
ATTI ACCADEMIA NAZIONALE LINCEI CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI LINCEI
MATEMATICA E APPLICAZIONI

Paolo Podio-Guidugli

Constrained elasticity

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche,
Matematiche e Naturali. Rendiconti Lincei. Matematica e
Applicazioni, Serie 9, Vol. 1 (1990), n.4, p. 341–350.
Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLIN_1990_9_1_4_341_0>

L’utilizzo e la stampa di questo documento digitale è consentito liberamente per mo-
tivi di ricerca e studio. Non è consentito l’utilizzo dello stesso per motivi commerciali.
Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma
bdim (Biblioteca Digitale Italiana di Matematica)

SIMAI & UMI
http://www.bdim.eu/

http://www.bdim.eu/item?id=RLIN_1990_9_1_4_341_0
http://www.bdim.eu/


Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e
Naturali. Rendiconti Lincei. Matematica e Applicazioni, Accademia Nazionale dei
Lincei, 1990.



Rend. Mat. Ace. Lincei 
s. 9, v. 1:341-350 (1990) 

Meccanica dei continui. — Constrained Elasticity. Nota di PAOLO PODIO-

GUIDUGLI, presentata (*) dal Socio G. GRIOLI. 

ABSTRACT. — Some foundational aspects of the constitutive theory of finite elasticity are considered in 
the case, regarded here as general, when internal kinematical constraints are imposed. The emphasis is 
on the algebraic-geometric structure induced by constraints. In particular, old and new examples of in­
ternal constraints are reviewed, and the material symmetry issue in the presence of constraints is 
discussed. 

KEY WORDS: Finite elasticity; Internal constraints; Material symmetries. 

RIASSUNTO. — Elasticità vincolata. Si espongono alcuni aspetti di fondamento della teoria costitutiva 
dell'elasticità finita nel caso in cui si impongano vincoli cinematici interni, caso che è qui riguardato 
come generale. L'attenzione è concentrata sulla struttura algebrico-geometrica indotta dai vincoli. In 
particolare, si passano in rassegna vecchi e nuovi esempi di vincoli interni e si discute la questione delle 
simmetrie materiali in presenza di vincoli. 

1. INTRODUCTION 

In a customary presentation, the constitutive theory of elasticity is the study of the 
mapping 

(1.1) S:0->&, S = S(F) 

transforming the displacement gradient F from a given reference placement into the 
stress S. A 

Typically, one takes the domain 0 of the response mapping S to be all of Lin 
(the collection of second-order tensors with positive determinant), and stipulates that 
the codomain (3 coincides with Sym (the space of symmetric tensors), therefore inter­
preting S as the Cauchy stress; One then proceeds to discuss the two main topics of 
the constitutive theory, namely, the classification problem, the problem of finding the 
symmetry group corresponding to a given response mapping, and the representation 
problem, the problem of finding a; representation formula for all response mappings 
sharing a given symmetry group. Remarkably, the algebraic (group) structure of the 
domain of the response mapping turns out to play a crucial role in dealing with both 
problems. 

When internal constraints, i.e., limitations on possible displacement gradients, are 
introduced, so that 0ccLin.+, then the geometric (manifold) structure of 0 be­
comes important. In customary presentations, for constrained materials the classifica­
tion problem is more or less ignored, whereas the representation problem is solved 
only in the easy case of an incompressible isotropic material, by a straightforward 
adaptation of the argument used for unconstrained isotropic materials. However, con­
sistency between reasonings based on both the group and the manifold structure of 

(*) Nella seduta del 10 marzo 1990. 
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Q) is in general not at all automatic: for the classification problem, e.g., such consis­
tency must be assured in order to avoid unnatural constructs such as isotropic solids 
inextensible in certain material directions H. 

It would appear that the qualifier in our title implies that constrained elasticity 
should be viewed as a special theory, to be deduced from the general unconstrained 
theory by use of ad hoc assumptions and techniques. In sharp contrast with this tradi­
tional view, we sketch in sect. 3 a presentation of the constitutive theory of elasticity 
where the underlying mathematical structure is consistently exploited in full, as the 
constrained case is regarded as typical. Section 4 is devoted to illustrating the general 
theory by reviewing many old and new examples of internal constraints, with special 
attention to their geometrical interpretation. Finally, in sect. 5 we complete and sharp­
en our description of the stress response by discussing the issue of material symmetries 
in the presence of internal constraints. 

2. NOTATION 

We adopt the notation of [1]. Thus V is the three-dimensional Euclidean space. 
We stipulate to consider in V cartesian orthogonal coordinates. We let Lin = the 
space of all second-order tensors (linear transformations) on V. As usual, Lin can be 
made into an inner-product space by defining, for all A, B e Lin, A • B — tr(ABT), with 
tr the trace and BT the transpose of B. All subspaces of Lin are given the metric in­
duced by the norm associated to this inner product, i.e., \\A\\ := (A-A)1'2. In particu­
lar, we consider Sym = {He Lin\H = HT}, Dev= {He Sym\H-I = 0}, where the 
identity of Lin is denoted by I; we define the subspaces Skw of Lin, and Sph of Sym 

by 

(2.1) Lin = Sym © Skw and Sym = Dev © Sph, 

respectively; moreover, we let Pos= {He Sym|t>-Hv^0 for all v e ^ } , Rot = 
= {ReLin+ \RRT = RTR = I}, Unim= {HeLin + | de tH= 1}. 

For H e Lin, H*, the cofactor of H, is defined by 

(2.2) H * H T = H H * T = (detH)I. 

It follows from this definition that 

(2.3) H H* = 3 detH for all H e Lin, 

so that, in particular, 

(2.4) H e U n i m ^ H - H * = 3 . 

It also follows from (2.2) that 

(2.5) F* = (detF) F'T for all F e Lin+ . 

O The consistency issue of the classification problem is treated at length in[ l ] ; see also [2] 

and [3]. 
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Finally, the following well-known formulae define uniquely the polar factors of 
FeLin + : 

(2.6) VF:= (FFT)1/2 ; UF:= (FTF)1/2 ; RF~ Vf1F=FUF~1. 

3. THE STRESS RESPONSE 

Our delineation of the stress response of an elastic material consists of three as­
sumptions, the third of which we postpone until sect. 5. We begin by assuming 
that 

(I) the stress response is described by a pair {^sC> @l) of set-valued mappings, 
both defined on 0, a connected smooth manifold of Lin+ such that 

(MO IE0; (M2) R o t 0 = f i F . (2) 

Let 0(F) denote the tangent space at F e 0. To each F e 0, the action mapping ^€ 
assigns a (non-empty) set ^ ( F ) c L i n , with 

(3.1) a(F) = 0(F)F~l-

the reaction mapping &i} the orthogonal complement of ^C(F) in Lin: 

(3.2) e%(F) = (0(F)F-1)1. 

In view of (M2), the prescription of 0 agrees with the axiom of invariance under 
change in observer (cf. e.g. [4, Chapter VII]). On the other hand, (M{) is the require­
ment that the gradient I of the identity displacement from the reference placement is 
an element of 0. 

REMARK 3.1. At first sight, (Mi) may look as a technical assumption that could 
have been safely left tacit, but it is not quite like so. To see this, let us suspend it provi­
sionally (as is always done in [3]). Then, if <S5cc Lin+, (M2) presents us with the fol­
lowing alternative: either I e 0 and then Rot c 0y or I $ 0, and then Rot Ti 0 = 0. 

A 

Choosing the first possibility: (i) allows one to consider S (I), the stress in the reference 
A 

placement, as well as the stress S(R) in all placements obtained from the reference one 
by means of a rotation R e Rot; (ii) is mandatory whenever, as frequently happens, 0 
has to have the group structure; (iii) is likewise mandatory if one accepts Noll's de­
scription of continuum kinematics [5], where the classes of displacements D and 
placements P are supposed to be such that, among other things, KoK1 ED for any 
KEP (cf. the final note of[l]). • 

We further specify the stress response by assuming that 

(II) the stress can be split into an active part S& and a reactive part S& : 

(3.3) S = SA+SR. 

(2) Thus, 0 is a constraint manifold in the sense of [2], provided «smooth» is read as «of class C1»; 
to make the smoothness assumption precise is irrelevant to our present developments, so much so that 

one can safely think of 0 as being a C°°-manifold. 
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The active stress accounts for the mechanical response to admissible displacements from 
the reference placement; in the class of materials sharing a given domain 0, a particu-

A 

lar elastic material is specified by a mapping S such that 

(3.4) 0 BF^SA=S(F)EU(F) nSym. (3) 

The reactive stress, which accounts for the internal reaction necessary to maintain the 
kinematical constraints that the displacement gradient F belong to 0, is such 
that 

(3.5) SRe 01(F) forallf.eSf, 

but is otherwise arbitrary. 

It is proved in[l] that 

(3.6) 0(RF) = R0(F) for allRe Rot and Fe0; 

(3.7) É£(F)cSym for all F e <2̂ . 

Thus, the reactive stress is symmetric. Using (3.6) and (3.7) one can also show 
that 

(3.8) e%(F) = F(0(F)1)T
> 

a formula for &l(F) alternative to (3.2) (cf. [3, formula (3.8)]). In addition, it fol­
lows from (2.4), (3.2) and (3.5) that 

(3.9) • xR:=SRF*'F = 0 for all Fe0 and F e 0(F); 

in words, the stress power nR associated with the reactive stress vanishes in every pos­
sible motion (4). 

The material is constrained whenever dim 0 ^ 8; otherwise, the unconstrained 
case obtains. If there are no constraints, we have that ^C(F) = Lin, é&(F) = {0} for 
all F, and the familiar setting of the unconstrained theory is recovered. 

REMARK 3.2. It is often the case that 0 is a subgroup of Lin+ (so that, as it turns 
out, 0 is independent of the reference placement [1]). Then 

(3.10) 0(F)F~l = 0(I) 

and, rather than consisting of a distribution of sets ^C(F) n Sym parametrized on F, 
A 

the codomain (? of S is such that 

(3.10) 6 = 0(1) nSym. D 

REMARK 3.3. It is worth-noticing that, within the general thermodynamical con­
text considered in [2], our present assumptions on the stress response can be given 
the status of a proved theorem. • 

(3) As anticipated in the Introduction, a constraint manifold Q) and a response mapping for the ac­

tive stress S should be compatible, in a sense that we shall make precise in sect. 5 by means of our assum­

ption (III). 

(4) This is the starting assumption of the mechanical theory of constrained materials proposed by 

NoU in [6. §30]. 
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4. EXAMPLES 

A classical border example is provided by rigid materials, for which 0 = Rot, so 
that ^ ( R ) = SkwR, ^ ( R ) = Skw and ^ ( R ) = Sym for all Re 0; consequently, 
(3.8) reduces to 6 = {0}, and the stress is purely reactive. Generalizing slightly, we 
may consider materials capable only of conformai displacements (5), namely, such that 
0 = {F e Lin+ \F = aR, with a e R+ and R e Rot}. It is easily found that 
^€{F) = Sph = (D and é&(F) = Dev, so that the active stress is a pressure. Considera­
tion of the conformality constraint puts in a somewhat unusual perspective another 
classical example, namely, incompressible materials (6). Here â? = Unim; it follows 
that 0(F) = {Fe Lin|F- F* = 0}, U(F) fl Sym = Dev = & and 9b (F) == Sph, so that 
now the reactive stress is a pressure. 

Rigidity, conformality and incompressibility are internal constraints independent 
of the reference placement (cf. Remark 3.3). Next, we consider various examples of 
constraint manifolds that have not the group property. 

A material is inextensible in the direction e in the reference placement if 0 = 
= {Fe Lin+ \Fe-Fe = l};then, U{F) = {Ae Lin\A • (Fé <g> Fé) = 0} and, by use of either 
(3.2) or (3.8), &1>(F) = span {Fe®Fe}, and the reaction is an arbitrary pure traction 
in the direction F e (7). A material is capable only of displacements preserving orthogo­
nality of the directions e and / of the rejference placement if, for e and / orthogonal 
unit vectors, 0 = {F e Lin+ \Fe-Ff=0}. With this constraint, @l (F) = 
= spanjFe ® F/+ Ff® Fe}, and the reactive stress is an arbitrary pure shear in the plane 
of F e and F/(8). 

Incompressibility, inextensibility and preserving ortyhogonality enforce, respec­
tively conservation of volume, arc length and angle. By imposing other, less studied in­
ternal constraints, we may require that other quantities of direct geometrical interpreta­
tion be displacement invariants. For example, conservation of area for a family of mate­
rial surfaces follows from the requirement that 0 = {F e Lin+ \F* n • F* n = 1}: only 
displacements preserving area of surfaces in the plane of normal n in the reference 
placement are allowed. With the formula F* = SFF*[F] = (F'F*)F~T - F~TFTF*, 
the construction of ( 0 , ^€{F) and) £%(F) becomes straightforward; one gets 

(5) A conformality constraint on microstmctural deformations has been used in [7]. 

(6) As is well-known, an incompressible material is generally simpler in its behavior than correspon­

ding unconstrained materials: on occasions, the incompressibility constraint may allow for explicit solu­

tion of conceptually and practically relevant model problems. In particular, incompressible materials 

play an important role in both the early and current development of a rational theory of finite elasticity. 

In this connection, a number of pioneering papers by A. Signorini, R. S. Rivlin and J. L. Ericksen must 

be mentioned; complete references can be found in [6]. 
(7) The inextensibility constraint can be traced back to the first successful theories of structural me­

chanics, such as the theory of the catenary and the elastica. Recently, it has been used to idealize the 

behavior of fiber-reinforced materials. 

(8) The constraint of orthogonality preserving is an essential ingredient in the classical theories of 

plates and shells (recall the so-called Kirchhoff-Love hypotheses; cf. [8]); in a fairly recent paper, Eric­

ksen [9] has used it in modelling phase transformations of certain elastic crystals. 
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01(F) = span{I - F*n ® F*n}, i.e., the reactive stress is an arbitrary pressure in the 
plane normal to F* n. 

Finally, we list some internal constraints that have recently been proposed, either 
in the framework of a constitutive theory of constrained materials or for their rele­
vance in certain applications; our main purpose here is to clarify the geometrical inter­
pretation, which is less transparent than for the constraints considered so far. 

We begin by writing the inextensibility constraint in the equivalent forms 

(4.1) FTF-e®e=lo(FTF-I)-e®e = 0. 

Then we observe that: (i) for a fixed unit vector «, the mean value of e{6) ® e(6), with 
e(6) • n = 0, over the interval [0,27r] is the tensor (I — n® n), the orthogonal projec­
tion on the plane normal to n; (ii) the mean value oie® e over the unit sphere in HJ is 
the identity tensor I Now, as for e, f and n an orthogonal triad of unit vectors we have 
that I— n® n = e® e +f® /, the internal constraints expressed by 

(4.2) Fe-Fe + Ff-Ff=l and Fe-Fe +F/-F/+Fn-Fn= 1, 

can be equivalently written as, respectively, 

(4.3) FTF'{I-e®e)=2o(FTF-I)-(I-e®e) = 0, 

and 

(4.4) FTF-I = 3o(FTF-I)-I = 0. 

Then we conclude, using (i) for (4.2)! and (ii) for (4.2)2, that both constraints impose 
inextensibility in the mean, the first one in the plane of normal n in the reference 
placement (9). We leave it to the reader to determine the codomain of the action and 
reaction mappings for these constraints. 

Ericksen uses (4.4)2 in [9] to complete his model of phase transformations for 
crystals alluded at in footnote 6; he does not bother to find names, but describes this 
constraint as one of the infinitely many possible extrapolations of the incompressibili-
ty constraint of the linear theory of deformations, namely, in our present nota­
tions, 

(4.5) F - I = 3 . 
REMARK 4.1. In the nonlinear theory, (4.5) is not acceptable as a prescription of 

internal constraint, as it is incompatible with the axiom of invariance under change in 
observer. Indeed, the axiom would require that (R — I) • F = 0 for all R e Rot; but, 
as Rot spans Lin (cf. [10]), this in turn would imply, absurdly, that 
F = 0.(10) • 

REMARK 4.2. Another extrapolation of (4.5), different from both (4.4)1? and the 

(9) The terminology used in [3] for these constraints is «total inextensibility»; our present geome­

trical interpretation makes clear why we find this terminology inappropriate. 

(10) More generally, it can be shown along the same lines that no constraint equations involving the 

trace of the displacement gradient can possibly agree with (M2). 



CONSTRAINED ELASTICITY 3 4 7 

obvious one, which is (2.4)2, is important in idealizing by means of an internal con­
straint certain experimental findings about large plastic deformations of ordered 
solids: as Bell authoritatively reports in [11], when plastic flow occurs, it is rather the 
trace of VF (or of UFy which is the same) than the determinant of F to be conserved. 
Bell then credits Ericksen the suggestion of introducing the constraint manifold 

(4.6) 0={FeLm+\F-RF = 3} 

(here use of (2.6) has been made). We can easily compute the corresponding reactive 
stress, starting from the observation that F • RF = [VF RF + VF RF ] • RF = VF • I + 
+ Vp'RpRp =0 because, in view of the constraint equation and (2.6), Vp-I=0, 
VpeSym and RFRj e Skw. Thus, we have that U(V) = 0{F)F~l = 
= {A 6 Lin\A'RpFT = 0}; as by definition VF e Sym, or rather, RFFT = FRF, we also 
have that ó£(F) = span {FR^} (cf. [11, §5]). • 

5. CONSISTENCY OF SYMMETRY GROUPS 
A 

Let a constraint manifold 0 and a response mapping for the active stress S be 
given. 

Adapting a definition of Noll [12], the symmetry group Syg associated with S 
consists of all elements H e Unim fi 0 such that 

(5.1) S(FH)=S(F) for all Fe0. 

Similarly, the set Myg of all elements He 0 such that 

(5.2) 0H=0, 

is the symmetry group associated with 0. 
Syg is the collection of all displacements from the given reference placement which 

are mechanically undetectable; Myg is the collection of all displacements leaving 0 
unaltered. Shortly, we call Syg and Myg the response and the constraint group, 
respectively. 

Noll [12] has demonstrated the importance for the classification problem of de­
manding that Syg be included into Unim; later, Gurtin and Williams [13] have sup­
plied thermodynamical arguments supporting Noll's assumption. However, we share 
with[l] and [3] the view that there are no reasons why Myg should satisfy the same 
inclusion relationship. Indeed, the direct inspection of 0 rather leads to the opposite 
conclusion, as exemplified in the following remark. 

REMARK 5.1. Consider the inextensibility constraint. It follows easily from (4.1)2 

that all admissible F e Lin+ must be such that 

for all / such that e-f=0. 

(5.3) 

Yï7"1t"n 
W i l l i 

(5.4) AeVos, A-e®e = 0, 

FTF=e®e + A 

A-f®f>0 
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Now, for each H e Myg, we have that 

(5.5) (HTH-I)-e®e = 0 and FrF-He®He=l. 

From (5.3) and (5.5) we deduce that 

(5.6) (H-e®e)2+A'He®He=l. 

In view of (5.4)2, all He 0 such that 

(5.7) He=±e, 

solve (5.6). On the other hand, there cannot be other solutions: if He were not parallel 
to e, it would follow from (5.4) and the arbitrariness left in the choice of A that the 
positive number A-He® He could be made arbitrarily large, thus violating (5.6). In 
conclusion, for inextensibility the constraint group is 

(5.8) Myg={He0\He=±e}, 

a subgroup of Lin that is not included, in Unim(n). • 

A constraint manifold and a response mapping for the active stress must be consis­
tently assigned, in the sense that any mechanically undetectable change in the refer­
ence placement should not change the constraint manifold as well. Formally, we com­
plete the specification of the stress response given in sect. 3 by assuming that 

(III) the constraint and the response groups are consistent, i.e., 

(5.9) Myg D Syg. 
A 

In this connection, given a response mapping for the active stress S, and therefore 
given its symmetry group Syg, one may ask what internal constraints are compatible 
with S. We close this section by stating two theorems in this vein; the interested reader 
may consult [1] and [2] for two different proofs of the first theorem; the second 
one is proved in[l] . 

THEOREM 5.2. A constrained fluid must be incompressible. 

A 

REMARK 5.3. In the light of (5.9), the last result is plausible because, if S describes 
a fluid, by definition Syg = Unim, whereas incompressibility requires that Myg = U-
nim. • 

Recall that a standard result in dealing with the classification problem is that a ma­
terial is an isotropic solid if Syg = Rot. Our next theorem lists all possible instances of 
constrained isotropic solids. 

THEOREM 5.4. Let Myg D Rot. Then, one of the following is satisfied: (i) 0 is 
rigid; (ii) 0 is conformai; (iii) 0 has maximal dimension, i.e., dima? = 8 . 

Thus, for a constrained isotropic solid, beside the more or less trivial possibilities 

(n) Cf. [3] for a different proof of this result. 
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(rigidity and conformality) and the obvious one (incompressibility) (12), infinitely 
many other constraints may be considered. 

REMARK 55. An example of constraint manifold of maximal dimension compati­
ble with both isotropy and solidity is provided by the constraint of inextensibility in 
the mean specified by either one of (4.4). As a straightforward analysis shows, if F sat­
isfies (4.4), F must be such that 

(5.10) FTF = I + A, 

with 

(5.11) yleDev, (I + A)*v®v>0 iotdkveV with vi-0. 

Moreover, for each H e Myg, we have that 

(5.12) H-H = 3 and 1 = (FTF-1) -HHT. 

It follows that A • HHT = 0 for all A e Dev, or rather 

(5.13) HHT = aI for some a eR . 

Using (5.12), we deduce from (5.13) that a = 1; thus, we conclude that the constraint 
group Myg equals Rot (cf. also [3]). Curiously, the case of an isotropic solid inexten­
sible in the mean as prescribed by (4.4) parallels the case of an incompressible fluid, in 
that for both materials Myg = Syg. • 

The results of this paper were presented in a lecture delivered in the occasion of the Convegno Cele­

brativo della Nascita di Antonio Signorini, Roma, Accademia Nazionale dei Lincei, 12-14 Aprii 

1988. 
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