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Equazioni a derivate parziali. — Extension of CR functions to «wedge type» do-
mains. Nota di ANprea D’AcnoLo, Piero D’AncoNa e GIUSEPPE ZAMPIERI, presen-
tata (*) dal Socio G. Scorza DraGonr.

AsstracT. — Let X be a complex manifold, § a generic submanifold of X®, the real underlying mani-
fold to X. Let Q be an open subset of S with 82 analytic, Y a complexification of S. We first recall the no-
tion of Q-tuboid of X and of Y and then give a relation between; we then give the corresponding result in
terms of microfunctions at the boundary. We relate the regularity at the boundary for 3, to the extend-
ability of CR functions on Q to Q-tuboids of X. Next, if X has complex dimension 2, we give results on
extension for some classes of hypersurfaces (which correspond to some 3, whose Poisson bracket be-
tween real and imaginary part is =0). The main tools of the proof are the complex Cgy by Schapira and
the theorem of Q-regularity of Schapira-Zampieri and Uchida-Zampieri.

Key worps: Partial differential equations on manifolds; Several complex variables and analytic
spaces; Boundary value problems.

Ruassunto. — Estensione di funzioni CR a domini di tipo «wedge». Siano X una varietd complessa, S
una sottovarietd generica di XX, Q un aperto di S,Y una complessificazione di 8Q, O le funzioni olo-
morfe su X, (9‘;” le soluzioni in Oy del sistema di Cauchy-Riemann tangenziale. Si mette in relazione Ies-
tendibilita a domini di tipo «wedge» con base Q, per funzioni di Oy e di O‘;b; cid collega il microsupporto
in 9Q di iperfunzioni C.R. e di soluzioni iperfunzioni di 8°. Si da infine un criterio di regolarita al bordo
per sistemi 8° che assicura la precedente estendibilita. A tal fine si utilizzano i risultati di Schapira-
Zampieri e Uchida-Zampieri.

1. THE sYSTEM 3,
Let X be a complex manifold of complex dimension #,S§ a real analytic submani-
fold of X® of dimension #z (XX being the real underlying manifold to X), Y a complex-
ification of §. Due to the complex structure of X we get a commutative dia-

gram
A}
l
Y

¢

N

In this article we will assume $ to be a generic submanifold of X, z.e. § Xy TX =TS +
+5V—=1TS. In particular a hypersurface is always generic.

Remark 1.1. The genericity of S implies that ¢ is smooth. In fact one has:
' SXyTY) =" (TS D5 \V/—1TS) =¢'(TS) +s V—1¢"(TS) = TS +3 V-1 TS = § xx TX.
Where the third equality follows from |5 = ¢.

Due to Remark 1.1 ‘¢'(T*X)=Y Xy T*X is a sub-bundle of T*Y.

(*) Nella seduta dal 14 giugno 1990.
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One defines 9, as the system of complex vector fields on Y which annihilate
Y XxT* X.

Remark 1.2. One _has
(1) ¢71(Ox) =03,
(2) char (3,) =Y xx T*X.

(Here (9?,” is the sheaf of germs of holomorphic functions annihilated by 3,.) In
fact, according to Remark 1.1 one can take as a system of coordinates in Y (z,);=1
with z; =4;, i=1, ..., #. Then cleatly 8, = (3/dz,+1, ..., 8/8z,) and the claim follows.
In particular, since TS is preserved by ¢', one has

(1.1) (char(3,)NTFY=T:X.

2. A BRIEF REVIEW ON THE LANGUAGE OF TUBOIDS

Let S ¢ X be C*>-manifolds, 2 ¢ X an open set with N(Q) # @ (here N(Q) denotes the
normal cone to Q in § of [4, §1.2.3]).

Dermnrrion 2.1, Let y be an open convex cone of Q X Ts X. A set U c X is said to
be an Q-tuboid of X with profile y iff o(TX\CXN\U,Q)>y. (Where
o: TX— T X.)

Remark 2.2. If one chooses a local coordinate system (x,y) € X, = {(x,y):y =0}
then U is an Q-tuboid with profile y iff for every y' ccy there exists e=¢,, so
that

Us{(x,y) €Q Xsy': |y| < edist(x, Q) A 1}.
(Here we identify TgX =X in local coordinates.)

3. A LINK BETWEEN TUBOIDS IN Y AND IN X

Let §,X,Y be as in §1, let Q¢S be an open set with analytic boundary.

Our aim is to give a relation between Q-tuboids in Y and in X.

Let Uc X be an open set, yc Ts X, U =¢ 1(U)cY, vy =¢""1(y) c Ty Y (we still
denote by ¢’ the induced map ¢': Ty Y— T5X).

Lemma 3.1. The open set U is an Q-tuboid of X with profile y iff U’ is an Q-tuboid
of Y with profile v'.
Proor. Since Q ¢ S, we have Q = $(Q).

If o(TYN\C(Y\U', Q) 57, then o(TX\CX\\U, Q) =
=po(TXNCXN\$(U"), @) =p(¢"(TYNC(Y\U', ) =
=4 (o(TYNCYN\U', 2) 24" ¢ (1) =7. B

If o(TXNC(X\U, Q) 57, then o(TYNC(Y\U’, Q)) =
=o(TYNCYN\$7'(U), ) =p(¢' " (TX\CX\U, Q) =
=31 (((TXNCX\U, Q) =¢"(n)=y. N



EXTENSION OF CR FUNCTIONS TO «WEDGE TYPE» DOMAINS 37

Using this lemma and 1, 2 of Remark 1.2 we can then claim

PropositioN 3.2, Let U be an Q-tuboid of X with profile y, U' =¢ 1(U),y' =
=¢""1(y). We have f € Ox(U) iﬁ[fo;be(ﬂ‘zf(U').

4. A MICROLOCAL APPROACH

Let S, X, Y as before, 2 ¢ S an open set with analytic boundary (Q locally on one
side of AQ).

The framework of this paragraph is the microlocal study of sheaves by Kashiwara
and Schapira [4].

We will still denote by 8, the coherent (y-module asociated to the system of com-
plex vector fields, 7.e. 8, = ¢* (Dy).

In[6] Schapira defined the complex of microfunctions at the boundary Cqy =
= uhom(Zy, Oy) ® orgy [m], similarly we set Cqx = phom(Z,,0x) ® orgx[2n — m]. To
give a relation between Cyjy and Cyjy we first need to translate in the language of de-
rived categories the results of section 1.

Prorosition 4.1. One has ¢~ (Ox) = RComyg, 3,,0y).

Proor. ¢ (Ox) = a_lRf)Com@X (@y,O0x) = RXomyg, 3,,0y), where the second
equality is the Cauchy-Kovalevsky-Kashiwara’s theorem which holds since ¢ is non-
characteristic for @y. W

We then have

TaEOREM 4.2.
(41) eglx = R:)CO”Z(DY (5}, s egly) .

Proor. One has whom(Z,,0x) =ubom(Z,,¢' Ox) due to [4, Corollary 5.5.6].
Here one notices that both complexes are supported by Y XxT* X.

On the other hand by [4, Proposition 1.3.1] ¢'Ox = ¢ Ox ® oryix [2m — 2n] =
= Romg,, (3, ,0y) @ oryjx [2m — 2n], and the claim follows. M

Next, similarfly to the sheaf of Sato’s hyperfunctions Bs=
= H° (R (Oy) ® org)y [7]), one sets (e.g. cf. [7]) Byx = H°(RI (0x) ® orsx [2n — m]).
Recall that, S being generic, H (RI'sOx) = 0 Vj<2# — m, then by applying Rz, in
Theorem 4.2 we get
(42) Home, (8,,T'g (Bs)) =Ty (Byy)
Let
w7 Homg, (95, I (Bs)) = H' (RHoma, 3y, Cay)),  B: 7 ' T (Bs) = H (Carx),

be the canonical maps and define

S (f) = supp(a(f)),  f € Homg, (3, T (By)),
SSaix (g) =supp(B(g)),  g€Tn(Bsyx).
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Cororrary 4.3. Let u €T (Bgx) then SSoix (u) = Sngl}o (#0¢).
Note that, after[12], there is a tight relation between this Corollary and Proposi-
tion 3.2.

Remark 4.4. Note that Homzg, 3,,I, (By)) are nothing but the CR functions in Q
(¢.e. hyperfunction solutions of the system 9,).

5. THE CASE OF A HYPERSURFACE

Let X, S, Y, Q as before; from now on assume moreover S being a hypersurface of
xR,

In this case T5X is the union of two half rays, say +y; set £y’ =¢' "' (xy).

Fix a point x, € 32 and call X* the two connected components of X\ S near
X0 -

Let U be a neighborhood of Q at x, and let f € Ox (Un X™). In this case, using

Proposition 3.2, we then get an equivalent of (4.1), (4.2) without using the results of
S 4:

Prorosrrion 5.1. f extends to an Q-tuboid of X with profile Q Xgy iff fo ¢ extends,
as a solution of 3y, to an Q-tuboid of Y with profile Q Xgy'.

To prove this statement, recall that, by using [12] we get that f (resp fo ¢) extends
to a tuboid with profile y (resp ' = ' ly) if y* ¢ SSox(b(f)) (resp
y'* ¢ SSaiy (b(f09))).

In~ fact the latter is equivalent to b(f) € my T (Copx)1ex)  (resp
b(fo¢) € myI'ywe ((Copy)1yy)) (We recall that H (Coix)rex =0 V7 <0.)

This last remark, together with Proposition 5.1, gives the following:

5.1) SSux (B(F) = SS° ((fo 9)).

We will make use of the following mixed version of (5.1) and Proposition
5.1

ProposiTion  5.2. f extends to a tuboid of X with profile QXsy iff
Y% 2 SS30 (b(fo 8) =B

6. Q-REGULARITY

Let S be a real analytic manifold, Y a complexification of S, Q ¢ § an open set with
analytic boundary (Q locally on one side of 8Q). Let w be the canonical 1-form.

We shall endow T*Y of a real symplectic structure by Redw and T5Y by Im dew.
We shall denote by HR and H the corresponding hamiltonian isomorphisms.

Choose coordinates (x; 3/9x) € TS, and the dual coordinates (x; \/:—1)7) € T¢Y; as-
sume = {x: ¢(x) > 0}.

Take a pseudodifferential operator P(x;8/8x) € (8y),, A € 32 X T¥Y. Set p=
=Rea(P)|ryy,q = Imo(P)|ry. We assume that {p, o} =1 (and p(2) = g(}) = () = 0).
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It follows that dp Adp Almw#0 and thus one can divide g=a+ ¢b with
{p,a}=0.

ProrosrtioN 6.1, Assume that in a neighborhood of X:

{r, so}[E 1,
{#.9}(e=0) =0,
©6.1) da# 0(¢0r }da =0,
{b,a}=0.
Assume also
(6.2) b=0 for p=0.
Then P is Q-regular at X (ie.
(6.3) Hom(P, I's1 50 Caiy), =0).

(Here we still denote by P the module M= Dy/®DyP.)

Proor. We first choose coordinates x=(x;,x'), x' =(%,x") in 3§,
(%; \/—_177) €T¢Y so that p=1n;,9p=x. We observe that (6.2) implies {g,a} =0.
Thus: ¢(x; V/=19) = a(x’; V—17') + x,b(x; \/=1n). Assume da+#0; by the trick of
the dummy variable (that do not affect the conclusion of the theorem) it is not restric-
tive to assume da A w # 0.

One can then change the coordinates (x' ;\/—_1)7') so that a=uv,,b=
=b(xy, %" ; V=19),2=(0; V=110, 7 = (0,...,0,1). Let N={x:p(x)=0},V=
= {(x; \/—_177): n, =0}. We note that N XV is regular involutive. We also recall that
b=0 when x; =0.

We claim that then

(6.4) ~H~ (—dy) ¢ G, (char (00), Vg),

Vs being the union of the leaves of V€ issued from Q XV and C(-,-) the normal cone
in the sense of [4]. In fact let (z;%), z=x+\/ —1y, {=&+\/—17 be coordinates on
T*Y. If Imo(p +\/—1g) =0 then & =n, +x, b8 — 9,5/ . We have

b = by + O] + [y"DInl + 120),

thus we have for some ¢:

0 x; =0
bR+ + "Dl + ) =1 '
X1 Iyl + 1" Dlal + 18D {”“C|X1H77|) x <O.
It follows for a new ¢

&= _C[lzzl + |£”l + (|y1| + |y"1 + Y(_x1)|x1|)|77|]>
and hence (6.4).
Finally (6.4) implies (6.3) by [9], [11].
As for the case 2=0 it can be handled by using the results on Q-hyperbolicity in-
stead of Q — V-hyperbolicity (z.e. for V=T§Y). (cf[9,§3]) W
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7. AN APPLICATION

Let X=C? 5 (u1,), S 3 (x;,%,,%;) a real hypersurface of X, Y a complexification
of 5,0 = {x: ¢(x) >0} c S an open set with analytic boundary. Let x, € 3Q, U a neigh-
borhood of Q at xy, X* the two components of X\ 'S near x,.

In this case 3, is a vector field p(x; 3/3x) + V/—14(x; 8/3x). We still denote by p =
=1/—1g the symbol o(3)|rsy.

Let y be the half space N(X*) and y'* the half ray y'* =*¢’ (y*). Let U be a neigh-
borhood of Q at x,.

Prorostrion 7.1. Assume that the functions p, q, ¢ satisfy (6.1), (6.2) at A= yz*
and let f € Ox (X N U). Then f extends to a tuboid of X with profile Q Xgy.

Proor. Clearly  b(fo 5)69(70772(5;,,1’,-;1(5\*9) (Cgy))y. By  Theorem 6.1,
A ¢SS§T§,0 (b(fo$)). Then f extends to U verifying (2.5) on account of Corollary
43. N

ExamprLE 7.2. Assume that

(i) §={(m,m) € X:tp= 5 (x) + V=14 (x), j=1,2,x€S),
(i) ¢ =i,
(iii) dyi A\ dypp A dp #0,
(iv) Byt + 8,8 By =0,

By (ii), (iii), [|8;/0x;|lj=1,2;i=2,5 is non singular; one can then set y; =x,, 2 = %3,
=% _

In such a case we have: 9,= 9, —V~—1[9, +B8(x;,%,x)3,,], for B solving:
V10,4, +0,,¢p = V—18+9,,¢, =0. Setting 8= 0, {,, we get:

(7.1) 8, =8, —V-1[8,,+3, %38,].

Write ¢, =x;a(xy,%;) + x5 clx;,%,%;) and set b=2c+x,9,c. Assume {&+
+ a&;, b%; } =0 (for instance take a(x, , x3) = aand c(x; , %, , x3) = c(x;), or any a(x, , x3) and
c(%1,% ,%) =0).

Under such hypotheses (6.1) is satisfied. If we then assume <0 for x; =0 and
n~1ny, we get Q-regularity at (xo;\/—_lr;o).

Remark 7.3. Note that if 4<0 for x <0, we get S\ Q-regularity at
(%05 \/———1770).

Thus for instance for § = {u: 2y = x, + \/_—_ixl S =x3 + \/—_lx%}, Q={x:x;, >0}
and y* = N({u:Imw, >Imu}}) then any f* (resp g*) defined in X* n W™ (resp
X* N W) for W* a neighborhood of § N {#Im#; > 0}, extends to a domain of type
{w:Imuy >0, (respImu, <0)Ims? <Imwu, <eImu} (for y** = —\/—1dRew, in the
duality Ty, X X TisX— R associated to —Imw).

This is of course classical by Bochnet’s theorem.

On the contrary for S={w:u =x + \/——lxl Sy =x3 + \/—_le} and for W=
a neighborhood of S~ {#; /=14, >0}, one has extension for f* (resp g~) from
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Xt AW (resp X~ N W) to a domain of type {#;Imu; >0, Imzf <Imu, <elmu}
(resp. {w;Imu; <0, —eImuy <Imwu, < —Imzui}).

Remark  7.4. Let S={wu =x+V\V—-1x,m =x+V—1alx,x)x}, with
3a/dx, + ada/dx; =0 and Q = {x:x, > 0}.
We have

3, = 8/3x, — \/—1[8/3x, + alxy, x3) 3/3x;],
(which corresponds to the case 5= 0 in Proposition 6.1). Then one gets @ and §\\ Q-
regularity at both points in T¢ Y n charg,.

8. REMOVABLE SINGULARITIES

Let S ¢ X = C? be a generic hypersurface, Y a complexification of S. Let N c S be
an hypersurface, generic on X, given by N = {x; ¢(x) = 0}. Let N be a complexifica-
tion of N. Assume that, for 8, =p+ \/_—_Iq, one has {p,9}=1. For g=a+
+ ob ({p,a} =0), set V= {x;a(x) =0}. Assume (6.1) to hold and moreover:

(6.2) b=0 on TfX (for any ¢).

Let X ¢ N be such that \/=1N* (Z) c pw(V) (here we denoted by ¢ and @ the maps:
T*NC€ ENC xy T*Y 3 T*Y).
Take #u € I'e 5 (Bsjy)y, » %o € OZ.

ProposiTioN 8.1. Take u € I's\ 5 (Bsix)s, » X0 € 0. If 22 ¢ SS(uls~z) then u extends
to S at xy to a function u with X ¢ SS(#).

Skerca oF THE PrOOF. We can look at # as being a section of
Homg, By, s s Bsy)y, - Let 9= x;, let @ = {£x, >0} and denote by y* (#) the traces
of u on N. We have SS(y*(4)) com™'55:7°(4) and so, by Proposition 6.1,
0(2*) ¢ SS(y* (w)). Hence also e~ 1 (V) N SS(v™ (u)) = 0.

Since char (8;) N~ ' e 1 VC ¢ TFY, then SS(y*) now ™! (V) = 0. Sincey" —y~ =0
on $\\ X, we can propagate by the classical sweeping-out theorem. M

The content of this paper has been the subject of a talk given at the meeting Deux journées microlo-
cales held in Paris, 12-13 june 1989.
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