Rendiconti Lincei Matematica E Applicazioni

Andrea D'Agnolo, Piero D'Ancona, Giuseppe ZAMPIERI

Extension of CR functions to «wedge type» domains

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Serie 9, Vol. 2 (1991), n.1, p. 35-42.
Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLIN_1991_9_2_1_35_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> http://www.bdim.eu/

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Accademia Nazionale dei Lincei, 1991.

Equazioni a derivate parziali. - Extension of $C R$ functions to «wedge type» domains. Nota di Andrea D'Agnolo, Piero D'Ancona e Giuseppe Zampiert, presentata (*) dal Socio G. Scorza Dragoni.

Abstract. - Let X be a complex manifold, S a generic submanifold of X^{R}, the real underlying manifold to X. Let Ω be an open subset of S with $\partial \Omega$ analytic, Y a complexification of S. We first recall the notion of Ω-tuboid of X and of Y and then give a relation between; we then give the corresponding result in terms of microfunctions at the boundary. We relate the regularity at the boundary for $\overline{\bar{\partial}}_{b}$ to the extendability of $C R$ functions on Ω to Ω-tuboids of X. Next, if X has complex dimension 2, we give results on extension for some classes of hypersurfaces (which correspond to some $\bar{\partial}_{b}$ whose Poisson bracket between real and imaginary part is $\geqslant 0$). The main tools of the proof are the complex $\mathcal{C}_{\Omega \mid Y}$ by Schapira and the theorem of Ω-regularity of Schapira-Zampieri and Uchida-Zampieri.

Key words: Partial differential equations on manifolds; Several complex variables and analytic spaces; Boundary value problems.

Riassunto. - Estensione di funzioni $C R$ a domini di tipo «wedge». Siano X una varietà complessa, S una sottovarietà generica di X^{R}, Ω un aperto di S, Y una complessificazione di $\partial \Omega, \mathcal{O}_{X}$ le funzioni olomorfe su $X, \mathcal{O}_{Y}^{\bar{\sigma}_{b}}$ le soluzioni in \mathcal{O}_{Y} del sistema di Cauchy-Riemann tangenziale. Si mette in relazione l'estendibilità a domini di tipo «wedge» con base Ω, per funzioni di \mathcal{O}_{X} e di $\mathcal{O}_{Y}^{\bar{\partial}^{b}}$; ciò collega il microsupporto in $\partial \Omega$ di iperfunzioni $C . R$. e di soluzioni iperfunzioni di $\bar{\partial}^{b}$. Si dà infine un criterio di regolarità al bordo per sistemi $\bar{\partial}^{b}$ che assicura la precedente estendibilità. A tal fine si utilizzano i risultati di SchapiraZampieri e Uchida-Zampieri.

1. The system $\bar{\partial}_{b}$

Let X be a complex manifold of complex dimension n, S a real analytic submanifold of X^{R} of dimension m (X^{R} being the real underlying manifold to X), Y a complexification of S. Due to the complex structure of X we get a commutative diagram

In this article we will assume S to be a generic submanifold of X, i.e. $S \times_{X} T X=T S+$ $+s \sqrt{-1}$ TS. In particular a hypersurface is always generic.

Remark 1.1. The genericity of S implies that $\tilde{\phi}$ is smooth. In fact one has: $\tilde{\phi}^{\prime}\left(S \times_{Y} T Y\right)=\tilde{\phi}^{\prime}\left(T S \oplus_{S} \sqrt{-1} T S\right)=\tilde{\phi}^{\prime}(T S)+s \sqrt{-1} \tilde{\phi}^{\prime}(T S)=T S+s \sqrt{-1} T S=S \times_{X} T X$. Where the third equality follows from $\left.\widetilde{\phi}\right|_{s}=\phi$.

Due to Remark $1.1^{t} \widetilde{\phi}^{\prime}\left(T^{*} X\right)=Y \times_{X} T^{*} X$ is a sub-bundle of $T^{*} Y$.
(*) Nella seduta dal 14 giugno 1990.

One defines $\bar{\partial}_{b}$ as the system of complex vector fields on Y which annihilate $Y \times_{X} T^{*} X$.

Remark 1.2. One has
(1) $\tilde{\phi}^{-1}\left(\mathcal{O}_{X}\right)=\mathcal{O}_{Y}^{\bar{\partial}_{b}}$,
(2) $\operatorname{char}\left(\bar{\partial}_{b}\right)=Y \times_{X} T^{*} X$.
(Here $\mathcal{O}_{Y}^{\bar{\partial}_{b}}$ is the sheaf of germs of holomorphic functions annihilated by $\bar{\partial}_{b}$.) In fact, according to Remark 1.1 one can take as a system of coordinates in $Y\left(z_{i}\right)_{i=1, \ldots, m}$ with $z_{i}=\widetilde{\phi}_{i}, i=1, \ldots, n$. Then clearly $\bar{\partial}_{b}=\left(\partial / \partial z_{n+1}, \ldots, \partial / \partial z_{m}\right)$ and the claim follows. In particular, since $T S$ is preserved by $\tilde{\phi}^{\prime}$, one has

$$
\begin{equation*}
\left(\operatorname{char}\left(\bar{\partial}_{b}\right)\right) \cap T_{S}^{*} Y \cong T_{S}^{*} X \tag{1.1}
\end{equation*}
$$

2. A brief review on the language of tuboids

Let $S \subset X$ be C^{2}-manifolds, $\Omega \subset X$ an open set with $N(\Omega) \neq \emptyset$ (here $N(\Omega)$ denotes the normal cone to Ω in S of [4, $\mathbb{1} .2 .3]$).

Definition 2.1. Let γ be an open convex cone of $\bar{\Omega} \times_{S} T_{S} X$. A set $U \subset X$ is said to be an Ω-tuboid of X with profile γ iff $\rho(T X \backslash C(X \backslash U, \bar{\Omega})) \supset \gamma$. (Where $\rho: T X \rightarrow T_{S} X$.)

Remark 2.2. If one chooses a local coordinate system $(x, y) \in X, S=\{(x, y): y=0\}$ then U is an Ω-tuboid with profile γ iff for every $\gamma^{\prime} \subset \subset \gamma$ there exists $\varepsilon=\varepsilon_{\gamma^{\prime}}$, so that

$$
U \supset\left\{(x, y) \in \Omega \times_{s} \gamma^{\prime}:|y|<\varepsilon \operatorname{dist}(x, \partial \Omega) \wedge 1\right\}
$$

(Here we identify $T_{S} X \cong X$ in local coordinates.)

3. A link between tuboids in Y and in X

Let S, X, Y be as in $\llbracket 1$, let $\Omega \subset S$ be an open set with analytic boundary.
Our aim is to give a relation between Ω-tuboids in Y and in X.
Let $U \subset X$ be an open set, $\gamma \subset T_{S} X, U^{\prime}=\tilde{\phi}^{-1}(U) \subset Y, \gamma^{\prime}=\widetilde{\phi}^{\prime-1}(\gamma) \subset T_{S} Y$ (we still denote by $\tilde{\phi}^{\prime}$ the induced $\operatorname{map} \widetilde{\phi}^{\prime}: T_{S} Y \rightarrow T_{S} X$.

Lemma 3.1. The open set U is an Ω-tuboid of X with profile γ iff U^{\prime} is an Ω-tuboid of Y with profile γ^{\prime}.

Proof. Since $\Omega \subset S$, we have $\bar{\Omega}=\widetilde{\phi}(\bar{\Omega})$.
If $\rho\left(T Y \backslash C\left(Y \backslash U^{\prime}, \bar{\Omega}\right)\right) \supset \gamma^{\prime}$, then $\rho(T X \backslash C(X \backslash U, \bar{\Omega}))=$ $=p\left(T X \backslash C\left(X \backslash \tilde{\phi}\left(U^{\prime}\right), \bar{\Omega}\right)\right)=p\left(\tilde{\phi}^{\prime}\left(T Y \backslash C\left(Y \backslash U^{\prime}, \bar{\Omega}\right)\right)\right)=$ $=\tilde{\phi}^{\prime}\left(\rho\left(T Y \backslash C\left(Y \backslash U^{\prime}, \bar{\Omega}\right)\right)\right) \supset \widetilde{\phi}^{\prime}\left(\widetilde{\phi}^{\prime-1}(\gamma)\right)=\gamma$.

If $\rho(T X \backslash C(X \backslash U, \bar{\Omega})) \supset \gamma$, then $\rho\left(T Y \backslash C\left(Y \backslash U^{\prime}, \bar{\Omega}\right)\right)=$
$=\rho\left(T Y \backslash C\left(Y \backslash \tilde{\phi}^{-1}(U), \bar{\Omega}\right)\right)=\rho\left(\tilde{\phi}^{\prime-1}(T X \backslash C(X \backslash U, \bar{\Omega}))\right)=$ $=\widetilde{\phi}^{\prime-1}(\rho(T X \backslash C(X \backslash U, \bar{\Omega})))=\widetilde{\phi}^{\prime-1}(\gamma)=\gamma^{\prime}$.

Using this lemma and 1,2 of Remark 1.2 we can then claim
Proposirton 3.2. Let U be an Ω-tuboid of X with profile $\gamma, U^{\prime}=\tilde{\phi}^{-1}(U), \gamma^{\prime}=$ $=\widetilde{\phi^{\prime-1}}(\gamma)$. We have $f \in \mathcal{O}_{X}(U)$ iff $f \circ \tilde{\phi} \in \mathcal{O}_{Y}^{\partial_{b}}\left(U^{\prime}\right)$.

4. A microlocal approach

Let S, X, Y as before, $\Omega \subset S$ an open set with analytic boundary (Ω locally on one side of $\partial \Omega$).

The framework of this paragraph is the microlocal study of sheaves by Kashiwara and Schapira [4].

We will still denote by $\bar{\partial}_{b}$ the coherent \otimes_{Y}-module asociated to the system of complex vector fields, i.e. $\bar{\partial}_{b}=\widetilde{\phi}^{*}\left(\mathscr{\partial}_{X}\right)$.

In [6] Schapira defined the complex of microfunctions at the boundary $\mathscr{C}_{\Omega \mid Y}=$ $=\mu \operatorname{bom}\left(Z_{\Omega}, \mathcal{O}_{Y}\right) \otimes o r_{S \mid Y}[m]$, similarly we set $\mathcal{C}_{\Omega \mid X}=\mu b o m\left(Z_{\Omega}, \mathcal{O}_{X}\right) \otimes o r_{S X}[2 n-m]$. To give a relation between $\mathfrak{C}_{\Omega \mid X}$ and $\mathfrak{C}_{\Omega \mid Y}$ we first need to translate in the language of derived categories the results of section 1 .

Proposition 4.1. One has $^{-1}\left(\mathcal{O}_{X}\right)=\operatorname{Rg} \operatorname{Com}_{\mathscr{O}_{Y}}\left(\bar{\partial}_{b}, \mathcal{O}_{Y}\right)$.
Proof. $\tilde{\phi}^{-1}\left(\mathcal{O}_{X}\right)=\tilde{\phi}^{-1} \operatorname{RY}_{\mathcal{C}} m_{\Phi_{X}}\left(\oplus_{X}, \mathcal{O}_{X}\right)=\operatorname{RHO}_{\mathscr{C}_{Y}}\left(\bar{\partial}_{b}, \mathcal{O}_{Y}\right)$, where the second equality is the Cauchy-Kovalevsky-Kashiwara's theorem which holds since $\tilde{\phi}$ is noncharacteristic for $\mathscr{\omega}_{X}$.

We then have
Theorem 4.2.

$$
\begin{equation*}
\mathfrak{C}_{\Omega \mid X} \simeq R \mathscr{H} \operatorname{com}_{\Phi_{\mathrm{Y}}}\left(\overline{\mathrm{a}}_{b}, \mathfrak{C}_{\Omega \mid Y}\right) \tag{4.1}
\end{equation*}
$$

Proof. One has $\mu h o m\left(Z_{\Omega}, \mathcal{O}_{X}\right) \cong \mu h o m\left(\mathcal{Z}_{\Omega}, \tilde{\phi}^{\prime} \mathcal{O}_{X}\right)$ due to [4, Corollary 5.5.6]. Here one notices that both complexes are supported by $Y \times_{X} T^{*} X$.

On the other hand by [4, Proposition 1.3.1] $\tilde{\phi}^{\prime} \mathcal{O}_{X}=\tilde{\phi}^{-1} \mathcal{O}_{X} \otimes o r_{Y \mid X}[2 m-2 n]=$ $=R \mathscr{C o m}{\mathscr{\mathscr { Q } _ { Y }}}\left(\bar{\partial}_{b}, \mathcal{O}_{Y}\right) \otimes o r_{Y X}[2 m-2 n]$, and the claim follows.

Next, similarly to the sheaf of Sato's hyperfunctions $\Omega_{S}=$ $=H^{0}\left(\boldsymbol{R} \Gamma_{S}\left(\mathcal{O}_{Y}\right) \otimes o r_{S \mid Y}[m]\right)$, one sets (e.g. cf. [7]) $\mathscr{B}_{S \mid X}=H^{0}\left(\boldsymbol{R} \Gamma_{S}\left(\mathcal{O}_{X}\right) \otimes o r_{S \mid X}[2 n-m]\right)$. Recall that, S being generic, $H^{j}\left(R \Gamma_{S} \mathcal{O}_{X}\right)=0 \forall j<2 n-m$, then by applying $R^{0} \pi_{*}$ in Theorem 4.2 we get

$$
\begin{equation*}
\operatorname{Hom}_{\mathscr{Q}_{Y}}\left(\bar{\partial}_{b}, \Gamma_{\Omega}\left(\mathscr{B}_{s}\right)\right) \cong \Gamma_{\Omega}\left(\mathcal{B}_{S \mid X}\right) . \tag{4.2}
\end{equation*}
$$

Let

$$
\alpha: \pi^{-1} \operatorname{Com}_{\Phi_{Y}}\left(\bar{\partial}_{b}, \Gamma_{\Omega}\left(\mathbb{B}_{S}\right)\right) \rightarrow H^{0}\left(\boldsymbol{R} \operatorname{Com}_{\mathscr{Q}_{Y}}\left(\bar{\partial}_{b}, \mathcal{C}_{\Omega \mid Y}\right)\right), \quad \beta: \pi^{-1} \Gamma_{\Omega}\left(\mathcal{B}_{S \mid X}\right) \rightarrow H^{0}\left(\mathfrak{C}_{\Omega \mid X}\right),
$$

be the canonical maps and define

$$
\begin{array}{ll}
S S_{\Omega \mid Y}^{\bar{b}_{b}, 0}(f)=\operatorname{supp}(\alpha(f)), & f \in \mathscr{G} \operatorname{Com}_{\Phi_{Y}}\left(\bar{\partial}_{b}, \Gamma_{\Omega}\left(\Re_{S}\right)\right), \\
S S_{\Omega \mid X}(g)=\operatorname{supp}(\beta(g)), \quad g \in \Gamma_{\Omega}\left(\Re_{S \mid X}\right) .
\end{array}
$$

Corollary 4.3. Let $u \in \Gamma_{\Omega}\left(\Re_{S \mid X}\right)$ then $S S_{\Omega \mid X}(u)=S S_{\Omega \mid Y}^{\bar{b}_{b}, 0}(u \circ \phi)$.
Note that, after [12], there is a tight relation between this Corollary and Proposition 3.2.

Remark 4.4. Note that $\operatorname{Com}_{\mathscr{O}_{Y}}\left(\bar{\partial}_{b}, \Gamma_{\Omega}\left(\Re_{S}\right)\right)$ are nothing but the CR functions in Ω (i.e. hyperfunction solutions of the system $\bar{\partial}_{b}$).

5. The case of a hypersurface

Let X, S, Y, Ω as before; from now on assume moreover S being a hypersurface of X^{R}.

In this case $\dot{T}_{S} X$ is the union of two half rays, say $\pm \gamma$; set $\pm \gamma^{\prime}=\tilde{\phi}^{\prime-1}(\pm \gamma)$.
Fix a point $x_{0} \in \partial \Omega$ and call $X^{ \pm}$the two connected components of $X \backslash S$ near x_{0}.

Let U be a neighborhood of Ω at x_{0} and let $f \in \mathcal{O}_{X}\left(U \cap X^{+}\right)$. In this case, using Proposition 3.2, we then get an equivalent of (4.1), (4.2) without using the results of $\$ 4$:

Proposition 5.1. fextends to an Ω-tuboid of X with profile $\bar{\Omega} \times_{S} \gamma$ iff $f \circ \tilde{\phi}$ extends, as a solution of $\bar{\partial}_{b}$, to an Ω-tuboid of Y with profile $\bar{\Omega} \times{ }_{S} \gamma^{\prime}$.

To prove this statement, recall that, by using [12] we get that $f(\operatorname{resp} f \circ \tilde{\phi})$ extends to a tuboid with profile γ (resp $\gamma^{\prime}=\tilde{\phi}^{\prime-1} \gamma$) iff $\gamma^{*} \notin S S_{\Omega \mid X}(b(f)$) (resp $\left.\gamma^{\prime *} \notin S S_{\Omega \mid Y}^{\hat{a}_{b}, 0}(b(f \circ \tilde{\phi}))\right)$.

In fact the latter is equivalent to $b(f) \in \pi_{*} \Gamma_{\gamma^{* a}}\left(\left(\mathcal{C}_{\Omega \mid X}\right)_{T_{S^{*} X}}\right)$ (resp $\left.b(f \circ \tilde{\phi}) \in \pi_{*} \Gamma_{\gamma^{\prime *}}\left(\left(\mathcal{C}_{\Omega \mid Y}\right)_{T_{j}^{*} Y}\right)\right)$ (We recall that $H^{j}\left(\mathfrak{C}_{\Omega \mid X}\right)_{T_{j}^{*} X}=0 \quad \forall j<0$.)

This last remark, together with Proposition 5.1, gives the following:

$$
\begin{equation*}
S S_{\Omega \mid X}(b(f))=\mathrm{SS}_{\Omega \mid Y}^{\bar{\partial}_{b}, 0}(b(f \circ \tilde{\phi})) \tag{5.1}
\end{equation*}
$$

We will make use of the following mixed version of (5.1) and Proposition 5.1:

Proposition 5.2. f extends to a tuboid of X with profile $\bar{\Omega} \times s \gamma$ iff $\gamma^{\prime *} \cap S S_{\Omega}^{\bar{\Xi}_{\hat{Y}} 0}(b(f \circ \widetilde{\phi}))=\emptyset$.

6. Ω-REGULARITY

Let S be a real analytic manifold, Y a complexification of $S, \Omega \subset S$ an open set with analytic boundary (Ω locally on one side of $\partial \Omega$). Let ω be the canonical 1-form.

We shall endow $T^{*} Y$ of a real symplectic structure by $\operatorname{Re} d \omega$ and $T_{S}^{*} Y$ by $\operatorname{Im} d \omega$. We shall denote by H^{R} and H^{I} the corresponding hamiltonian isomorphisms.

Choose coordinates $(x ; \partial / \partial x) \in T S$, and the dual coordinates $(x ; \sqrt{-1} \eta) \in T_{S}^{*} Y$; assume $\Omega=\{x: \varphi(x)>0\}$.

Take a pseudodifferential operator $P(x ; \partial / \partial x) \in\left(\delta_{Y}\right)_{\lambda}, \lambda \in \partial \Omega \times_{S} \dot{T}_{S}^{*} Y$. Set $p=$ $=\left.\operatorname{Re} \sigma(P)\right|_{T_{s}^{*} Y}, q=\left.\operatorname{Im} \sigma(P)\right|_{T_{s}^{*} Y}$. We assume that $\{p, \varphi\} \equiv 1(\operatorname{and} p(\lambda)=q(\lambda)=\varphi(\lambda)=0)$.

It follows that $d p \wedge d \varphi \wedge \operatorname{Im} \omega \neq 0$ and thus one can divide $q=a+\varphi b$ with $\{p, a\} \equiv 0$.

Proposition 6.1. Assume that in a neighborbood of λ :

$$
\left\{\begin{array}{l}
\{p, \varphi\} \equiv 1 \tag{6.1}\\
\left.\{\varphi, q\}\right|_{\{p=0\}} \equiv 0 \\
d a \neq 0 \text { or } d a \equiv 0, \\
\{b, a\} \equiv 0
\end{array}\right.
$$

Assume also

$$
\begin{equation*}
b \geqslant 0 \quad \text { for } \varphi \geqslant 0 \text {. } \tag{6.2}
\end{equation*}
$$

Then P is Ω-regular at λ (i.e.

$$
\begin{equation*}
\left.\mathscr{H} \operatorname{Com}\left(P, \Gamma_{\dot{\pi}^{-1}(\overline{S \backslash \Omega})} \mathfrak{C}_{\Omega \mid Y}\right)_{\lambda}=0\right) . \tag{6.3}
\end{equation*}
$$

(Here we still denote by P the module $\mathfrak{K}=\mathscr{D}_{Y} / \mathscr{D}_{Y} P$.)
Proof. We first choose coordinates $x=\left(x_{1}, x^{\prime}\right), \quad x^{\prime}=\left(x_{2}, x^{\prime \prime}\right)$ in S, $(x ; \sqrt{-1} \eta) \in T \stackrel{T_{S}}{ } Y$ so that $p=\eta_{1}, \varphi=x_{1}$. We observe that (6.2) implies $\{\varphi, a\} \equiv 0$. Thus: $q(x ; \sqrt{-1} \eta)=a\left(x^{\prime} ; \sqrt{-1} \eta^{\prime}\right)+x_{1} b(x ; \sqrt{-1} \eta)$. Assume $d a \neq 0$; by the trick of the dummy variable (that do not affect the conclusion of the theorem) it is not restrictive to assume $d a \wedge \omega \neq 0$.

One can then change the coordinates $\left(x^{\prime} ; \sqrt{-1} \eta^{\prime}\right)$ so that $a=\eta_{2}, b=$ $=b\left(x_{1}, x^{\prime \prime} ; \sqrt{-1} \eta\right), \lambda=\left(0 ; \sqrt{-1} \eta_{0}\right), \eta_{0}=(0, \ldots, 0,1)$. Let $\quad N=\{x: \varphi(x)=0\}, V=$ $=\left\{(x ; \sqrt{-1} \eta): \eta_{2}=0\right\}$. We note that $N \times_{S} V$ is regular involutive. We also recall that $b \geqslant 0$ when $x_{1} \geqslant 0$.

We claim that then

$$
\begin{equation*}
-H^{R}(-d \varphi) \notin C_{\lambda}\left(\operatorname{char}(\mathscr{K}), \widetilde{V}_{\bar{\Omega}}\right) \tag{6.4}
\end{equation*}
$$

$\widetilde{V}_{\bar{\Omega}}$ being the union of the leaves of V^{C} issued from $\Omega \times_{S} V$ and $C(\cdot, \cdot)$ the normal cone in the sense of [4]. In fact let $(z ; \zeta), z=x+\sqrt{-1} y, \zeta=\xi+\sqrt{-1} \eta$ be coordinates on $T^{*} Y$. If $\operatorname{Im} \sigma(p+\sqrt{-1} q)=0$ then $\xi_{1}=\eta_{2}+x_{1} b^{R}-y_{1} b^{I}$. We have

$$
b^{R}=\left.b\right|_{T_{s}^{*} Y}+O\left(\left(\left|y_{1}\right|+\left|y^{\prime \prime}\right|\right)|\eta|+|\xi|\right),
$$

thus we have for some c :

$$
x_{1} b^{R}+c\left(\left(\left|y_{1}\right|+\left|y^{\prime \prime}\right|\right)|\eta|+|\xi|\right) \geqslant \begin{cases}0, & x_{1} \geqslant 0 \\ -c\left|x_{1}\right||\eta|, & x_{1} \leqslant 0\end{cases}
$$

It follows for a new c :

$$
\xi_{1} \geqslant-c\left[\left|\zeta_{2}\right|+\left|\xi^{\prime \prime}\right|+\left(\left|y_{1}\right|+\left|y^{\prime \prime}\right|+Y\left(-x_{1}\right)\left|x_{1}\right|\right)|\eta|\right],
$$

and hence (6.4).
Finally (6.4) implies (6.3) by [9], [11].
As for the case $a \equiv 0$ it can be handled by using the results on $\bar{\Omega}$-hyperbolicity instead of $\bar{\Omega}-V$-hyperbolicity (i.e. for $\left.V=T_{S}^{*} Y\right)$. (cf $[9, \$ 3]$.)

7. An application

Let $X \cong C^{2} \ni\left(u_{1}, u_{2}\right), S \ni\left(x_{1}, x_{2}, x_{3}\right)$ a real hypersurface of X, Y a complexification of $S, \Omega=\{x: \varphi(x)>0\} \subset S$ an open set with analytic boundary. Let $x_{0} \in \partial \Omega$, U a neighborhood of Ω at $x_{0}, X^{ \pm}$the two components of $X \backslash S$ near x_{0}.

In this case $\bar{\partial}_{b}$ is a vector field $p(x ; \partial / \partial x)+\sqrt{-1} q(x ; \partial / \partial x)$. We still denote by $p=$ $=\sqrt{-1} q$ the symbol $\left.\sigma\left(\bar{\partial}_{b}\right)\right|_{T_{s}^{*} Y}$.

Let γ be the half space $N\left(X^{+}\right)$and $\gamma^{\prime *}$ the half ray $\gamma^{\prime *}={ }^{t} \tilde{\phi}^{\prime}\left(\gamma^{*}\right)$. Let U be a neighborhood of Ω at x_{0}.

Proposition 7.1. Assume that the functions p, q, φ satisfy (6.1), (6.2) at $\lambda=\gamma_{x_{0}}^{* *}$ and let $f \in \mathcal{O}_{X}\left(X^{+} \cap U\right)$. Then f extends to a tuboid of X with profile $\bar{\Omega} \times{ }_{S} \gamma$.

Proof. Clearly $\quad b(f \circ \tilde{\phi}) \in \mathscr{C o m}\left(\bar{\partial}_{b}, \Gamma_{\dot{\pi}^{-1}(\bar{S} \backslash \Omega)}\left(\mathcal{C}_{\Omega \mid Y}\right)\right)_{\lambda} . \quad$ By Theorem 6.1, $\lambda \notin S S_{\Omega \mid Y}^{\bar{a}_{b}, 0}(b(f \circ \widetilde{\phi}))$. Then f extends to U verifying (2.5) on account of Corollary 4.3.

Example 7.2. Assume that

(i) $S=\left\{\left(u_{1}, u_{2}\right) \in X: u_{j}=\chi_{j}(x)+\sqrt{-1} \psi_{j}(x), j=1,2, x \in S\right\}$,
(ii) $\varphi=\psi_{1}$,
(iii) $d \chi_{1} \wedge d \chi_{2} \wedge d \varphi \neq 0$,
(iv) $\partial_{x_{2}} \psi_{2}+\partial_{x_{1}} \psi_{2} \partial_{x_{3}} \psi_{2}=0$.

By (ii), (iii), $\left\|\partial \chi_{j} / \partial x_{i}\right\|_{j=1,2 ; i=2,3}$ is non singular; one can then set $\chi_{1}=x_{2}, \chi_{2}=x_{3}$, $\psi_{1}=x_{1}$.
In such a case we have: $\bar{\partial}_{b}=\partial_{x_{1}}-\sqrt{-1}\left[\partial_{x_{2}}+\beta\left(x_{1}, x_{2}, x_{3}\right) \partial_{x_{3}}\right]$, for β solving: $\sqrt{-1} \partial_{x_{1}} \psi_{2}+\partial_{x_{2}} \psi_{2}-\sqrt{-1} \beta+\beta \partial_{x_{3}} \psi_{2}=0$. Setting $\beta=\partial_{x_{1}} \psi_{2}$, we get:

$$
\begin{equation*}
\bar{\partial}_{b}=\partial_{x_{1}}-\sqrt{-1}\left[\partial_{x_{2}}+\partial_{x_{1}} \psi_{2} \partial_{x_{3}}\right] \tag{7.1}
\end{equation*}
$$

Write $\psi_{2}=x_{1} a\left(x_{2}, x_{3}\right)+x_{1}^{2} c\left(x_{1}, x_{2}, x_{3}\right)$ and set $b=2 c+x_{1} \partial_{x_{1}} c$. Assume $\left\{\xi_{2}+\right.$ $\left.+a \xi_{3}, b \xi_{3}\right\} \equiv 0$ (for instance take $a\left(x_{2}, x_{3}\right)=a$ and $c\left(x_{1}, x_{2}, x_{3}\right)=c\left(x_{1}\right)$, or any $a\left(x_{2}, x_{3}\right)$ and $\left.c\left(x_{1}, x_{2}, x_{3}\right)=0\right)$.

Under such hypotheses (6.1) is satisfied. If we then assume $b \leqslant 0$ for $x_{1} \geqslant 0$ and $\eta \sim \eta_{0}$, we get Ω-regularity at $\left(x_{0} ; \sqrt{-1} \eta_{0}\right)$.

Remark 7.3. Note that if $b \leqslant 0$ for $x_{1} \leqslant 0$, we get $S \backslash \bar{\Omega}$-regularity at $\left(x_{0} ; \sqrt{-1} \eta_{0}\right)$.

Thus for instance for $S=\left\{u: u_{1}=x_{2}+\sqrt{-1} x_{1}, u_{2}=x_{3}+\sqrt{-1} x_{1}^{2}\right\}, \Omega=\left\{x: x_{1}>0\right\}$ and $\gamma^{+}=N\left(\left\{u: \operatorname{Im} u_{2}>\operatorname{Im} u_{1}^{2}\right\}\right)$ then any $f^{+}\left(\right.$resp $\left.g^{+}\right)$defined in $X^{+} \cap W^{+}$(resp $\left.X^{+} \cap W^{-}\right)$for $W^{ \pm}$a neighborhood of $S \cap\left\{ \pm \operatorname{Im} u_{1}>0\right\}$, extends to a domain of type $\left\{u: \operatorname{Im} u_{1}>0\right.$, (resp $\left.\left.\operatorname{Im} u_{1}<0\right) \operatorname{Im} u_{1}^{2}<\operatorname{Im} u_{2}<\varepsilon \operatorname{Im} u_{1}\right\}$ (for $\gamma^{+*}=-\sqrt{-1} d \operatorname{Re} u_{2}$ in the duality $T_{M} X \times T_{\tilde{M}}^{*} X \rightarrow R$ associated to $\left.-\operatorname{Im} \omega\right)$.

This is of course classical by Bochner's theorem.
On the contrary for $S=\left\{u: u_{1}=x_{2}+\sqrt{-1} x_{1}, u_{2}=x_{3}+\sqrt{-1} x_{1}^{3}\right\}$ and for $W^{ \pm}$ a neighborhood of $S \cap\left\{u ; \sqrt{-1} u_{1}>0\right\}$, one has extension for f^{+}(resp g^{-}) from
$X^{+} \cap W^{+}\left(\operatorname{resp} X^{-} \cap W^{-}\right)$to a domain of type $\left\{u ; \operatorname{Im} u_{1}>0, \operatorname{Im} u_{1}^{2}<\operatorname{Im} u_{2}<\varepsilon \operatorname{Im} u_{1}\right\}$ (resp. $\left\{u ; \operatorname{Im} u_{1}<0,-\varepsilon \operatorname{Im} u_{1}<\operatorname{Im} u_{2}<-\operatorname{Im} u_{1}^{2}\right\}$).

Remark 7.4. Let $S=\left\{u: u_{1}=x_{2}+\sqrt{-1} x_{1}, u_{2}=x_{3}+\sqrt{-1} a\left(x_{2}, x_{3}\right) x_{1}\right\}$, with $\partial a / \partial x_{2}+a \partial a / \partial x_{3}=0$ and $\Omega=\left\{x: x_{1}>0\right\}$.

We have

$$
\bar{\partial}_{b}=\partial / \partial x_{1}-\sqrt{-1}\left[\partial / \partial x_{2}+a\left(x_{2}, x_{3}\right) \partial / \partial x_{3}\right]
$$

(which corresponds to the case $b \equiv 0$ in Proposition 6.1). Then one gets Ω and $S \backslash \bar{\Omega}$ regularity at both points in $T_{S}^{*} Y \cap$ char $\bar{\partial}_{b}$.

8. Removable singularities

Let $S \subset X \cong C^{2}$ be a generic hypersurface, Y a complexification of S. Let $N \subset S$ be an hypersurface, generic on X, given by $N=\{x ; \varphi(x)=0\}$. Let N^{C} be a complexification of N. Assume that, for $\bar{\partial}_{b}=p+\sqrt{-1} q$, one has $\{p, \varphi\} \equiv 1$. For $q=a+$ $+\varphi b(\{p, a\} \equiv 0)$, set $V=\{x ; a(x)=0\}$. Assume (6.1) to hold and moreover:

$$
\begin{equation*}
b \geqslant 0 \text { on } T_{S}^{*} X(\text { for any } \varphi) \tag{6.2}
\end{equation*}
$$

Let $\Sigma \subset N$ be such that $\sqrt{-1} N^{*}(\Sigma) \subset \rho \varpi(V)$ (here we denoted by ρ and ϖ the maps: $\left.T^{*} N^{C} \stackrel{\circ}{\leftarrow} N^{C} \times_{Y} T^{*} Y \xrightarrow{m} T^{*} Y\right)$.

Take $u \in \Gamma_{S \backslash \Sigma}\left(\oiint_{S \mid Y}\right)_{x_{0}}, x_{0} \in \partial \Sigma$.
Proposition 8.1. Take $u \in \Gamma_{S \backslash \Sigma}\left(ß_{S \mid X}\right)_{x_{0}}, x_{0} \in \partial \Sigma$. If $\pm \lambda \notin S S\left(\left.u\right|_{S \backslash \Sigma}\right)$ then u extends to S at x_{0} to a function \tilde{u} with $\pm \lambda \notin S S(\widetilde{u})$.

Sketch of the proof. We can look at u as being a section of $\mathscr{H} \operatorname{Com}_{\varpi_{Y}}\left(\bar{\partial}_{b}, \Gamma_{S \backslash \Sigma} ß_{S \mid Y}\right)_{x_{0}}$. Let $\varphi=x_{1}$, let $\Omega^{ \pm}=\left\{ \pm x_{1}>0\right\}$ and denote by $\gamma^{ \pm}(u)$ the traces of u on N. We have $S S\left(\gamma^{ \pm}(u)\right) \subset \rho \varpi^{-1} S S_{\Omega}^{\hat{\partial}_{b}, 0}(u)$ and so, by Proposition 6.1, $\rho\left(\lambda^{ \pm}\right) \notin S S\left(\gamma^{ \pm}(u)\right)$. Hence also $\rho \varpi^{-1}(V) \cap S S\left(\gamma^{ \pm}(u)\right)=\emptyset$.

Since char $\left(\bar{\partial}_{b}\right) \cap \rho^{-1} \rho \varpi^{-1} V^{C} \subset T_{S}^{*} Y$, then $S S\left(\gamma^{ \pm}\right) \cap \rho \varpi^{-1}(V)=\emptyset$. Since $\gamma^{+}-\gamma^{-}=0$ on $S \backslash \Sigma$, we can propagate by the classical sweeping-out theorem.

The content of this paper has been the subject of a talk given at the meeting Deux journées microlocales held in Paris, 12-13 june 1989.

References

[1] M. S. Baouendi - L. Preiss Rothschidd, Normal forms for generic manifolds and bolomorphic extension of CR functions. J. Differential Geometry, 25, 1987, 431-467.
[2] M. S. Baouendi - F. Treves, A property of the functions and distribution annibilated by a locally integrable system of complex vector fields. Annals of Mathematics, 113, 1981, 387-421.
[3] M. S. Baouendi - F. Treves, About the bolomorphic extension of CR functions on real bypersurfaces in complex space. Duke Math. J., 51, 1, 1984, 77-107.
[4] M. Kashiwara - P. Schapira, Microlocal study of sheaves. Astérisque, 128, 1985.
[5] J. C. Polking - R. O. Wells Jr., Hyperfunction boundary values and a generalized Bochner-Hartogs theorem. Proc. Symp. in Pure Math., 30, 1977, 187-193.
[6] P. Schapira, Front d'onde analytique au bord I. C. R. Acad. Sci. Paris Sér. I Math., 302 10, 1986; II. Sém. E.D.P. École Polytechnique Exp., 13, 1986.
[7] P. Schapira - J. M. Trepreau, Microlocal pseudoconvexity and «edge of the wedge» theorem. Duke Math. J., 61, n. 1, 1990, 105-118.
[8] P. Schapira - G. Zampieri, Microfunctions at the boundary and mild microfunctions. Publ. RIMS, Kyoto Univ., 24, 1988, 495-503.
[9] P. Schapira - G. Zampieri, Regularity at the boundary for systems of microdifferential equations. Pitman Res. Notes in Math., 158, 1987, 186-201.
[10] J. M. Trepreau, Prolongement unilateral des fonctions CR. Séminaire Bony-Sjöstrand-Meyer 19841985, Exposé XXII.
[11] M. Uchida - G. Zampieri, Second microfunctions at the boundary. Publ. RIMS, Kyoto Univ., 26, 1990, 205-219.
[12] G. Zampieri, A vanishing theorem for microfunctions at the boundary. To appear.
A. D'Agnolo e G. Zampierr: Dipartimento di Matematica Pura e Applicata Università degli Studi di Padova Via Belzoni, 7-35131 Padova
P. D'Ancona: Scuola Normale Superiore Piazza dei Cavalieri, 7-56126 PisA

