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Meccanica dei solidi. —Betti's reciprocal theorem for Cosserat elastic shells. Nota di 
FRANCO PASTRONE, presentata (*) dal Socio C. A. TRUESDELL. 

ABSTRACT. — It is proved that, as in three-dimensional elasticity, Betti's theorem represents a criterion 
for the existence of a stored-energy function for a Cosserat elastic shell. 

KEY WORDS: Reciprocity; Elasticity; Cosserat shells. 

RIASSUNTO. — II teorema ài reciprocità di Betti per gusci elastici ài Cosserat. Viene dimostrato che il teo­
rema di reciprocità di Betti per gusci elastici alla Cosserat, nel caso di piccole deformazioni sovrapposte 
ad uno stato comunque deformato, è una condizione necessaria e sufficiente per l'esistenza del poten­
ziale elastico. 

1. It is well known that any reciprocity theorem such as Betti's in three-dimen­
sional elasticity is a criterion for the existence of a potential function (see, for instance, 
Truesdell [5]). We prove that Betti's theorem remains valid for Cosserat elastic 
shells, in the case of infinite small deformations superimposed upon an arbitrary 
strained state, and it provides a necessary and sufficient condition for the elastic shell 
to be hyperelastic. 

A general treatment of Cosserat shell theory has been given by Naghdi[l, 2, 3]; 
in particular, in [2] Betti's theorem is proved in the linear theory, and historical re­
marks relevant to this subject are given in[l , 2]. 

We follow the intrinsic notation introduced in [3], sect. 8, and refer also to 
Naghdi and Trapp [4], who deal with a uniqueness theorem for shells undergoing 
small motion superposed on a large deformation. 

2. A Cosserat elastic shell S is a smooth surface given by parametric equations r = 
= r(Sa, t), a = 1,2, and equipped with a vector field (the «director» field) d = d{T, t), 
such that dxX d2

td3¥
z0) da= ra, d3=dyra= 3r/9$a, where $a are material coordi­

nates on S, and t is time. 
Greek indices take the values 1, 2; Latin indices take the values 1, 2, 3; the summa­

tion convention holds. 
If So is a reference configuration of the shell, D{ are the referential base vectors cor­

responding to the base vectors diy d
l and D% are the reciprocal vectors, i.e. 4 • d3 = ${, 

DrDi = $i 
We make use of the deformation measures introduced in [3]: 

(1) F=di®Di = ra®D« + d®D\ G = d3a®Da
y 

where ® denotes the tensor product. 

(*) Nella seduta del 14 giugno 1990. 
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For our purposes, the equations of motion can be written as 

(2) DivsN + Pof=09 DivsM-Kd3 +Pol=0. 

The second-order tensors N, My K are Piola-Kirchhoff stress tensors correspond­
ing to the contact force, the contact director force and to the intrinsic director force 
(see, for instance [3], sect. 8); p0 is the mass density on S0. Let us remark that we use a 
material (Lagrangean) formulation. The operator Div^ is the material surface diver­
gence operator defined in [3]. 

The terms / and / are the inertial forces, i.e. the differences 

(3) f=f{m)-(r + yld)y l = l{m) - {ylr + y2 d) 

of the assigned force / ( w ) and the acceleration term r + yld and of the assigned direc­
tor force fm) and the director acceleration term ylr + y2 dy respectively; ya are inertial 
coefficients (indipendent of time), the dot means differentiation with respect to 

Traction boundary conditions 

(4) Nn = N0y Mn=M0y 

are prescribed on an appropriate portion of the boundary dS0y with outward unit nor­
mal n = naDa. Constitutive relations for elastic material are added: 

N + K = N*(FyGyRG) = N*'® d{ = Na ® r a + K® d, 

M = M{FyGyRG)=Ma®dy 

where RG = D3 a®Da and the vectors Na and M" are the classical stresses 
(see [1-3]). 

The set £ = {F, G^N^M^Kj^l} is called an «elastic state» corresponding to the as­
signed forces (/<*>,/<*>) if it satisfies (l)-(5). 

3. Let us consider two different states e and s and the differences: 

(6) XS = F-Fy Xri = G-G, XeR. 

If the constitutive functionals (5) are Fréchet-differentiable in a neighbourhood of 
A A 

(F, G) we can write 

(7) N* -N* = Av + o(X2), M-M = X[x + o(X2), 

where 

(8) v = N$S + N%r], lx=MF8 + MGr]y 

and Np, NQ, MFy MGy are fourth-order tensors given by 

(9) ]V* = (3N*/dF)A
y N£ = (3N*/dG)A

y MF = {dM/SF)\ MG = (dM/dGf. 

Since both e and e satisfy (2) and (5), v and [x satisfy the variational system 

(10) Div,v + po0 = O, Div^-v3+po<r = 0, 
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where <f> and <J are the excesses of the inertial forces: 

W=f~f> Aa = / - / , 
and v3 = yd3, since v = v' ® d{. 

The boundary conditions (4) become vn = t,ixn = m,t and m being the excesses of 
surface tractions and moments. 

The fields (S, rj) can be seen as the gradients of an infinitesimal displacements (T, CO) 
superimposed on the given strained state e, as soon as we neglect the terms denoted by 
o(A2)in(7): 

(11) AT = r—r, Xco = d—d, 

(12) £==r a®D a + w(x)Z)3, n = aj)a®Da. 

4. Let 9* and a* correspond to another infinitesimal displacement T*, CO*, with de­
formation gradients 8*> rj*, superimposed upon the same given, underlying strained 
state. 

Scalar product equation (10)i with z*, and (10)2 with co*, followed by integration 
of the sum of such products, over an arbitrary portion P of S0, and the use of the diver­
gence theorem yields the Betti's identity for Cosserat shells: 

(13) j (t- T* + m- co* ) ds + j p0(y z* + <j-co*)dZ = j(v8* + ^ ) dE. 
dp p p 

The left-hand side of (13) gives the «work» done by the field (t,mt<p,<j) over the 
displacement field (T*,CO*) and Betti's reciprocal theorem claims that this work is 
equal to the work done by the field (t* ,m* ,<p*, <J* ) over the displacement (T, CO), for 
any portion P of S0. 

In order that this be possible, for all displacement fields and for all portions P, it is 
necessary and sufficient that 

(14) N$ = Nf, MG=MT
G, N*G=Mh 

where T means transpose, since, from (13), upon interchange of starred and unstarred 
quantities, it follows that 

(15) j(vS*+(xrì*)di: = j(v*8 + !JL*rì)dZ. 
P P 

Thus, by means of (8), we obtain (14). 
If we require that Betti's theorem shall hold for infinitesimal deformations from an 

arbitrary underlying state of strain, conditions (14) must hold as identities in their ar­
guments F and G (because the undeformed state is arbitrary, we can drop the 
hat). 

If the shell is hyperelastic, there is a strain-energy density W= W(F, G,RG) such 
that 

(16) N*=PodW/dF, M = PodW/dG 
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and conditions (14) are obviously satisfied (if W is smooth enough to satisfy the 
Schwartz theorem). 

Viceversa, if (14) hold as identities, they are sufficient conditions for the existence 
of a function W= W(F, G,RG) such that (16) hold, for any (F, G), as a consequence of 
the general statement of Kerner's theorem for potential operators. 

Finally, we can claim that Betti's reciprocal theorem, as stated above for infinitesi­
mal deformations from an arbitrary state of strain, provides a necessary and sufficient 
condition for an elastic Gosserat shell to be hyperplastic. 

REMARK. The relation between Betti's theorem and potentiality is due to V. 
Volterra, [6], pp. 155-161, as a pure analytical statement. Hence, the results ob­
tained in [5] and here are applications of Volterra^ general theorem to elastici­
ty. 
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