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Geometria differenziale. — Length of curves on Lip manifolds. Nota di GIUSEPPE 

D E CECCO e GIULIANA PALMIERI, presentata (*) dal Socio E. D E GIORGI. 

ABSTRACT. — In this paper the length of a curve on a Lipschitz Riemannian manifold is defined. It is 
shown that the above definition is consistent with the definition of the geodesic distance already introduced 
by the authors, both in a geometrical and analytical way. 

KEY WORDS: Lipschitz manifold; Length; Nonsmooth analysis. 

RIASSUNTO. — Lunghezza di curve su varietà di Lipschitz. Su una varietà di Lipschitz dotata di metrica 
riemanniana di Lipschitz si introduce la nozione di lunghezza di una curva lipschitziana, mettendola in 
relazione con le distanze geodetiche introdotte (per via geometrica e per via analitica) in precedenti lavori 
dagli stessi autori. 

The framework of the present paper is the class of the Lipschitz ^-manifolds, 
generalizing, as well-known, the PL manifolds {i.e. the polyedra) and the smooth 
manifolds. They are well suited for an investigation of the differential properties that 
might fail to be true on sets of zero measure as emphasized by H. Whitney [8]. 
Moreover these manifolds can have vertices, edges, conical points, even not isolated. 

Different authors have studied LIP manifolds from various points of view 
(e.g. [5], [7], [8]). Here we consider LIP manifolds (M,g) with a LIP metric g 
(following the presentation of N. Teleman[7]). 

Recently in[l] and [2] we have defined intrinsic distances, that are induced by g 
and which agree with the usual one when M is smooth and g is a Riemannian metric or 
when M is a convex polyhedron or a graph of a LIP function imbedded in R* (where g 
is the metric induced by the imbedding). 

The main difficulties are the following: the Jacobian of the chart transformations is 
defined outside a #-dimensional null set and the components of g, assumed only to be 
measurable are defined up to an equivalence relation. 

A first answer to the problem was given, in a geometric way, in [1]. There we have 
constructed a distance p using the length L(y) of LIP curves y that are transversal to a 
null set N c M (where transversal means mis{/ e [0,1]; y(t) e N} = 0 and the measure 
\N\ of N is defined through g): 

p(x,y) = sup {inf L(y); ye^(I, M), r (0 )=x , y(l)=y, rtrans.N, |N| = 0} . 
N 

In [2] we have defined a distance S in an integral way, overcoming the above-
mentioned difficulties: 

(*) â(x,y) = lim 

(*) Nella seduta del 10 marzo 1990. 

u e 4^(M), u(x) = 0, u(y) = 1 
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where | • | and dv depend, as usual on the metric g on M. We have proved that, under 
very general hypotheses, the two distances p and S coincide. 

In the present paper, which recalls notions and results of [1] and [2], we show that 
S (and also p) is a geodesic distance for the metric space (M, £), i.e. (M, £) is a length 
space [4]. Then if (M, 8) is complete, the Hopf-Rinow theorem in the general form [6] 
ensures that two arbitrary points can be joined by a minimal geodesic. 

Finally, we give a definition of length of a LIP curve that extends the classical one 
for Riemannian manifolds. More precisely we put 

L(r) = sup{liminfL(T); T 6 _ ^ ( J , M ) , rtrans.N, |N| = 0} 
N *->r 

where the limit is with respect to uniform convergence. 
We prove that also L(y), constructed with the LIP Riemannian structure g, 

coincides with the usual length -%?(y)> constructed with the distance 8. 
Finally we mention that new conjectures about the distances that can suitably be 

introduced on LIP manifolds have been presented by E. De Giorgi in a recent 
conference [3] and developed in series of talks on this topic. 

Precisely a notion of quasi-Finslerian distance has been put forward which is 
expressed by a formula similar to (*) and several conjectures on it have been 
formulated. 

If some of these conjectures were to be confirmed, then the results of the present 
note and of[l] and [2] would have been extended to a wider framework. 

In further studies, we intend to deal with these problems in the light of the results 
hitherto proved. 

We thank E. De Giorgi for drawing our attention to this subject and for stimulating 
discussions. 

1. PRELIMINARIES 

(1.1) A Lipschitz manifold (LIP manifold) of dimension n is a pair consisting of a 
topological manifold M and an equivalence class of LIP atlases [7]. A LIP atlas on M is 
a family of charts ^C= {(Ua,$a)} {a e A) where {Ua} forms an open cover of M, 
$a: Ua-* Va maps homeomorphically Ua onto a set Va which is open either in Rn or in 
R+ and Va,/3 #a/3 = ^ocp"1 defines a Lipschitz homeomorphism. 

(1.2) A Riemannian metric on M is a collection g = {ga} where ga is a Riemannian 
metric on VA = $a(Ua) c R", with measurable components, that satisfy the compatibility 
conditions 

(1.3) $%{ga) = g^ (no sum intended), 

where the pull-back $*p is defined component-wise. The map 0^ is LIP, then is 
differentiable a.e. and has bounded and measurable partial derivatives. Hence the 
hypotheses on g are admissible for any LIP manifold and in general one cannot ask for 
greater regularity. 

(1.4) A Riemannian metric g will be called a LIP Riemannian metric on M if any ga 

defines on Va a L2-norm which is equivalent to the standard L2-norm, i.e. there should 
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exist two positive constants ka and Ka such that, for any smooth form eo with compact 
support in Va 

(i.5) *JMU ̂  IMI*- ̂  
It follows (by Theorem (3.1) of[l]) that is possible to find two strictly positive 

constants ha and Ha, s J. for every chart (Ua) and every /z-ple (^, . . . ,^)eRw 

(1.6) « 2 (i/Y^2&{z)i/tf'<Ha2 (vf a.e. in z. 

For simplicity we will write 

\\v\\2 = 2(v)2, H2w = S & < 2 ) ^ . 

In the following we shall always assume (unless otherwise indicated) M to be 
connected, paracompact and oriented and that k = \x&ka is strictly positive. This last 
hypothesis is used only if \M\ = + °°, where 

\M\ = mis„(M) = | dv. 
M 

(1.7) A function u: M—>R* is LIP i£u = uo(p'1 is LIP for every chart. For such a 
function \(du)(z)\2g* = gi(z)diûdjïï makes sense a.e, and it is easy to see that 

limsup \u(y) - u(x) \/\y - z\{z) = \{du) (z)\t. 

(1.8) Every LIP atlas {(Ua,#J} defines a local metric consisting of pairs {Ua,aa} 
where aa(x,y) = \\<I>a(x) — $a(y)\\ is the euclidean distance on the charts. Moreover, 
equivalent LIP atlases define LIP equivalent local metrics, hence every LIP manifold 
can be regarded as a locally metric space. 

Nay, by starting from the cra distances, a global distance <J can be constructed on M 
(which is connected) in the following way (See [5]). 

Let {Wa} be a cover of M with WacUa. For x,y eM let II(x,y) be the set of all finite 
sequences of the form n = {X0, ...,x^;a1? ...,a^} such that x0 = x, Xk = y and 
{XJ-I,XJ} c Wa. Then we set 

(1.9) *(x,y) = ù${£(ia/(xj-uxJ)-, / = 1 , . . . , £ ; 7teII{x,y)}. 

The distance œ just introduced depends on the choice of charts; so there is no 
relation between a and the Riemannian structure g. We will introduce, on the contrary, 
a distance, induced by g, which is intrinsic and coincides with the usual one in case 
{M,g) is a smooth Riemannian manifold. 

2. INTEGRAL DISTANCE 

(2.1) Let x,y be two distinct points of M and -%fa(M;x7y) = 

= {u: M^ R LIP; u(x) = 0, u(y) = 1}. If x = y we put 8(x,y) = 0. If x ¥^y we put 

(2.2 ) S(x, y) = lim sup inf J j \du\pdv; ue^(M;x,y) 
-i/p 

which of course depends on the metric g. 
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One sees that the limit exists and it is finite (since M is connected). Moreover 
£ : M x M - » R i s a distance which is LIP equivalent to the distance a induced on M by 
the charts. Hence the completeness with respect to a implies the completeness with 
respect to 8. 

(23) THEOREM. Under our hypotheses on M, if (M,8) is also complete, we have 
8(xyy)~1 = min{\\du\\Lœ;ue^^(M;xyy)}. Moreover if ueJ^(M)y \u(x)-u(y)\^ 
^ I WLc £(*>?) i-e. u is LIP also with respect to the metric 8 of M. 

For the details and the proofs we refer to [2]. 
Notice that if (M,cr) is complete, then the expression of 8 in (2.3) can be used in 

order to define the function 8. 

}. ANOTHER DISTANCE 

(3.1) As usual let M be a LIP manifold with LIP riemannian metric g. Set 
Jf= {NcM; |N| =0} and denote by J$^(x,y;M) = {ye^(xyy;M); mis{/el ; 
y(t) n N} = 0} the set of the curves transversal to N, which is not empty. 

We recall that (see[l)] 

Jfe(x,y;M) = { r : [0 ,1]^MLIP; r (0) = *, r(D =3>} • 

As in[l] , to which we refer for the details, if ye^ù^(xyy;M) we introduce the 
integral 

l i 

(3.2) IM) = \ ^gijr'rJdt= I \r\mdt 
0 0 

with the understanding that La(ï) = + °° whenever it does not exist. However with a 
suitable choice of the set N = N(^€) of zero measure it is possible to give a meaning to 
(3.2). Then we call La(y) length of y (with respect to the atlas ^€). 

Since M is paracompact, we can choose a countable atlas ^A/. Let Da(/3) be the 
subset of #a(Ua n Up) for which does not hold and observe that there exists a subset 
Ea c Va, \Ea\ = 0, s.t. for every curve transversal to $_10Ea)> the functions g|o $ao y are 
measurable Mi J. Set Fx= ([} Da(/3)) u E a . If ND (J ^\Fa)t then the integral (3.2) 
makes sense. 

Set 

(3.3) pN(x,y) = inf (L^(r); y e ^à^(xyy;M)} ; 

then p(x,y) = sup{pN(xyy);N e^Ar} is a distance on M independent of ^C. 
Remark that if (Myg) is a Riemannian smooth manifold, then p agrees with the 

intrinsic distance induced by g. 
Moreover the following theorem holds (see [2, Theorems (6.11) and (7.1)]). 

(3.4) THEOREM. If (M,g) is a LIP manifold, then 

||*(x,-)IL = i> | |^(x,-)L = i . 
Moreover 8 = p. 
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(3.5) Now {M,p) = (M,8) is a metric space and it is possible to define in the usual 
way the length of a curve y, i.e. 

_^(y) = sup{2p(rU/)>r(A+i)); T decomposition of 1} . 

In the following we shall show that p is a geodesic distance. 
First we note that 

(3.6) LEMMA. For every x,yeM there exists N e ^ f s.t. pN(x,y) = p(x,y). 

Now if Ca is a countable set and dense in Va, then by the lemma Na e ^yV"exists s.t. 

PNa(
x>y)=p(x>y)' I f 

(3.7) N = N ( ^ ) = U C W u F J . 
aeN 

then N 6 ̂ V and -^?M*> y; M) =£ 0. 

(3.8) THEOREM. I /N W the set in (3.7) *»</ yeJ^N(x,y;M), then 4?(y) ^L^(y ) . 

PROOF. The proof follows easily from 

(3.9) p(rW,rfe+i))^/ Irl^. 

Let Xi = y(£). If x/? xi+l € C = U C the claim is trivial. If xk $ C, by density of C, 
a 

for every s > 0 there exist x^eC, s.t. p(x^,x^)<£, and a curve T^G^^V(X^,X^;M) 

j.f. L^(T^) < e. Now y = y \ [th tï+l] u T,- U T,-+1 e -$MS,-, X/+1 ; M) and p(x/? x/+1) ^ 
^L^(y | [/,-,//+J) + 4s from which the theorem follows. • 

(3.10) THEOREM. p(x,y) = inf{-^(y);ye^(x,y;M)}. 

PROOF. By the definition of p and by lemma (3.6), y£eJffiN(x,y;M) exists s.t. 
p{x,y) = pN(x,y)^L^(y£)^pN(x,y) + e = p(x,y) + s from which, by theorem (3.8), 
4?(7£)^L^(y£)^p(x,3;) + s hence inf {j?(y)} ^p(x,;y). The opposite inequality is 
obtained if T= {0,1} is the chosen decomposition of I in (3.9). • 

Now it is possible to extend the theorem (3.4): 

(3.11) THEOREM. If M is a paracompact oriented UP manifold, without further 
hypotheses, there exists 

lim [inf{| |^| |p ;^e^(M;x,3;)}] = S-\xyy) 

and £-1(x,y) = min {H^IL; u e J$fr$A\ x,y)}. Moreover $(x, y) = p(x, y). 

PROOF. By theorem (3.10), (M,p) is a length space so that the closed balls are 
compact. The proof of the existence of the previous limit is like that the theorem (2.6) 
of[2], if one replace œ by p and notices that \\dp(x,Oll»^ 1. For every Q c M with 
| Q | < + °° we put 

^(Q) = i n f i | \\du\Hv j ;ue^{M;x,y)\ 

Then l \ / 
*-\x,y) = sup{]imbp(Q)}. 

Q p-j.00 
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But ép(Q)^inf{Woo|Ô|v p}^p"H^,y) |Q|^ then, by passing to the limit, 
â"Kx>y)^in£{\\du\\ol>}^p~i(x>y)=>p(x,y)^$(x9y). As in [2, Theorem (6.10)] we have 
\\dS(x,Oil» = 1 and hence r\x,y)^mm{\\du\\00;ueJ^M;x,y)}. Let N(S) be the 
set of the points y e M when either dd(x,y) is not defined or \d8(x,y) \ > 1; then for 
every z> 0 there exists a curve y transversal to N(S) and s.t. L(y) ̂ p + s. Therefore 

l 

**,?) = J j^(x,r('))<fr<p(*,)') 

from which <£(x,;y) = p(x, y). 

. * - + " 

4. LENGTH OF A LIP CURVE 

(4.1) Let (M, g) a LIP manifold with a LIP Riemannian metric g and let L^(y) be as 
in (3.1). Moreover on the space of the curves on M we consider the topology of uniform 
convergence induced by a distance S. 

li yeJffi{x,y;M) we put 

(4.2) L(y) = sup {liminf L ^ ( T ) ; T ejflhi(x,y;M), NeJV9}. 

By an argument analogous to [1, Theorem (4.4)] one sees that L(y) is independent 
of the atlas; thus L(y) is called length of the curve y (with respect to Riemannian metric 
g and distance 8). 

(4.3) THEOREM. If S is the integral distance (3.2) (or the distance p), then 
My)=L(y)y ye^x,y;M). 

PROOF. (1) ^(y) ^ L(y) - As in [1, Theorem (4.4)], if N(^€) is the set defined in 
(3.7), then 

L(y) = sup {liminfL^(T); Ttrans.EuN(^€),E e ^ } 

So we can find a sequence of LIP curves {rm}, transversal to N ( ^ ) and convergent 
to y, s.t. 

lim L ^ ( T J = L(y) ; 

now 4 ? ( T J = ^ L ^ ( T J by Theorem (3.8) and by the lower semicontinuity of J ? [6] the 
claim is obtained. 

(2) L(y) ^^?(r) - By definition of Jf(y) and the continuity of y, fixed £ > 0, there 
exists a decomposition {0 = t0 < tx < ... < tk = 1} ^./. 

(4.4) ^ r ) - ^ S p f e - i ^ ^ ^ ( r ) , *,- = rfo)> 

(4.5) p U _ 1 , r W ) < s V / e f c _ h t ì . 

Moreover let TZ: [/;_I,/J—»M be a LIP curve joining X/_i with xz and transversal to 
EDN(U) s.t. 

(4.6) p(x,_!, X-j ^ L(T,-) ^ p{Xi-U X,) + s/£ . 

Set re= (J T/, which is transversal to N{^€)\ then by (4.4) and (4.6) it follows 

(4.7) Mr)~^L(Te)^^(r) + s. 
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To get the conclusion it is enough to prove that T£-* y for s—> 0. Indeed by (3.9) 

P(T/ ( / ) ,X Z )^ | |T Z - | ^^ J \ij\dt 

then by (4.4) and (4.6) P (T Z (4TM) ^ P ( T / / ) , X M ) + p(x/-1,rW) <e ( l + 1/k) + e. 
Finally by definition of L it follows 

L(y) ^ sup {lim L(TJ ; T£ trans. N} ^ _^(y). • 

This work was partially supported by a National Research Project of the M.U.R.S.T. This paper is 
dedicated to prof. IDA CATTANEO GASPARINI for her 70th birthday. 
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