ATTI ACCADEMIA NAZIONALE LINCEI CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI LINCEI MATEMATICA E APPLICAZIONI

STEFANO MORTOLA, ROBERTO PEIRONE

Omogeneizzazione di un'equazione differenziale ordinaria avente struttura a scacchiera

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Serie 9, Vol. 2 (1991), n.1, p. 5–10.

Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLIN_1991_9_2_1_5_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Analisi matematica. — Omogeneizzazione di un'equazione differenziale ordinaria avente struttura a scacchiera. Nota (*) di Stefano Mortola e Roberto Peirone, presentata dal Socio E. De Giorgi.

ABSTRACT. — The homogenization of an ordinary differential equation with a chessboard structure. In this Note we study the periodic homogenization for a particular ordinary differential equation. We study some properties of behaviour of the homogenized equation and, in some cases, we find its explicit formula.

KEY WORDS: Homogenization; Rotation number; G-convergence.

RIASSUNTO. — Si studia l'omogeneizzazione periodica di una particolare equazione differenziale ordinaria. Si studiano alcune proprietà dell'equazione omogeneizzata e in certi casi se ne trova la formula esplicita.

Introduzione

In un lavoro del 1978 L. Piccinini ha trovato l'esistenza del limite per $n \to \infty$ delle soluzioni y_n dei problemi di Cauchy

$$\begin{cases} y_n' = f(nx, ny_n) \\ y_n(x_0) = a \end{cases}$$

sotto opportune ipotesi per la funzione f, periodica nelle variabili x, y. Tale limite è dato dalla

$$(1) y_{\infty} = k(x - x_0) + a$$

dove k è una costante che dipende solo da f, e si verifica che $k = \lim_{x \to +\infty} y_1(x)/x$ qualunque siano i valori di x_0 e a.

In particolare le ipotesi del teorema di Piccinini sono soddisfatte quando f verifica le condizioni seguenti:

(2)
$$f(x,y) = \begin{cases} \alpha & \text{se } [x] + [y] \text{ è pari} \\ \beta & \text{se } [x] + [y] \text{ è dispari} \end{cases}$$

con $\alpha, \beta > 0$, dove [a] indica la parte intera di a.

In questo caso la costante k che compare nella (1) è una funzione di α, β che indicheremo con $\gamma(\alpha, \beta)$, avente una struttura piuttosto complicata che viene descritta in questo lavoro. I principali risultati sono:

Teorema 1. La funzione γ è continua, simmetrica e crescente (ma non strettamente) in entrambe le variabili.

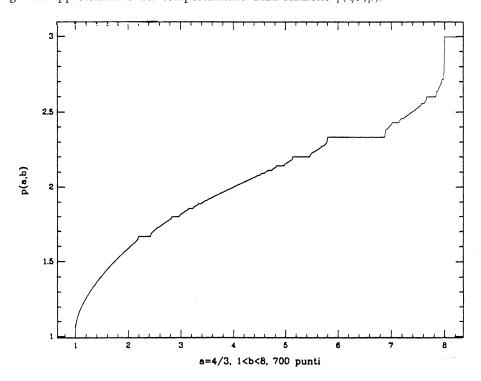
Teorema 2. Se c è un numero irrazionale, l'insieme di livello $\gamma_c = \{(\alpha, \beta) | \gamma(\alpha, \beta) = ec\}$ della funzione γ è grafico di una funzione strettamente decrescente; se c è un numero

(*) Pervenuta all'Accademia il 3 agosto 1990.

razionale della forma p/q con p+q dispari, tale insieme di livello è ancora grafico di una funzione strettamente decrescente ed è una componente connessa di una curva algebrica reale. Infine se c è della forma p/q con p+q pari, l'insieme di livello è una regione dotata di punti interni la cui frontiera è algebrica.

Inoltre, per una opportuna classe di valori irrazionali di c della forma $p + \sqrt{q}$ con $p, q \in \mathbb{N}$ gli insiemi di livello risultano componenti connesse di iperboli. Questo risultato permette in particolare di calcolare γ per molte coppie (α, β) di interi, per esempio si ha $\gamma(2,3) = 1 + \sqrt{2}$ e $\gamma(3,4) = 2 + \sqrt{2}$.

Inoltre la funzione γ risulta un «valor medio» di α e β nel senso che $\gamma(\alpha, \beta)$ è sempre un valore compreso tra α e β , ma è una media assai irregolare: per ogni fissato valore di α la funzione $\beta \rightarrow \gamma(\alpha, \beta)$ risulta avere infiniti intervalli su cui assume valore costante ed è costante quando α è sufficientemente grande. Mostriamo, a titolo esemplificativo, un grafico approssimativo del comportamento della funzione $\gamma(4/3, \beta)$.



Ci troviamo di fronte ad un fenomeno che, in forme meno marcate, si è già presentato in altri limiti di problemi di calcolo delle variazioni e teoria delle equazioni differenziali: ad una dipendenza lineare del problema iniziale da alcuni parametri corrisponde una dipendenza molto più complicata del problema limite (cfr. p.e. [11, 4]).

Parte dei risultati esposti in questa *Nota* sono stati suggeriti da esperimenti numerici eseguiti dal primo autore, che desidera ringraziare Dvornicich, Traple e De

Giorgi per molte utili discussioni; tutte le dimostrazioni degli enunciati riportati sono dovute al secondo autore e appariranno in un prossimo lavoro.

1. Notazioni e richiami

Richiamiamo la definizione di G-convergenza di equazioni differenziali ordinarie, seguendo [8, 5]. Data una successione di equazioni differenziali

$$y' = f_n(x, y)$$

tali che i seguenti problemi di Cauchy

$$\begin{cases} y' = f_n(x, y) \\ y(x_0) = a & \text{con } x_0, a \in \mathbf{R}, n \in \mathbf{N} \cup \{\infty\} \end{cases}$$

abbiamo una e una sola soluzione y_n definita in **R**, diciamo che la successione (3) Gconverge all'equazione differenziale $y' = f_{\infty}(x, y)$ se le soluzioni y_n dei problemi di
Cauchy convergono, nella topologia della convergenza uniforme sui compatti, alla
soluzione del problema di Cauchy

$$\begin{cases} y' = f_{\infty}(x, y) \\ y(x_0) = a \end{cases}$$

Noi siamo interessati ad un caso particolare, precisamente quando $f_n(x, y) = f(nx, ny)$ dove f è definita da (2). L'equazione limite in questo caso è $y' = \gamma(\alpha, \beta)$.

Osservazione 1.1. $\gamma(\alpha, \beta) = \lim_{x \to +\infty} y(x)/x$ dove y indica una qualunque soluzione di y' = f(x, y). Questo è una conseguenza del fatto che se y_n è la soluzione di $y' = f_n(x, y)$ con y(0) = 0, allora $y_n(x) = y_1(nx)/n$.

Consideriamo la funzione $F: \mathbf{R} \to \mathbf{R}$ definita dalla condizione $F(a) = y_a$ (2) dove y_a è la soluzione di y' = f(x,y) con y(0) = a. Grazie alla periodicità di f si ha che F è un omeomorfismo da \mathbf{R} in \mathbf{R} tale che F-Id è una funzione 2-periodica, e $\gamma(\alpha,\beta) = \lim_{n\to\infty} F^n(a)/(2n)$ per ogni $a\in \mathbf{R}$, dove F^n indica la iterata n-esima della funzione F.

Perciò $\gamma(\alpha,\beta)$ può essere anche interpretato come il numero di rotazione di F (vedi [3]), e questo numero dipende dalla funzione F, in modo continuo rispetto alla convergenza uniforme. Usando questo fatto si ha subito la continuità dalle funzione γ .

Osservazione 1.2. Alcune semplici proprietà della funzione $\gamma(\alpha,\beta)$ sono le seguenti:

a)
$$\gamma(\alpha, \beta) = 1/\gamma(\alpha^{-1}, \beta^{-1})$$

b) $\gamma(1,\beta)=1$ per ogni $\beta>0$. (Infatti la soluzione di y'=f(x,y) con y(0)=0 per $\alpha=1$ è y(x)=x).

c)
$$\gamma(\alpha, \beta) = 1$$
 se $\alpha \le 1$ e $\beta \ge 1$.

Risulta pertanto sufficiente studiare la funzione γ quando α , $\beta > 1$.

2. Alcune proprietà della funzione $\gamma(\alpha, \beta)$

Come abbiamo visto nel Teorema 1, la funzione γ è crescente ma non strettamente. Il seguente teorema stabilisce in quali punti γ è strettamente crescente.

Teorema 2.1. Dato $\alpha > 1$, la funzione $\beta \to \gamma(\alpha, \beta)$ non è strettamenta crescente nel punto β_0 se e solo se $\gamma(\alpha, \beta_0) = p/q$ con p, q dispari, primi tra loro, e $p/q \neq \alpha$. \blacksquare Vediamo ora una proprietà di «simmetria» di γ :

Teorema 2.2. Sia
$$n \in \mathbb{N}$$
 e $\alpha \in (1, n^2)$. Allora: $\gamma(n, \alpha) + \gamma(n, n^2/\alpha) = 2n$.

La funzione $\beta \rightarrow \gamma(\alpha, \beta)$ è definitivamente costante. Più precisamente vale:

Teorema 2.3.
$$\gamma(\alpha,\beta) = 2\alpha - 1$$
 se $\alpha \in \mathbb{N}$, $\beta \ge \alpha^2$ e $\gamma(\alpha,\beta) = 2[\alpha] + 1$ se $\alpha \notin \mathbb{N}$, $\beta \ge \alpha([\alpha] + 1)/(\alpha - [\alpha])$.

3. Insiemi di livello di γ corrispondenti a valori razionali

Ora cerchiamo di studiare la natura degli insiemi γ_c per opportuni valori di c. Cominciamo con il caso più semplice, cioè quello in cui $c \in \mathbb{N}$.

TEOREMA 3.1. Se
$$n \in \mathbb{N}$$
, allora $\gamma(\alpha, \beta) = 2n$ se e solo se $n(1/\alpha + 1/\beta) = 1$ e $\gamma(\alpha, \beta) = 2n + 1$ se e solo se $n/(\alpha \wedge \beta) + (n + 1)/(\alpha \vee \beta) \le 1 \le (n + 1)/(\alpha \wedge \beta) + n/(\alpha \vee \beta)$.

Nel caso in cui $c \in \mathbf{Q}$ si può ancora determinare esplicitamente l'insieme γ_c secondo i due seguenti teoremi che generalizzano il precedente:

Teorema 3.2. Se p e q sono interi positivi primi tra loro con p > q e p + q dispari, allora esiste un polinomio esplicitamente calcolabile $P(\alpha, \beta)$ con coefficienti interi tale che $\gamma(\alpha, \beta) = p/q \Leftrightarrow (\alpha, \beta)$ appartiene alla componente connessa dell'insieme $P^{-1}(0)$ contenente (p/q, p/q).

Teorema 3.3. Se p e q sono relativamente primi con p > q > 0 e p + q pari, allora la tesi del precedente teorema è ancora valida pur di sostituire l'insieme $P^{-1}(0)$ con l'insieme $\{(\alpha,\beta)|P(\alpha,\beta)\land P(\beta,\alpha)\leq 0\leq P(\alpha,\beta)\lor P(\beta,\alpha)\}$. In questo caso l'insieme di livello γ_c è una porzione di piano dotata di parte interna e avente frontiera algebrica.

4. Insiemi di livello di γ corrispondenti ad alcuni valori irrazionali

Nel paragrafo 3 abbiamo studiato l'insieme di livello della funzione γ corrispondente a valori razionali. Ora vogliamo determinare tali insiemi di livello in corrispondenza di alcuni valori irrazionali di γ . Al riguardo si è ottenuto il seguente

Teorema 4.1. Se
$$k \in \mathbb{N} \setminus \{0\}$$
, $z \in \mathbb{Z} \setminus \{0\}$ e α , β soddisfano la relazione $(\alpha - k)(\beta - k) = k^2 + k/z$ allora $\gamma(\alpha, \beta) = k + \sqrt{(\alpha - k)(\beta - k)}$.

L'idea principale per dimostrare tale teorema consiste nel costruire una successione x_n divergente $a + \infty$ tale che $y(x_n)$ sia esplicitamente calcolabile, dove y(x) è la soluzione dell'equazione y' = f(x, y) tale che y(0) = 0 e calcolare il limite di $y(x_n)/x_n$. Tale successione x_n è strettamente collegata allo sviluppo in frazioni continue periodico di $y(\alpha, \beta)$.

La successione x_n è definita nel seguente modo: $x_n = v_n + \varepsilon_n$ dove $v_0 = \text{sign}(z)$, $v_1 = 0$, $v_n = 2k v_{n-1} + \text{sign}(z) v_{n-2}$ per n pari, $v_n = 2|z| v_{n-1} + \text{sign}(z) v_{n-2}$ per n dispari e ε_n è la seguente successione infinitesima:

nel caso z > 0

$$\varepsilon_n = \begin{cases} -(\alpha \beta z/k)^{-n/2} & \text{per } n \text{ pari} \\ \alpha^{-1} (\alpha \beta z/k)^{(1-n)/2} & \text{per } n \text{ dispari} \end{cases}$$

e nel caso z < 0

$$\varepsilon_n = \begin{cases} (-z/k)^{-n/2} \alpha^{-n} & \text{per } n \text{ pari} \\ (-z/k)^{(1-n)/2} \alpha^{-n} & \text{per } n \text{ dispari} \end{cases}$$

In corrispondenza di tale successione x_n si può verificare che $y(x_n)$ segue la stessa relazione ricorsiva della successione v_n , però con le condizioni iniziali $y(x_0) = 0$, $y(x_1) = 1$.

Osservazione 4.2. Sarebbe interessante sapere se la seguente congettura è corretta: se α , $\beta \in \mathbf{Q}$ allora $\gamma(\alpha,\beta) \in \{p \pm \sqrt{q} \mid p,q \in \mathbf{Q}\}$. Alcuni sviluppi delle tecniche usate nella dimostrazione dei risultati di questa *Nota* potrebbero permettere di stabilire se tale congettura è vera o falsa.

BIBLIOGRAFIA

- [1] E. A. CODDINGTON N. LEVINSON, Theory of Ordinary Differential Equations. McGraw-Hill Book Company, 1955.
- [2] A. M. DYKHNE, Conductivity of a Two-dimensional Two-phase System. Soviet Phisics JETP, (1) 32, 1971, 63-65.
- [3] M. R. HERMAN, Sur la conjugaison différentiable des difféomorphismes du cercle a des rotations. Institut des hautes études scientifiques. Publications mathématiques, nº 49, 1979.
- [4] S. Mortola S. Steffé, Un problema di omogeneizzazione bidimensionale. Atti Acc. Lincei Rend. fis., s. 8, vol. 78, fasc. 3, 1985, 77-82.
- [5] L. C. Piccinini, Homogeneization Problems for Ordinary Differential Equations. Rend. Circ. Mat. Palermo, II, 27, 1978, 95-112.
- [6] L. C. Piccinini, Close formulas in non-linear stochastic Homogeneization for Ordinary Differential Equations. Ricerche di Matematica, Suppl. Vol. 36, 1987, 89-97.
- [7] L. C. Piccinini, Measures arising from stochastic homogeneization. Prepr. Dip. Matem. Univ. Udine.
- [8] L. C. PICCININI G. STAMPACCHIA G. VIDOSSICH, Equazioni Differenziali Ordinarie in Rⁿ. Liguori Editore, 1978.
- [9] S. Spagnolo, Sul limite delle soluzioni di problemi di Cauchy relativi all'equazione del calore. Ann. Sc. Norm. Sup. Pisa Cl. Sci., (4) 21, 1967, 657-699.

- [10] S. Spagnolo, Sulla convergenza di soluzioni di equazioni paraboliche ed ellittiche. Ann. Sc. Norm. Sup. Pisa. Cl. Sci., (4) 22, 1968, 571-597.
- [11] L. Tartar, Estimation fines des coefficients homogénéisés. In: P. Krée (ed.), Ennio De Giorgi Colloquium (Research Notes in Mathematics 125), Pitman, London 1985, 168-187.

S. Mortola: Scuola Normale Superiore Piazza dei Cavalieri, 7 - 56126 PISA

R. Peirone: Dipartimento di Matematica II Università degli Studi di Roma - Tor Vergata Via Fontanile di Carcaricola - 00133 ROMA