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Topologia. — Group actions on rational homology spheres. Nota (*) di STEFANO D E 

MICHELIS, presentata dal Corrisp. E. ARBARELLO. 

ABSTRACT. — We study the homology of the fixed point set on a rational homology sphere under the 
action of a finite group. 

KEY WORDS: Finite group action; Homology spheres; Borei spectral sequence. 

RIASSUNTO. — Azioni di gruppo su spazi aventi l'omologia razionale di una sfera. Studiamo l'omologia 
dell'insieme dei punti fissi dell'azione di un gruppo finito su di uno spazio avente l'omologia razionale di 
una sfera. 

INTRODUCTION 

In a previous paper, [2], we proved a result, conjectured by Smith, on group ac­
tions on S4. More generally, we proved that every finite group acting on an integral ho­
mology sphere has fixed point set an integral homology spheres. The main tool was 
Smith's theorem on actions of Z/p on Z/p homology sphere. In this paper we study fi­
nite group actions on rational homology spheres. It is known that Smith's theorem 
does not hold in this category for higher dimensional manifolds and in section one we 
exhibit some examples of this failure in the lowest possible dimension, which is three. 
In section two we quickly review the Borei spectral sequence and the localization the­
orem for cyclic group actions and we show how to use them to get information on the 
homology of the fixed point set. In section three we study the homology of the fixed 
point set assuming we know the action of the group on the cohomology of the total 
space. We give some bounds on the genus of the fixed surfaces, depending on the 
number of trivial and cyclotomic factors appearing in the representation of the group. 
In section four we prove that it is not possible to better these estimates. In particular 
we construct actions of cyclic groups of prime order p on Z[l/p] homology spheres 
such that the fixed point set consist of points and surfaces of arbitrarily large genus. 
More generally, we prove that any combination of points and surfaces can be realized 
in this way provided that its Euler characteristic is two. 

1. GROUP ACTIONS ON RATIONAL HOMOLOGY SPHERES 

In this section and in the following ones we will show how to extend the results 
of [2] in another direction: we will allow the homology of the total space to contain 
some torsion, as we will see this will have very strong consequences on the result, due 

(*) Pervenuta all'Accademia il 17 luglio 1990. 
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to the impossibility of applying Smith theorem. Recall that it asserts that the fixed 
point set of a Z/p action on a Z/p homology sphere is a Z/p homology sphere if p is 
prime. 

It is well known that the assumptions on the group and the homology in this theo­
rem cannot be relaxed in any way; the two following examples should convince the 
reader: 

EXAMPLE 1: Let X be RP3, so that it is a Z/p homology sphere for any p odd but not 
a Z/2 homology sphere, and let Z/2 act on X according to the law: 
(X0 : Xi : X2 : X3 : ) —» (—X0 : Xx : X2 : X3 :) where Xz are homogeneous coordinate on 
X; this action is locally linear and smooth. The fixed point set is described in homoge­
neous coordinates by (X0, 0, 0, 0) u (0: X1 : X2 : X3 ), the first set is just a point, the 
origin, the second is a real projective plane, the plane at infinity; we can also take 
equivariant connected sums of X with itself along the fixed point or the fixed plane, so 
as to find counterexamples with more complicated fixed point set. 

EXAMPLE 2: With X as above let Z/2 act according to (X0 : Xx :X2 : X3)—» 
—> (X0 : Xi : -X 2 : — X3 ) in this case the fixed point set is (X0 : Xx : 0: 0) u 
u (0: 0 : X2 : X3 ), that is the disjoint union of two circles in this case the action is ori­
entation preserving. 

These examples seem to suggest that the fixed point set can become arbitrarily 
complicated, provided that the torsion in the homology groups is large enough; the 
only restriction being the one on the Euler characteristic given by Lefschetz theorem. 
We will make these remarks more precise later in the setting of four dimensional 
manifolds. 

2. THE BOREL SPECTRAL SEQUENCE AND THE LOCALIZATION THEOREM 

A powerful tool in the computation of the homology of the fixed point set is given 
by the Borel spectral sequence. If X is any Hausdorf space with an action of a Lie 
group G, consider the product or X and EG, a contractible space on which G acts 
freely (such a space exists for any Lie group), this is a natural G-space with the prod­
uct action moreover this action is free, hence the quotient is well defined, call it XG. 
The projection X X EG^> EG is compatible with the G action and its quotient gives a 
map XG —> BG, where BG = EG/G is the classifying space of G; it is easy to check that 
this map is a fibration. XG is called the Borel construction on the G-space X and if the 
action is free it has the same homotopy type as the quotient X/G, this explains the ter­
minology «homotopy quotient» which is sometimes used. The fibration XG —» BG 
gives a (co)-homology spectral sequence called the Borel spectral sequence. Its E2'̂  
term is Hp (BG, Hq (X)) where Hq (X) is a G module for the obvious action of G on the 
(co)-homology of X. The £«> term is the graded group associated to a filtration of the 
(co)-homology of X. Observe that the cohomology of the latter is naturally a module 
over the cohomology ring of BG. This module or rather its torsion free part is strictly 
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related to the cohomology of the fixed point set, this relation is described more pre­
cisely in the localization theorem which holds for any Lie group G and any general­
ized cohomology theory. We will state it in the form we will need, i.e., for a Z/p action 
for p a prime. 

First recall that the homology and the cohomology of B{Z/p) can be matched to­
gether in the Z-graded Tate cohomology groups H\ they are isomorphic to the usual 
cohomology groups in strictly positive dimensions and for the negative signs they cor­
respond to homology groups shifted by one. If u is the generator of H2 (B(Z/p)), cup 
product with u gives the periodicity isomorphisms for even and odd cohomolo­
gy-

THEOREM 2.1. Let XG the fixed point set of the action, so that H* (XG X BG) and 
H*(XG) are Hl{BG) modules, then after localization at «, they become isomorphic 
tT(BG) modules. 

According to this theorem the Borei spectral sequence for Tate cohomology can be 
used to compute the homology and cohomology of the fixed point set. 

Observe that in the process of localization we loose the information on the grad­
ing, so that it may be impossible to compute the Betti numbers. 

Using the Borei spectral sequence and the localization theorem we will deduce as 
many positive results as possible on the topology of the fixed point set of Z/p-actions 
on certain four manifolds. Since the action will be orientation preserving, the fixed 
point set will have dimension less than three so that it's topology will be determinated 
by its homology. In the next sections examples will be produced to show that these re­
sults cannot be strengthened in any way, without further information on the action. 
Let us fix a prime p and let U be a rational homology sphere on which Z/p acts. As we 
will see all the useful information lines in the action of the group on the p-torsion part 
of the homology, so we will always work with coefficients in Z/p. We first need to 
study the representation of Z/p. 

PROPOSITION 2.1. Every represention of Z/p over Z/p splits as a sum of indecom­
posable representations Vr, which satisfy the following: 

a) Vr has rank r. 

h) ZzZ/p acts on Vr according to the unimodular matrix 

1 

0 

0 

0 

1 

1 

0 

0 

0 

1 

1 

0 • 

• • 0 

1 1 

• 0 1 
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PROOF. The proof is left to the reader. 

Observe that r = 0 corresponds to the trivial module and r = p is the free module 
denoted henceforward by F. 

OBSERVATION. We observe that this simple classification does not hold for Z\_Z/p\-

modules. In fact if the ideal class group of Q[f] is not trivial, there are other isomor­
phism types of irreducibile representations (one for each element of the ideal class 
group) which correspond to non-principal ideal of Z[f]. Moreover the representations 
Vr come from representations over Z only for r = 1, p — 1 and p. These modules are 
connected by the exact sequence: 0—» Q —> Cr—> Cr_i —»0. The Tate cohomology 
groups are trivial for coefficients in F by definition, those with coefficients in Cr 

are Z/p for any degree, as the reader can see from an explicit periodic resolution 
of Z. 

Consider now the action of Z/p on H1 (E; Z/p), this group splits as a sum of irre­
ducible summands isomorphic to F and denote by /, their respective multiplicities, so 

p-i 

that Hj (E; Z/p) =/F+ZJ crCry the Universal Coefficient Theorem and Poincaré' du-

ality combined give for the two other cohomology groups: 

P - I p-\ 

H3(E;Z/p)=fF+J, crCr; H2 (E; Z/p) = 2/F + 2 2 cr Cr . 
r=l r = l 

We put together all these informations to obtain the E^ term of the Borei spectral 
sequence: 

(Z/pf^ 
(Z/pp<'+/> 

(Z/pfCr 

(Z/pf2<> 

p = o, 

p = 0, 

p>0, 

p>0, 

q=l, 3; 

<7 = 2; 

q=\, 3; 

q = 2. 

F%q = Hp (BZ/p; Hq (17)) = < 

To compute the Betti numbers of the fixed point set of the action it is necessary to 
know EZq, so one needs some information on the differentials in the spectral sequence. 
In the appendix a procedure is given to construct them geometrically; moreover one 
needs only to compute some of them, since the other can be obtained by Bredon dual­
ity. Even if the knowledge of the action of the group on the homology is not enough to 
a complete computation of EZq, this is possible for the two extreme dimensions, as W. 
Browder has remarked in[ l ] . 

PROPOSITION. If Z/p acts on E fixing at least one point, the generators of both 
Hp(BZ/p; H4{E- Z/p)) and Hp(BZ/p; H°(E; Z/p)) are permanent cocycles. 

PROOF, For H° the proof is standard; the fixed point gives a section of the fibra-
tion EG —» BG this induces a map of spectral sequences 
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Ep'q{2G) 

„4 

oo 
oo 

E'P'*{BG) 

A 

0 0 
0 0 

TT1 
p 

Let v be a generator of E M and let #' be its image in E'p,q, since Ep,q is degenerated 
&' is a permanent cocycle, it follows that u is not killed by any differential. But now u 
has to be a permanent cocycle because it is in the lowest dimension. For Ep'4 we use a 
dual construction; if p is the fixed point, there is a map of pairs 2—> (S; H — p) which 
is equivariant; this induces a map of spectral sequences. The map is surjective and the 
first spectral sequence is degenerated, an argument as before gives the conclusion. 
Now we interpret all the informations collected: since Elf is a subquotient of E%,q we 
have the inequality r(p, q) ̂  rankEf'^ here r(p, q) is the rank of the EPJ term. The rank 
of Hn {HG ; Z/p) is the sum of the r(p, q) for p 4- q = n, and the localization theorem tell 
us that this is also the rank of FT (EG X BG; Z/p). Since Hn (BG; Z/p) is Z/p in any di­
mension, the Kunneth formula gives rank H(ZG xBG; Z/p) =sum of the Betti num­
bers of IG. IG is a disjoint union of points and surfaces, let d be the number of points, 
s the number of connected components of the surfaces F, and g, the genus of Fz; then 

s 

the sum of the Betti numbers of UG is d + ZJ (2 + 2gt). Let G be the sum of the gf, from 
/=i 

the computation of the rank of E^ and the discussion given above we obtain d + 2s 4-
p-i 

+ 2 G ^ 2 + 4 z ^ cr. The complementary piece of information needed is the Euler charac-

teristic of the fixed point set, which can be computed via the Lefschetz formula and 
gives d + 2s — 2G = 2. Combining this with the last inequality we obtain the result 

P-\ 

d + 2s = 2+2G and G ^ S ^ -
r=l 

The purpose of the next section is to show that there are cases in which the bounds 
given are sharp. 

3. COUNTEREXAMPLES OF SMITH'S THEOREM IN DIMENSION 4 

In this section we will prove the result. 

THEOREM 3.1. Given any prime, p, and a disjoint union of arbitrary many points 
and orientable surfaces, F, such that its Euler Characteristic is 2, there exist a manifold 
E with the following properties: 
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(a) 24 is a smooth manifold and its homology with coefficients in Z[l/p] is the 
same as the one of S4 (more concisely it is a smooth Z[l/p] homology sphere) 

(b) Z/p acts on 2 as a group of diffeomorphisms and its fixed point set is a 
smooth submanifold diffeomorphic to F. 

PROOF. For the sake of clarity we will split the construction in several steps. 

STEP 1. For any prime, /?, there is a smooth action of Z/p on a lens space with 
foundamental group Z/p such that its fixed point set is the disjoint union of two 
circles. 

PROOF. This fact is probably well known. Let L{p, q) the link of the algebraic sin­
gularity zp — xyq — 0 — in the complex three dimensional space, or, analytically, the 
set: L(py q) = {x, y, z\zp - xyq = 0; \x\2 + \y\2 + |z|2 = 1; (x, y, z) e C3}. It is well 
known that L(p, q) is a lens space, and that every lens space can be described in this 
way. Let denote £ a primitive p root of the unity. The action Zjp ® L(p, q) —» L(p, q) is 
given by {xy yy z)^> (x, yy %-z). 

By inspection, the fixed point set has equation z = 0; xy = 0; |x|2 4- \y\2 = 0 it is eas­
ily checked that such a set consists of the two unitary circles in the x and y 
planes. 

REMARK. There is another way to describe the same action, which avoids using al­
gebraic singularities. Let R be the Hopf link in S3

y i.e. the simplest two component 
link with linking number 1. Its complement has foundamental group isomorphic to 
Zx Z. Any surjective map of this group onto Z/p gives a connected covering of the 
complement of the link of degree py this covering is regular by definition. If the two 
canonical generators of the foundamental group, corresponding to the two linking cir­
cles, are both mapped to non zero elements of Z/p, a standard theorem in the theory of 
branched coverings says that the covering can be extended to a regular branched cov­
ering of Sò

y ramified over the two circles. This covering is a manifold and it is diffeo­
morphic to a lens space, as can be seen easily from a suitable Heeggart decomposition 
in solid tori, moreover the covering transformations give the action of Z/p described 
before. 

STEP 2. For any prime py there is a smooth action of Z/p on a Z[l/p]-homology four 
sphere, such that its fixed point set is the disjoint union of a two dimensional sphere 
and a two dimensional torus. 

PROOF. First construct the manifold K = L(/?, q) X S1, and let Z/p act on it accord­
ing to the action described in step 1 on first factor and the trivial action on the 
second. 

Kunneth formula implies that the homology of K with Z[l/p] coefficients is the 
same as the one of S3 X S1, the fixed point set of the action of Z/p is (S1 US1 ) X Sl, that 
is the disjoint union of two copies of the two torus T2. On one of these two tori choose 
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a simple closed curve to represent a generator for the Z factor of Hx (K, Z), which is 
isomorphic to Z®Z/p. We could take, for instance, the set (point) xS1. A regular 
neighborhood of the curve, invariant under the Z/p action, is diffeomorphic to 
S^IxD2. The Z/p action is ? x (/>, /, z) -> (p, *, ? • z), where peS1,teI,ze D2, and the 
dot indicates the action of Z/p on D2 in the complex plane given by complex multipli­
cation. Observe also that Sl XI is a regular neighborhood of Sl in T2. 

Perform equivariant surgery on this copy of S1 in K to obtain a space called E'. By 
inspection one can see that E' is a Z[l/p]-homology sphere and the fixed point set of 
the action is the disjoint union of S2 and T2. 

STEP 3. The general case. With E' as above let N be a regular neighborhood of the 
S2 component of the fixed point set. N is Z/p-equivariantly diffeomorphic to S2 X D. 
The action of Z/p is $ : f X (j; z) —> (j; ?z),with j e S2, z e D2 and ? is acting as before. N 
admits also other simple actions of Z/p such as <j>' given by $' : ? X (5, z)—> (£y, £z), here 
the action on the first factor is the rotation of S around an axis of 2n/p radiants. In the 
case of $' the fixed point set of the action is reduced to the two «poles» of S2. The key 
fact is proved in the following proposition: 

LEMMA 3.2. The restrictions of <f> and $' to the boundary of N are smoothly 
conjugate. 

PROOF. The boundary of N is diffeomorphic to S2 XS', and we will exhibit the 
conjugation map as a «twist» along a copy of S2, more explicitly, in the notation used 
before: 0: (s, z)—> (zus, z), here the dot denotes the natural action of S' on S2, given by 
rotation along the same axis as the one of Z/p. It is straightforward to check that 
$ o <p = <p o <p' and this ends the proof of the lemma. 

Now we remove N from E' and we use the map ^ on the boundary to attach it back 
again, we call the new manifold E. The above lemma gives an action òf Z/p which now 
fixes a torus T2, which has not been affected by the construction, and two points on 
the sphere S2. 

To finish the proof we have to check that 27 is a Z[l/p] homology sphere. We shall 
use the Mayer-Vietoris sequence for the triple (E, N, E — N) 

H I-(9N)->H /(N)0H I-CS-N)-^H /CS)-

and we will compare it to the one for (Er, N, E' — N) 

H{ (dN) -» Hi (N) ®Hi(2-N)^ H,- (Z) -> 

all the terms in the two sequences are the same and the only difference possibly lies in 
the maps from the homology of the boundary of N into E — N. The maps in the two se­
quences differ by the isomorphism induced by <p in H;(dN); but this isomorphism is 
easily proved to be the identity, hence the homology of E and E' are the same by the 
five lemma. 

OBSERVATION. ^ cannot be extended as a diffeomorphism to the whole N, to prove 
this consider the double of N, diffeomorphic to S2 X S2, and the connected sum of the 
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complex projective plane with its complex conjugate, one can prove that one is ob­
tained from the other by the twisting construction used above, but they are obviously 
not diffeomorphic since they have different intersection form. On the other side $ ex­
tends to a diffeomorphism of the whole N, and the latter can be written almost explic­
itly as: ^ : (s; d)—> (h(d)*s; d), where h(d) is a map of the disk into 50(3) which, re­
stricted to the boundary S1, is <p, such a map exists because the foundamental group of 
SO(3) is Z/2. So, if we had used a different <f>' and if p were odd, we could have had I? 
and E' diffeomorphic, but of course not Z/p-diffeomorphic. The general case now fol­
lows by taking equivariant connected sums of the E and E' described above. 

APPENDIX 

The task of computing the homology of the fixed point set of an action is made 
considerably easier if one uses a duality theorem on group actions due to Bredon, see 
the following discussion for the statement of the result. In this section we will com­
bine this theorem with a method to construct the interesting differentials appearing in 
the spectral sequence such a method gives geometric representatives for the various 
cohomology classes involved, and this additional information could be used to gain 
some specificai control in particular cases. For simplicity we will only discuss Z/p ac­
tions for p a prime number. Moreover we will assume the induced action on homology 
is trivial. 

We first state Bredon duality in the setting most convenient to us: 

THEOREM. Let Z/p act on a Homology manifold X of dimension n (if p is two as­
sume it preserves the orientation) and let f be a generator of £o,«, which is isomorphic 
to Z/p. Let the fixed point set be non-empty, then £ is a permanent cycle and the cap 
product f« from El,n~c gives an isomorphism for any k. 

OBSERVATION. The fact that £ is a permanent cycle has been proved by Browder 
in[ l ] . 

In the case of a four dimensional manifold this allows to cut dramatically the num­
ber of differentials. In fact both E^' and £f' a r e generated by permanent cycles and 
hence all the d{ going or coming to them have to be zero. We are left with homology in 
dimensions one, two and three; for d^ there are two maps to check: one from Epfi to E^ 
and the other from Ep>2 to Epy3. By vector space duality between homology and coho­
mology with coefficient in a field, the second one corresponds to this same map on co­
homology after conjugating by the isomorphism given by Bredon's theorem. Observe 
that the ring structure over the Tate cohomology of Z/p allows us to treat all the Epj 
with the same p as isomorphic. It follows that it is necessary to know only one Ep>2 and 
that the others are deduced from this by cup products with fixed generators of E and 
Bredon duality, since we use Tate cohomology cup products are defined also for ho­
mology. The other map which one needs to compute is d3 from E ^ to Epj. 



GROUP ACTIONS ON RATIONAL HOLOMOGY SPHERES 81 

To describe them explicitly let us choose a periodic resolution for Z/p: 

Zttì^ZUÌ^Ztf] 
where N is the norm map a • a% + ... + a£pl and D is the difference map a-* a — la. If X 
is a symplicial complex oil which Z/p acts we construct the double complex: 

Q(X)®£K].->Q(X) 
id 

®zm ->Q(X)®zra 
id id 

Q(x)®a?]4cM(i) ®zra 4q_1(X)®zra 

0f 

The Borei spectral sequence 
Ef' term let h be a homology 
the kernel of N, the case 
some element p in Q+ 1 (X) 
fined modulo boundaries 
of Er2 ' /+1 which is D2(£) 
boundary of some y in Q 
one knows these two maps 
the fixed point set; the prqcedu: 
scribed before proves 

is the sequence associated to the Altered complex. In the 
class and let a be a chain representing it, assume h is in 

D is completely analogous, then N(a) is the boundary of 
® Z[f], compute D of this chain, the result is a cycle, de-

and images of cycles under the map D, and so is an element 
If this is zero it can be changed by an image of D to a 
(X), the norm of y will give a representative for d3. Once 

it is routine to compute the odd and even Betti numbers of 
re to change an S2 component to a couple of points de-

it is not possible to refine the information in any 

-/-H2 

that 

case. 
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