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Meccanica dei solidi. — Unconditionally stable mid-point time integration in elastic-

plastic dynamics. N o t a di A L B E R T O C O R I G L I A N O e U M B E R T O P E R E G O , p re sen ta t a (*) 

da l Cor r i sp . G . M A I E R . 

ABSTRACT. — The dynamic analysis of elastoplastic systems discretized by finite elements is dealt with. 
The material behaviour is described by a rather general internal variable model. The unknown fields are 
modelled in terms of suitable variables, generalized in Prager's sense. Time integrations are carried out 
by means of a generalized mid-point rule. The resulting nonlinear equations expressing dynamic equilib­
rium of the finite step problem are solved by means of a Newton-Raphson iterative scheme. The uncon­
ditional stability of the adopted integration method is proved according to two nonlinear stability 

KEY WORDS: Dynamics; Time integration; Elastoplasticity; Stability. 

RIASSUNTO. — Integrazione nel tempo incondizionatamente stabile con il metodo del punto medio gene­
ralizzato in dinamica non lineare. Si considera l'analisi dinamica di sistemi elastoplastici discretizzati ad 
elementi finiti. Il comportamento del materiale è descritto da un modello alquanto generale a variabili 
interne. I campi incogniti sono modellati in funzione di opportune variabili, generalizzate nel senso di 
Prager. Le integrazioni nel tempo sono effettuate per incrementi finiti adottando il metodo detto del 
punto medio generalizzato. Le equazioni non lineari di equilibrio dinamico che così si formulano vengono 
risolte per mezzo di uno schema iterativo tipo Newton-Raphson. Si dimostra che il metodo di inte­
grazione adottato è incondizionatamente stabile secondo due criteri di stabilità validi in campo non 
lineare. 

1. I N T R O D U C T I O N 

This paper is concerned with the small displacement dynamic analysis of elasto­
plastic systems discretized by finite elements. The material is assumed to be an elasto­
plastic standard material as defined in [1,2]. According to this definition, the hard­
ening behaviour is described by means of a suitable set of conjugate static and kine­
matic internal variables. The existence of a convex potential of the kinematic variables 
is also postulated. The governing relations are formulated in terms of generalized vari­
ables. The use of these variables presents some computational advantages which have 
been discussed e.g. in [3-5]. 

In nonlinear dynamics, the stability of the algorithm used to perform numerical 
time integrations is a crucial issue. Several stability criteria have been proposed 
in the literature [6-9]. The most appropriate ones appear to be related to the 
notion of stability in energy. Simo and Govindjee[10] recently considered the 

time integration of elastoplastic constitutive laws. Starting from the contractive 
nature of the relations which govern the continuum problem, they proposed 
a stability condition resting on the contractivity of a suitable energy norm. They 
also showed how a generalized mid-point time integration can satisfy this condition. 

(*) Nella seduta del 14 giugno 1990. 
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The same mid-point integration scheme has been adopted by Simo and Wong [11] 
in rigid body dynamics. 

In the present paper, the generalized mid-point rule is adopted for the integration 
of both the elastoplastic constitutive relations and the equation of motion. The result­
ing algorithm turns out to satisfy, for a certain choice of a parameter, a stability condi­
tion which appears to be the natural extension to dynamics of the one proposed 
in [10]. The generalized mid-point rule is also shown to comply with the stability in 
energy criterion employed in [8]. 

2. FORMULATION OF THE ELASTIC-PLASTIC DYNAMIC PROBLEM IN GENERALIZED 

VARIABLES 

Consider a finite element model of the system to be analyzed. Let all fields be 
modelled over each element by making use of Prager's notion of generalized variables. 
These are variables which govern the interpolation of each field and are endowed with 
the following noteworthy properties: /) each generalized variable can be interpreted as 
a weighted average over the relevant element of the corresponding field; it) the scalar 
product of dual static and kinematic generalized variable vectors equals the integral 
over the element of the scalar product of the corresponding fields. In the present pa­
per, the modelled displacements are taken as compatible interpolations of nodal val­
ues. The other kinematic fields are approximated by interpolating values at the Gauss 
points used for the numerical integrations over the element. 

The material behaviour is described in an average sense by relations which 
involve generalized variables pertaining to the whole discretized system. The 
following constitutive relations express the local elastoplastic constitutive behaviour 
in an average sense over finite elements, for all elements simultaneously: 

(1) £ = e + py 

(2) a=dU(e)/de, x = dW(ii)/di], 

(3) p = {d<j>T{<rix)ld<r)k n=-{df{ayX)ldx)^, 

(4) 0 = 0(<r,/)^O, X^O, 0 T i = O, 

(5) D = (rTp~xTri^0. 

In eq. (1) £, e and p denote total, elastic and plastic strains respectively (the 
term generalized will henceforth be dropped for brevity). In eqs. (2) a are stresses, 
while x a n d 1 a r e conjugate static and kinematic internal variables respectively; 
17 is the elastic strain energy and W is the stored strain energy due to structural 
rearrangements at the microscale. The sum H=U +W represents the Helmholtz 
free energy. The evolution equations for p and 1/ are given in (3), where (f) 
denotes the vector of continuously differentiable yield functions and X denotes 
the vector of plastic multipliers. The rates of p and r\ are assumed to be normal 
to the yield surface. In correspondence to a corner they are contained in the 
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cone of the outward normals to that point. The loading-unloading conditions 
are enforced in (4). Finally eq. (5) defines the nonnegative rate of dissipation. 

As it is discussed in detail in [5], under mild restrictions, the above defined rela­
tions preserve the essential properties (e.g., sign definiteness, normality and comple­
mentarity) characterizing the local material constitutive law. Hence, if U is strictly 
convex and W and each component of (/) are convex functions of their arguments, the 
relations (l)-(5) define the generalized variable version of the so called standard 
elastoplastic material as specified in[l] . For the subsequent developments, reference 
will be made to a standard material with quadratic Helmholtz free energy, i.e. 

(6) H=(eTCe+rjTAî])/2. 

The convexity assumptions on L7 and W entail positive definiteness of c and positive 
semidefiniteness of A. 

For convenience of notation, use will be made of the following symbols 
(see[l]): 

*={:}• -{;}• M-',}- H ; 
(8) G = 

\C 0" 
.0 A 

The global vectors E, E, © and f of static and kinematic quantities will be briefly re­
ferred to as stress and total, elastic and plastic strains respectively. Accounting for as­
sumption (6) and making use of the definitions (7) and (8), the constitutive relations 
(l)-(5) can be given the more compact form: 

(9) E = e+r, 

(10) E=G0, 

(11) t=(d<l?(Z)/3E)k 

(12) # £ ) * £ 0 , À 3*0, <f>Tk = 0, 

(13) D = 2Ttï*0. 

The convexity and differentiability of <f> imply that, for any E1 and E2, 

(14) *&)-*(*)> ^\s2(E>-E2). 

Let now £2 be a point on the surface (/)(£) = 0 and let L1 be any vector such that 
0(£M^O. From (11), (.12) and (14) it follows that: 

(15) (E2-El)Trz^0. 

Inequality (15) can be regarded as a manifestation of the principle of maximum dissi­
pation. Furthermore, if the origin belongs to the elastic domain ($(0)^0), (15) also 
implies positiveness of the dissipation rate (13). 

Let the displacements u denote the dynamical degrees of freedom of the dis-
cretized system. The small strain compatibility equations and the equations of motion 
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take the form 

(16) E(t)=Bu(t), 

(17) Mu(t) + Vu(t) + BT E(t) = F(t), u(0) = u0, a(0) = k0. 

In eqs. (16) and (17), M is the mass matrix and Vis the viscous damping matrix. Both 
M and V are symmetric, M is positive definite and V is positive semidefinite. F de­
notes the vector of equivalent nodal forces and B is defined as 

" A " 

(18) B= B 

where B is the linear compatibility operator such that £ = Bu. 

3. DECAY OF PERTURBATION ENERGY IN THE ELASTIC PLASTIC DYNAMIC PROBLEM 

Consider the discretized structural system defined in the previous section and sub­
ject to a given history of external actions F{t). At time t = 0, let {UQ , k\ } and {#o , kl } 
be two different sets of initial conditions. Let EQ and EQ be the corresponding initial 
states of stress. At time / = r the stress distribution E\ is in equilibrium with Fr — 
— MM] — Vk\. Analogously, E2

T is in equilibrium with Fr — Mit2 — Vk2
T. The application 

of the virtual work principle yields: 

(19) - (E\ - E2)T (tl - t2) = (El - E2f (01 - 02) + 

+ (% ~ u2)TM(k] - k2) + (k] - k2)r V(kl - k2), 
where Er = 0T + tT is compatible with kr. The l.h.s. of eq. (19) is nonpositive, as it can 
be shown by noting that E\ and E2 both satisfy condition (12a) and by applying twice 
inequality (15) with reversed indices. The last term on the r.h.s. is nonnegative due to 
the assumed semi-positiveness of V. Therefore, taking into account eq. (10), eq. (19) 
gives rise to the following inequality: 

(20) j - t [(01 - ©y G(0l - 02
z)/2 + [kl - «?)T M{k\ - k2

T )/2] « 0. 

The term in brackets represents the total energy of the motion [_ul(t) — u2(t)], i.e. the 
sum of its Helmholtz free energy and kinetic energy. 

Remarks 

i) Inequality (20) can be interpreted as a manifestation of the dissipative na­
ture of the problem. Due to plastic dissipation and damping, the energy associated to 
the (free) motion [u1(t) — u2(t)] decays with time. 

it) Let E2 (t) be interpreted as the response of the system to perturbed initial 
conditions {UQ + (UQ — «J), UQ + (kl — kl)}. Accordingly, let the term in brackets on 
the l.h.s. of (20) be interpreted as a measure of the consequent perturbation of the re­
sponse at / = T. Then inequality (20) can be thought of as expressing the continuum 
dependence of the motion on the initial conditions. 

Hi) Inequality (20) represents the natural extension to dynamics of the similar 
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property proved by Nguyen [12] in statics with reference to the same class of stan­
dard materials. Simo and Govindjee[10] employed the corresponding property at 
constitutive level as the basis for the definition of nonlinear stability of midpoint algo­
rithms. In the next section the same concept will be applied to the present more gen­
eral context. 

4. UNCONDITIONAL STABILITY OF MID-POINT TIME INTEGRATION 

Let 0 T be the time interval over which the dynamic response of the discrete struc­
tural system to the given initial conditions and history of external actions is to be com­
puted. Select a suitable number N of instants t0, tXi t2 ...tn, t„+i = tn+ At, ...tN = T. Let 
subscripts n and n + 1 denote values of variables at t = tn and t = tn+1 respectively. Fo­
cus now on a finite interval tn t„ + i. At tn the state of the system is assumed to be 
known. Denote by the symbol A the increments of all quantities over the considered 
time step. As usual, the problem of computing the response of the system to the given 
increments of external actions AF, is tackled by adopting an approximate time inte­
gration scheme. Use is made here of the mid-point rule in the form recently put for­
ward in [10] in a different context (in statics and at a constitutive level only). 

In general terms, the mid-point scheme can be summarized as follows. Given a sys­
tem of first-order ordinary differential equations of the type (y„ and y„ being initial 
conditions at time t„): 

(21) y-f(y,t), y(tn)=yn> y(tn) = yn, 

the unknown value y„+i is obtained in the following approximated implicit 
form: 

(22) y»+\=yn+Atf(yn+a,tn+a), • 

having set: 

(23) yn+a = (\-cL)yn + *yn+u tn+a = (1 - a)tn +at„+1, O ^ a ^ l . 

The application of the mid-point rule to the relations which govern the elastoplastic 
dynamic problem eqs. (9)-(12) and eqs. (16), (17), leads to the formulation of the fol­
lowing algebraic problem: 

(24) Ln+i=Zn + G(AE-Ar), 

^ d<l>T 

(26) <j>(Zn+x)^0, ZLA^O, (l>T(Zn+a)Ak = 0, 

(27) . AE = BAuy 

(28) ùn+1 = un +Atun+a, u„+l = un +Atkn+a, 

(29) Miin+a + Vi,+a+BTEn+a =F(tH+a). 

Here all quantities with the subscript n + a are defined according to eqs. (23). Notice 
that F(tn+a ) i= Fn+a unless F is linear in time. It is also worth noting that normality, eq. 
(25), plastic consistency, eq. (26^), and complementarity, eq. (26c), are enforced at 
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tn+a [10]. By making use of these conditions and of the convexity of 0 at Sn+a> the fi­
nite step counterpart of inequality (15) reads: 

(30) (Z2
n+a-Zl+a)

TAr2^0, 

for each 2?n+a such that 0 ( ^ + J ^ 0. 
In eq. (29), which consistently enforces equilibrium at tn+a, £n+a is to be intended 

as nonlinearly dependent on displacements through the constitutive and compatibility 
relations. To solve the resulting system of nonlinear equations, first rewrite eqs. (28) 
and recall the definition of En+a: 

(31) u„+a=<z~1Au/At2-<z~1ù„/At, u„+a=Au/At, a=£0, 

(32) EH+a=En + aAE. 

Substitute now eqs. (31) and (32) into eq. (29), rearrange and adopt a Newton-Raph-
son iterative scheme for numerical solution. In this way, at each iteration one is led to 
solve the following linear algebraic system: 

(33) (a-1M/At2+V/At + <zKT)(Aui+1-Aui)=Firr. 

Here / is an iteration index and we have set: 

SAL = J?T 
AB 

( 3 4 ) *=* BAE 

(35) Fl
err = {oTlM/At2 + VjAt) Au1 + BTE'n+a - (F(tH+a) + of-1 Af/d/âJ. 

The structure tangent matrix KT defined in eq. (34) has to be computed directly from 
the integrated constitutive relations (24)-(26). A detailed derivation can be found 
in [10]. A new estimate Au*+1 of the displacement increment can be obtained from 
eq. (33). Equations (24)-(27) are then solved with respect to the stress and plastic 
strain increments for the given increment Aut+1. In the rest of the paper, it will be as­
sumed that the iterative procedure is always convergent with the desired accuracy, so 
that equilibrium can be considered as exactly satisfied at t„+a. 

The stability property (20) which has been shown to hold for the continuum (in 
time) problem, can be reformulated in the present finite-step context as follows: 

(36) [(0l^)T G0l
n-+\ + («i;f)T MkllWIl « [ (©r 2 ) r G0l~2 + ( « r 2 ) T M i l i t i , 

In eq. (36), the superscript 1—2 means difference between the relevant quantities in 
the states 1 and 2, e.g., 

(37) ei;i = ^ + 1 - . ^ + 1 . 
As in the previous section, the states 1 and 2 correspond to different initial conditions 
at time t„. 

The desirable property (36) is shown below to be satisfied for 1/2 ^ a ̂  1 by the 
time integration scheme described in (24)-(29). By enforcing equilibrium at tn+a as in 
eq. (29), %l+l is in equilibrium with -[Miil+l + Vii^+l]. From eq. (27), it turns out 
that the difference between the strain increments AE1'2 = AE1 - AE2 = E^+2 - El~2 is 
compatible with homogeneous displacement boundary conditions. Therefore, the vir-
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tual work principle yields: 

(38) - {Ll
n-+l)T Ar1-2 = (Ll-+l)T A 012 + {ùl

n-+l)T MAu1-2 + fe2)T VAul~2. 

By adding to the r.h.s. the zero term [(«i+f )TMAu1"2 - {itl
n+l)TMAul~2] and by 

noticing that the l.h.s. is nonpositive due to inequality (30) applied twice, one 
obtains: 

(39) {lt+l)T 4 0 1 2 + {ul+l)rMAul~2 + (fai? MAu'-2 -

{ùlzl)TMAul~2 + (fai)7 VAul~2 «SO. 

The following identities hold: 

(40) Zl~+l = 0~+\ + nr2)/2 + (a - 1/2) AZ1-2, 

(41) kill = {ull\ + u\-2)l2 + (a - 1/2) Aul~2, 

Substituting eqs. (40) and (41) in eq. (39) gives: 

(42) (E™ + lt2)T A 0l~2l2 + (ii^lfMAu1-2 + 

+ {ull\ + u\-2)T MAul-2l2 - (ul
n+l)T MAul~2 + (ù1^2)7 VAu1'2 ^ 

«= (1/2 - a) (AE1'2)7 A01'2 + (1/2 - a) (Au1'2)7 MAùl~2. 

By noting that {AE1-2)7 A0l~2 = (A0l~2)T GA012 > 0 , it follows that the r.h.s. of in­
equality (42) is nonpositive for a > l / 2 . Hence, inequality (42) reduces to: 

(43) ( 0 ' ; i + 0l2)TGA0'-2/2 + (ul„+2 + ill2)1 MAu'-2 J2 + 

H$l+l)TMAu1-2 - M+lf MAu1-2 + {fal)r VAu^^O. 

Accelerations and velocities at n + a can be expressed in terms of their increments 

over the time step by inverting the midpoint approximations (28): 

(44) ùl
n-+

2
a=Akl-2/At, kl

n-+
2

a=Aul-2/At. 

Substituting eqs. (44) into (43) and taking into account the positive semidefiniteness 
of V and the symmetry of M, one obtains: 

(45) (01+1 + 0}r2) GA0l~2/2 + («J;* + Ul~2)TMAUl~2/2 ^ 0. 

Inequality (45) coincides with (36), as it can be easily recognized by developing the 
quadratic forms on the l.h.s. 

Remarks 

i) According to eq. (36), the total energy associated to the motion [u1 (t) — 
— M2 (/)] integrated by the mid-point rule, cannot increase over a time step independent­
ly of the step size. This can be interpreted as the discrete counterpart of eq. (20) which 
has been shown to hold for the continuum (in time) process. 

ii) Inequality (36) appears to be the dynamic counterpart of the contractivity 
property proved in [10] at a constitutive level, for statical situations. 

Hi) The mid-point rule is stable in energy in the sense specified in [8], i.e. «the 
sum of the kinetic and internal energies are bounded within each time step relative to 
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the external work and kinetic and internal energies in the previous time step». The 
mid-point approximation of the work performed by the external forces over a time 
step can be expressed in the form: 

tn + l 

(46) Le= j FT(r)ù(T)dr = FT(tn+a)Au. 

By the virtual work principle, it follows that 

(47) -E*+aAr= Z7
+aA0 + ùL«MAu + ulaVAu- F7(tn+a)Au. 

By noting that the l.h.s. is nonpositive due to (30) and by following the same path of 
reasoning as for the proof on inequality (36), the above defined criterion for stability 
in energy turns out to be satisfied, i.e.: 

(48) 0T
n+1 G0n+1/2 + û7

+1Mûn+1/2 ^ 0T
nG0n/2 + ù7Mûj2 - F7 (tn+oc) Au. 

iv) By setting a = 1, the backward difference scheme commonly used for inte­
grating the constitutive law is recovered. The backward difference time integration 
leads to the formulation of a stepwise holonomic problem for which several extremum 
and convergence properties have been proven [5,13]. Most of these properties can 
be shown to hold also when the mid-point rule is adopted, both in statics and in dy­
namics. These results will be presented in a forthcoming paper. 

v) By setting a = 1/2, the popular average acceleration method is recovered. 
This can also be viewed as a particular case (/3 = 1/4, y = 1/2) of the more general 
Newmark's scheme: 

(49) un+1 = ùn+Àtùn+Y , un+1 = un+At(un + un+2pAt/2)y 

where iin+r and ù„+2p are defined according to eq. (23). The unconditional stability of 
the mid-point rule for a ^ 1/2 therefore implies that Newmark's method for j3 = 1/4 
and 7=1 /2 is also unconditionally stable. 

vi) Inequality (36) has been obtained by enforcing equilibrium at tn+a. In prac­
tical applications in nonlinear structural dynamics, equilibrium is usually enforced at 
t„+i (see e.g. [7,8]). In this case, (£l+2 + ^l~2) represents a state of stress in equilibri­
um with — [M(ull\ 4- u\~2) 4- V(«i+i +^i~2)] . The application of the virtual work 
principle yields: 

(50) (Zl+i + Li2)7 AE1-2 + (li,1;? 4- ul2)TMAu1-2 + (ifo\ + ùl2)T VAu1'2 =0. 

By exploiting identities of the type of eqs. (40) and (41) for E„+a, un+a and ii„+0O eq. 

(50) can be rewritten as: 

(51) 2[(Zl-+l)T AE1-2 + (ul+lf MAu1-2 + (u^lf VAul~2] + 

(1 - 2 a ) [(AE1-2)7 AE1'2 + (Au1-2)7 M Au1-2 + (Ait1-2)7 VAu1'2] = 0. 

The term in the second brackets vanishes since AL1'2 is in equilibrium with 
-[MAu}~2 4- VAû1'2]. Hence, eq. (51) coincides with eq. (38). As a consequence, the 
property (36) holds also when equilibrium is enforced at tn+1. 
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5. CONCLUSIONS AND FUTURE PROSPECTS 

The finite element dynamic analysis of elastoplastic systems has been dealt with in 
the following context: i) the considered elastoplastic material model with internal 
variables belongs to a class which is contained in the definition of standard material 
given in[ l ] ; it) the relations governing the spatially discretized problem have been 
formulated in terms of generalized variables [5]; Hi) the time integrations have been 
carried out by applying the generalized mid-point rule as suggested in [10,11]. 

In this framework, a Newton-Raphson scheme has been devised in order to solve 
the nonlinear algebraic equations arising from time discretization. The mid-point rule 
has been shown to be unconditionally stable in the sense specified in [10], for 
1/2 ̂ a ^ 1, i.e., the total energy associated to the difference between the perturbed 
and original motions cannot increase over a time step independently of the step size. 
The integration algorithm has also been shown to satisfy the condition of stability in 
energy employed e.g. in [8]. This circumstance implies that the increment of the total 
(internal plus kinetic) energies over a time step is bounded by the work performed by 
the external forces over the same time step. 

The finite step elastoplastic dynamic problem as formulated in this paper and inte­
grated by the mid-point rule can be given some extremum characterizations. Conver­
gence criteria can also be established for a modified Newton-Raphson scheme. These 
aspects will be pursued in a forthcoming paper. 
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