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Equazioni differenziali ordinarie. — Some observations on a Conti's result. Nota (*) 
di ADRIAN CONSTANTIN, presentata dal Corrisp. R. CONTI. 

ABSTRACT. — An extension of a result of R. Conti is given from which some integro-differential in
equalities of the Gronwall-Bellman-Bihari type and a criterion for the continuation of solutions of a sys
tem of ordinary differential equations are deduced. 

KEY WORDS: Ordinary differential equations; Comparison method; Inequalities. 

RIASSUNTO. — Alcune osservazioni su un risultato di Conti. Si dà una estensione di un risultato di 
R. Conti dal quale risultano alcune disuguaglianze integro-differenziali di tipo Gronwall-Bellman-Bihari 
e un criterio di prolungabilità delle soluzioni di un sistema di equazioni differenziali ordinarie. 

1. R. Conti [3] has proved that bounds of the norms of the solutions of a system 
of ordinary differential equations can be obtained by comparison with a related first 
order differential equation. Most of the known explicit bounds, as well as criteria for 
global existence and boundedness or stability, can be obtained from such comparison 
theorems, together with a detailed analysis of the resulting first order differential 
equation. 

In the following we want to show that the same arguments used by R. Con
ti [3,4], provide, with minor modifications, a more general result which can be used 
to obtain a criterion for the continuation of solutions of a system of ordinary differen
tial equations as well as to obtain some well known Gronwall-Bellman-Bihari like in
equalities. This enables us also to give a more direct proof of the stability result for 
hidden variables obtained by A. Morrò [8]. 

2. Consider the ordinary differential equation 

(E) x'=f{tyx) 

where/: R X R* -» Rn is continuous. We suppose that for each (t0yx0)eRxRn there is 
a unique solution x(t) of this equation defined in a neighborhood of t0 such that 

X(k ) = OO

LEMMA. Let g(tyu) be a continuous real valued function defined in R X Rw and 

V(ty x) be a real valued locally Lipschitz function defined on RxR^ such that for all 

teR, except perhaps a denumerable set, and any xeRn we have 

(1) min {lim sup [V(/ + hy x + hf(ty x)) - V(ty x)]/h, 
>o+ 

lim inf [V(tyx) -V{t-hyx- hf(tyx))]/h} ^ g(ty V(tyx)). 

(*) Pervenuta all'Accademia il 4 settembre 1990. 
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Ifu0 ^ V(t0 , x0 ) and I/TQ is the supremum of the values of t for which both the solu

tion x(t) of (E) with x(t0 ) = x0 and the maximum solution UQ (t) of the comparison 

equation 

(2) «'=«(/,«) 

with initial condition u0 (t0 ) = u0 are defined, we have 

(3) V(tyx(t))^u0(t)y teitsJZ). 

PROOF. We closely follow Conti's arguments up to a certain point. We take tx ar

bitrary so that t0<ti<To; there is an £x >0, depending on th so that the maximum 

solution u0 (/, e) of the equation u' = g{t, u) + e with initial condition UQ (t0, e) = UQ is de

fined for to^t^tx for every 0 < e < e i and 

lim UQ (/, e) = UQ (t) 
£-»0+ 

uniformly with respect to te [*b>*i]. 

To show (3) it is sufficient to prove that for every 0 < e 2 < £ i there is an 0 < s < e 2 

such that 

(4) V(/,*W)^*b(/,e), to^t^tx. 

From this, letting e - » 0 + , it follows that V(tyx(t))^Uo(t) for / 0 ^ / ^ / i . Since /i 

was taken arbitrary, we have that (3) holds for t0^t<T0
+. 

Let us suppose now that for a given tx e (t0, TQ ) the relation (4) does not hold. 

There is an e2> 0 < s2 < «i such that for every 0 < e < e2 there are values of / e (t0, tx ) 

such that V(t,x(t))>Uo {t,e). For each such s let /£ be the infimum of the values 

te{tQ,ti) with this property. From the continuity of V(t,x(t)) we deduce that 

V(tefx(te)) = Uo{tS9s) and there are numbers h>0, as small as we wish, so that 

V(ts + hy x(te + h)) > UQ (t£ + h y e) from which we deduce that 

duits s) 
lim sup [V(t£ + A,x(*. + h)) - V(teyx(te))]/h^ - ^ 

Since for every h>0 sufficiently close to 0, we have V(t£ — hyx(ts — h)) < 

< UQ (te — h y s) • we deduce that 

lim inf [V(tt, x(f. )) - V(t, - h, x(te - h))]/h 2* ^ ^ -
h-*o+ at 

Since V is locally Lipschitz on R X R* we have that 

lim sup [V(/, + A,x(/, + h)) - V(teyx(te))]/t> = 

= lim sup [V(/£ + A, x(/, ) + hf(tE, x(ts ))) - V(tE, x(/f ) ) ] / * , 
h-+o+ 

lim inf [y(/„ x f e ) ) - y ( / . - A , x ( / f - * ) ) ] / * = 
£-»o+ 

= lim inf [V(t£ y x(t£ )) - V(t£ - h, x(t£ ) - hf(te, * ( / . ) ) ) ] /£ , 
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as T. Yoshizawa proved in [14] and so we deduce that 

(5) min{lim sup [V(ts + hyx{tt) + hf(t£yx{tt))) - V(teyx(t£))]/hy 
h-^o+ 

lim inf[V(t£yx(t s))-V(t£-hyx(t£)-hf(t£yx(te)))]/h}^ ~ ^ -
h^o+ at t=ts 

We will show that if £ ^ s" then tt> ^ 4». 
Let us suppose that there are 0 < e' < e" such that t£> = tt» = t'. We then have that 

Uo(t',e') = Uo(t' ,e") = V{t'yx{t')). Since 

d[u0(t,s")-u0(tye')] 

dt 
^=*"-*'>0' 

we deduce that for every t>t0 near t0 we have u§{tye") — u0(ty£
f) > 0 . 

If the preceding relation does not hold for all values of / e (t0, tx ), there is a point 

h 6 ik > h ) s u c n that 

(6) Uo(t2,s")-Uo(t2,s
,) = 0 

and w0 (£, e) — u0 (ty e') > 0 for / e (t0, t2). We deduce that there are numbers h > 0, as 
small as we wish, such that 

d{u0{tye")-uQ{e')) 

dt 
On the other hand we have from (6) that 

d{u0(t,e")-u0(t,s')) 

dt 

t=t2-h ^ 0 . 

e"-ef>0 

and so the preceding two relations are contradictory since the function d(u0(ty£
f) + 

—u0(t,£
f))/dt is continuous in t = t2. 

We deduce that if e' =£e", then tt> =£/s» 
Since (1) holds for all te (/o>*i) except perhaps a denumerable set, we have that 

there exists at least a t£o such that (1) and (5) hold simultaneously. Since 

du{ty £Q ) 

d( t = h= g(t„, *b (4*, eo )) + so = g(4o, V(/£o, *(/„ ))) + £0 > 

>sU0,V(40,Vfe0,*(/£o)))) 
we deduce that (1) and (5) cannot hold simultaneously. 

THEOREM 1. If the hypotheses of the Lemma are satisfied for a function 7 : R x 
X R ^ R that satisfies also the condition 

(7) V(/,x)-»o° as |H|—»°° for each fixed ty 

and if the maximum solution of the comparison equation (2) exists in the future (i.e., it 

exists for all t^t0)y then every solution of (E) exists in the future. 

PROOF. If the solution x{t) of (E) with x(t0 ) = x0 fails to exist in the future, we have 
that [5] |x(/)|->°° as /—>T0

+, for some finite T0
+. 

From the Lemma we deduce, in a way similar to that of A. Strauss [11], that 
V(tyx(t))-><*> as /->T0

+. 
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Since V(/,x(£))^#o(/), t0^t<T0
+, we have a contradiction to the existence as

sumption on the maximum solution u0(t) of (2). 

REMARK. If condition (7) is replaced by 

(7*) V f o x ) - » ° o as | H | - * ° ° 

uniformly in t for / in any compact interval, and if condition (1) is replaced by 

(1*) lim sup [V(t + hyx + hf{ty*)) - V(t,x)]/h ^ g(ty V(ty x)) 

for every (/,*) e R x R " w e obtain a result of J. P. La Salle and S. Lefschetz [9]. Fur
thermore, J. Kato and A. Strauss [6] have shown that if all solutions of (E) exist in 
the future, then there exists a locally Lipschitz V: R X Rn —> R satisfying (1*) and (7*). 
For functions that satisfy only (7) and (1*), R. Conti [4] proved that all solutions of 
(E) exist in the future. In [11] A. Strauss shows that Conti's conditions are less re
strictive than (1*) and (7*) and establish conditions under which (7) and (7*) are 
equivalent. In our Lemma we replaced condition (7*) by (7) and condition (1*) by the 
less restrictive condition (1). 

3. In a way which is similar to the one followed for proving the Lemma, we can 
prove that: 

THEOREM 2. Let g(ty u) he a continuous real valued function defined in R x R " and 
let u0 (t) be the maximum solution of the equation 

(2) W =g{tyu) 

with initial condition u0(t0) = Uo defined on [t0, TQ ) where T0
+ is the supremum of the 

values t for which u0 {t) is defined. Let x = (*i, x2,..., xn ) : [t0, T0
+ ) —> Rn he a differen-

tiahle function and V{t> x) he a real valued continuous function defined on R X Rn such 
that V(t0,x(t0)) ^u0 and for all te(tQyT0

+) except perhaps a denumerable set 

(8) min {lim sup [V(t + h} x(t + h)) - V{t, x{t))]/hy 
h->o+ 

lim inf [V(t,x(t)) - V{t-h,x{t-h))Vh} ^g{t,V(t,x{t))). 

We have then that V(t,x(t))^u0(t), te[t0T£). 

Theorem 2 can be used in proving stability properties of solutions of a system of 
ordinary differential equations as well as to obtain some well known Gronwall-Bell-
man-Bihari like inequalities which can be used in proving the unicity of solutions of 
ordinary differential equations. 

Let us suppose that « = 1, V(t,x) =x and that (8) holds for all te [t0,T0
+). We 

obtain 

COROLLARY 1 (J. S. W. Wong [13]). We consider the first order equation 

(9) u'=f(t,u), u(0) = cy 

where f(t,u) is continuous in the region Sx = [0, °°) X (—oo? oo.) and its corresponding 



SOME OBSERVATIONS ON A CONTl's RESULT 141 

differential inequality 

(10) v'<At,v), v(0) = c, 

also defined in the region Sx. Ifu(t) is the maximum solution o/(9), then it follows that 
v(t)^u(t) for each t^O. 

t 

COROLLARY 2 (B. Viswanathan [12]). If w(t) ^ c(t) + J f{s, w(s)) ds where fit, w) is 
o 

continuous and monotonie increasing in w in the region S\ and w{t)} c(t) are continuous 
for / ^ 0, then w(t) ^ c(t) + u(t) where u(t) is the maximum solution of the equation 
u' =/(/ , u 4- c{t)) with initial condition u(0) = w(0). 

t 

PROOF. Let y(t) = jf(s, w{s)) ds. We have then that y'(t) =f{t, w(t)) ^f(t, y{t) + 
o 

+ c(t)) by the monotonicity of/. The conclusion follows from Theorem 2. 

As particular cases of Corollary 2 we have Corollaries 3 and 4: 

COROLLARY 3. (T. H. Gronwall-R. Bellman). Let v(t), c(t) and g(t) he real valued 
continuous functions defined on [0, °°) and let g he nonnegative on this interval. If 

t 

v(t)^c(t) + jg(s)v(s)ds, 0 ^ / , 
0 

then 

v(t)^c(t) + jg(s)c(s)expl \g{u)du\dsy 0 ^ / . 

PROOF. We take f(t,w)= g(t)w in Corollary 2. The solution of the equation 
u'(t) = g{t) (c(t) + u(t))y u(0) = 0, t ̂  0, is 

u{t) — I g(s)c(s) exp I g(u) du \ds, t^ 0, 

and so we deduce Corollary 3. 

COROLLARY 4 (I. Bihari[2]). Let v, h he positive, continuous functions in Vh.hX 
and let a} b be nonnegative constants; further, let g be a positive nondecreasing function 
on [0, °°). Then the inequality 

t 

v{t)^a + b\h{s)g(v{s))ds, t0^t^d, 

implies the inequality 

v{t)*kG-1 \G(a) + bjh(s)ds\, t0^t^d', 
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where 

G(x)=\ -j-, x0>0, x>0, 
g(s)' 

t 

and dr is defined so that G(a) + h J h(s) ds lies within the domain of definition of G~l, 
for t0^t^d'. t0 

PROOF. Let us take/fa, w) = bh(s) g(w). The equation u' = bh(t) g(u + a), u{t0) = 0, 

has the solution u = G_ 1 G(a) + b \ h(s) ds — a and so the conclusion follows. 

COROLLARY 5 (B. G. Pachpatte[10]). Let u, v, weC&R+l f he6{R+yR+l 
f strictly increasing and h be nondecreasing, k e C(I XI, R+ ), and suppose further that 
the inequality 

t 

(11) f(u(t)) ^ v(t) + w(t) h c(t) + \ k(r, s) g(s, u(s)), Tu(s) ds 
h 

is satisfied for all tel 0 ̂  t0 ^ T ̂  /; where g(t, u, v) e 6{I X R+ X e(I, R+ ), R+ ) and 
monotone increasing in u and v for each fixed tel, and T is a continuous operator on 
e(I,R+) such that u(t)^v(t), 0^t^tìy h e I implies Tu^ Tv for t^tx. Then for 
tel0 

(12) u(t) ̂ f-1 (v(t) + w(t) h(c(t) + r(t)))> 

where I0 = {teI; v(t) + w(t)h(c(t) + r(t)) e dom(/ _ 1 )} and r(t) is the maximum solu
tion of 

(12') r'(t) = k(z, t) g(t, r 1 (v{t) + w(t) h{c{t) + r(t))), T{f~l (v(t) + w(t) h{c{t) + r(t))))) 

with r(t0 ) = 0, existing on I0 c I. 

PROOF. Denoting 

(13) z(t) = c(t) + | k(r, s) g(s, u(s), Tu(s)) ds, z(t0 ) = c(t0 ), 

we have that 

(14) f(u(t))^v(t) + w(t)h(z(t)). 

From the monotone property of g we deduce, denoting m(t) = z(t) — c(t) in (13), 
that 

m'(t)**k(r,t)g{tj-l{v{t) + w(t) h(c(t) + /»(/))), Tif-1 {v{t) + w(t) h(c(t) + m(t))))). 

Applying Corollary 1 we deduce that m{t) ^ r(t), t e I0, where r(t) is the maximum 
solution of (12) such that r(t0 ) = m{t0 ) = 0. From this the desired result follows. 

REMARK. If the operator T is defined by Tu = u, then (12) reduces to the inequali
ty studied by V. Lakshmikantham [7]. 



SOME OBSERVATIONS ON A CONTl's RESULT 143 

As a particular case of Theorem 2 we deduce also the mean value theorem for real 
valued factions [15,16]. 

MEAN VALUE THEOREM. Let I — [a, b] be a compact interval in R, 9 a continuous 
mapping of I into R, such that there is a denumerable subset D of I with the property 
that at every point tel — D, 9 has a right derivative with respect to I and m ^ tp'jit) ^ M. 
Then m(b — a) ^ <p(b) — cp{a) ^ M(b — a). 

PROOF. We take in Theorem 2 V(t,x) = <p(t), g(t,x) =M. The maximum solution 
u0(t) of the equation uf = M with initial condition u0(a) = <p(a) defined on [a, b] is 
u0 (t) = M(t — t0 ) 4- <p(a) and so we deduce that <p(b) — <p(a) ^M{b — a). 

For the second part we take V(t,x) = —<p(t), g{tyx) = — m in Theorem 2 and in a 
similar way we obtain that m{b — a) ^ <p(b) — <p{a). 

As pointed out by N. Bourbaki[16] the result of the mean value theorem is no 
longer valid if D is a nondenumerable subset of I. 

4. A. Morrò [8] has introduced a precise mathematical structure of the hidden 
variable model. Also a new Gronwall-like inequality and its application to the asymp
totic stability of the solution of the evolution equation is given. 

In the proof of the asymtotic stability, A. Morrò [8] used an estimate of the norm 
b of the solution for the difference of two evolution equations. This estimate is of the 
form 

t 

(15) b(t) ^ exp (-m(t - t0 )) b(t0 ) + e J exp (-m(t - s)) co(s) ds + 

+<?J exp (-m(t - s)) b{s) ds, t^t0, 

where my 8, seR+ - {0} and &>:R-»R+ is a piecewise continuous function. 
We will show that an application of Theorem 2 yields, in a more direct way, a 

bound that can be used as in [8] to give new insights into the asymptotic stability of 
the evolution equation for hidden variables and to lend precision to the assertion that 
the hidden variables are independent of the present value of the physical vari
ables. 

Let us denote y(t) = b(t) exp (mt), t^ t0. 
We have then that 

y(t) ^ exp (mt0 ) b(t0 ) + s J exp (ms) co(s) ds + S J y(s) ds. 

We consider the equation 

u' = g(t9u), t^t0y 

where g(t, u) — z exp (mt)co(t) + Su. 
The maximum solution of this equation with initial value u0 {t0 ) = b(t0 ) exp {mt0 ) is 
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given by 
t 

u0 (t) = exp (*/) b(t0 ) exp ((/» - S) k) + J exp {{m - 8) s) w(s) ds. 

Applying the preceding results we deduce that y(t) ^ u0{t), t^t0> and since y(t) = 
= b(t) exp (mi), t ̂  t0y we have 

(16) b(t) ^ b% ) exp ( - (m - <?)(/ - /0 )) + J exp (-(w - <5)(/ - j)) û>(J) ds. 

Letting co(t) = 0 we obtain that 

(17) b{t)^zxp{-{m- m~ k))b%). 

If m — â> 0 we have that (17) ensures the asymptotic stability of the solution to the 
evolution equation for the hidden variables. The bound obtained in (16) can be used 
in studying the independence property of the hidden variables of the present value of 
the physical variables (see [8]). 
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