4]. The notation used is
standard and may be found in[3] or[4].

The case where A has even order has been proved in[1] without employing [2].
Thus in proving the above theorem, we shall assume that A has odd order.

Proor. The proof shall be broken in several lemmas. If N is a normal subgroup of
G=AB, (JA], |B]) = 1, then a simple induction on |G| shows that N is factorisable (in
AN) in G. Let G be a minimal counterexample to the above theorem. If M is a proper
subgroup of G containing B, then H= (M nA)° cM. Since M is soluble (by the
minimality of G), H is soluble. Hence H =1, B is a maximal subgroup of G and (|4,
|B]) = 1. Thus G is simple. Since 1#Z(S) n O, (B) c Z(B), S € Sy, (B), by means of a
theorem by Burnside [4, p. 334], A is not primary. We have thus proved all parts of the
following lemma.

Lemma 1. (|A], |B]) =1, G is simple and B is a maximal subgroup of G. Further, A
is not primary.

Lemma 2. A is a T.L subgroup.

Proor. If D=A n A¢# 1, then K= Ng(D) 2 (A, A?). Since K is soluble and G is
simple F(K) c A. Thus Cg(F(K)) ¢ F(K) gives A= F(K) =

LemMma 3.

i) If 1#CcA, 1#DeSyl,(O(B)), then (C,D) =G.

(*) Nella seduta del 18 novembre 1989.
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ii) If 1#H<1F(B), then Ng(H) ¢ B.

Proor. We may assume that C is a g-group for some prime ¢. If (C,D) c G, then
N=Ng(C,D) is factorisable and so is soluble. Thus DQ#, with Q € Syl,(N), is a proper
subgroup of G for all g € G. By a theorem of Kegel [4, p. 382] G is not simple, contrary
to lemma 1. This proves (i).

If 1+ H <|F(B), then F(B) c No(H). Applying (i), No(H) is a (B)-group. Thus
[N¢(H): F(B)]<2 and so Ng(H) ¢ No(F(B)) = B.

Lemma 4: Oy(B) is a T.I. subgroup.

Proor. Deny and choose 4 € A* such that D= 0,(B) N O,(B*) has maximal order.
Set N = N¢(D). Since O(B) ¢ N, lemma 3 implies N is a =(B)-group. Since [N: O(B)] is
a power of 2, N is soluble by a theorem of Wielandt [4, p. 3791.

If O(N)# 1, then O(N) <\ F(B) and so N ¢ B by lemma 3. Thus O(B*) ¢ B giving
a € B, a contradiction. Thus O(N) = 1. If D* = O,(N), then N ¢ No(D*) and it is clear
that C¢(D*) ¢ D*. In particular, if T,, T, are S,-subgroups of G containing D*, then T
and T, do not lie in the same conjugate of B.

Now if K is a Hall 2'-subgroup of O, »(N), K¢ O(B), then L ¢ Cy(K) ¢ O, »(N)
where L= 0,(B)Nn N ie. LcD*.

If D <\ F(B), the lemma follows from lemma 3. Hence an S,-subgroup of G is non-
abelian. Now if D* lies in a unique S,-subgroup of G, T say, then (O(B), O(B%)) ¢
¢ Ne(T) ¢ Ng(T") = B¢, for some e € A. Again we have 4 € B, a contradiction.

Thus D* ¢ T, n T, where T, T, are S,-subgroups of G lying in distinct conjugates
B, B, of B. Since [T;:0,(B;)]1=2, we have [TinT,:0,(B) n O,(B,)]<4 ie.
[D*:D]1<4 and so [D*: L] <2. Since O(B) centralises L and normalises D*, it follows
that O(B) centralises D* contrary to Cg(D*) ¢ D*.

Lemma 5. If 1# H ¢ O(B), then Ng(H) is a =(B)-group.

Proor. Deny. Since O(B) is nilpotent, we may assume H is a p-subgroup of P,
where P € Syl,(B). Choose an H of maximal order such that A n Ng(H) contains a non-
trivial S,-subgroup R of N¢(H). Then (R, O,(B)) ¢ N, N= N(H). Since Ng (R, O,(B))
is soluble, K = DS is a Hall {2, 7}-subgroup of Ng (R, O,(B)), § 2 O,(B). If O,(K) #1,
then Ng(O,(K)) 2 (A, O5(B)) contrary to the simplicity of G. Thus O,(K) = 1# O,(K).
If Oy(K) ¢ O5(B) then Ng(O,(K)) 2 {D, O(B)) = G by lemma 3, another contradiction.
Hence, O,(K) é 0,(B), § is an S,-subgroup of G, [O,(K): O(K) n O,(B)] =2 and
[Oy(K) : Ox(K) n O,(B)] =2 for all x€D. By lemma 4, |Oy(K)| <4. Since Cx(O,(K)) ¢
¢ O,(K), |Oy(K)| = 4 and |S| <8 is dihedral. Thus G has a unique class of involutions ([3,
p. 262]) and hence Ng(D) has odd order (otherwise Ng(D) 2 (A, #) where « is a central
involution in B). It follows from a theorem by Burnside ([4, p. 137]) that S K. If |S| = 8,
then Aut (S) is a 2-group and so K = SXD contrary to Ng(D) has odd order. Thus |S| = 4
and since O,(K) =1, | D| =3 = |R| and N = Ng(H) has a normal Hall subgroup of index
3. By the Frattini argument, a conjugate of R in N normalises P*, where P* is an S,
subgroup of N containing Np(H). Maximality of H now forces H = P giving R ¢ Ng(P) =
=B, a contradiction.
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Lemma 6. O(B) is a T.I. subgroup.

Proor. Deny. If O(B) =P is an §,-subgroup of G, then choose g € G — B such that
D =P P* has maximal order. Hence R=Np(D), U= Np(D) are §,-subgroups of
Ng(D). By lemma 5, [No(D): O,(B)R]<2. Since O,(B)R=0,(B)XR, R=U, a
contradiction.

We may assume z(O(B)) 2 {p, g}, p # 9. We first assert that if z(K n Z(O(B))) = =,
for any subgroup K of G, then K n O(B) contains a Hall zy-subgroup of K. For if Q, is
a g-subgroup of G such that Qy " Z(Q) # 1, Q € Syl,(B), then by lemma 3, C(¢) c B
where £ € QF N Z(Q). If P is an §,-subgroup of B, P* an §,-subgroup of G centralised by
Q,, then P, P* ¢ B and so P=P* Now Q, ¢ N¢(P)=B. The assertion follows.

Now assume |=(B)|=3 and let 1#D= O(B) " O(B?) be of maximal order,
g€ G—B. Then Z(O(B)), O,(B) ¢ Ng(D) and so by lemma 5 and the assertion above
[Ng(D):BnNg(D)1<2. Thus O(Ng(D))=0OB)NND)=0B4) "Ng(D)=D, a

contradiction.

Lemma 7. G does not exist.

Proor. Let |A] =4, |[F(B)|=5 and |[N|=ar where N=Ng(A). Let U,=G—B,
U,=G—N and U;=A*N, A*# A. By lemmas 2, 4 and 6, both F(B) and A are T.I.
subgroups of G. Hence, on considering the double coset decomposition of G one time
by F(B) and F(B) and another time by A and A we get: |U,| = kF?, |Uy| = ld?, k,[= 1.
Further, |U;| = 4*r.

If 2> b, then |U,| < |G| implies /s> <2abh <24? i.e. I=1. Thus |G| = 2ab=a(r+ a) <
<alar) =|Us|, a contradiction.

If h> a4, then |U,| < |G| gives k=1 and |G| =2ab =2h+ F* ie. h=2(a—1). Also
|Us| <|G| implies ra<2h<4a and so r<3. Similarly |U,| < |G| gives /<3. We
conclude: 2ah=4a(a—1)=|N|+|U,| =ra+ I <3a(a+1) giving a<7 ie. A is
primary, contrary to lemma 1.

The author started writing this paper during a visit to Italy (July, 1987) as associate of the International
Centre for Theoretical Physics, Trieste.
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