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Geometria algebrica. —Another algebraic proof of Weil's reciprocity. Nota di EMMA 

PREVTATO, presentata (*) dal Socio G. ZACHER. 

ABSTRACT. — The Burchnall-Chaundy-Krichever correspondence which converts meromorphic func­
tions on a curve into differential operators is used to interpret Weil's reciprocity as the calculation of a 
resultant. 

KEY WORDS: Riemann surface; Ordinary differential operator; Resultant. 

RIASSUNTO. — Un'altra dimostrazione algebrica della reciprocità di Weil. Il meccanismo di Burchnall-
Chaundy-Krichever che trasforma funzioni meromorfe su una curva in operatori differenziali viene usato 
per interpretare la reciprocità di Weil come il valore di un risultante. 

Weil's reciprocity [9] says that if / g are two meromorphic functions on a com­
pact Riemann surface S and their divisors (/), (g) are disjoint then 

n f(pyp{g) = n g(P)Mf) 

PeS PeS 

where vP signifies the valuation at P, hence is nonzero for a finite number of points on­
ly. In the limit, a similar statement for singular curves and/or overlapping divisors 
could be formulated but is beside the point of this Note. The resultant of a pair of 
monic polynomials in one variable f(x), g(x) e C [x] equals 

where 

n/(A)=(-irn «(«,-) 
«= 1 i= 1 

/=n (*-«,•), «=n(*-ft). 
/= l /= l 

This gives immediately Weil's reciprocity for S = P 1 whereas the traditional proof 
for higher genus is transcendental, as it involves logarithms [4,9]. In this Note we 
combine: the Euclidean algorithm for differential operators, which goes back at least 
to [3]; a remarkable analog of the resultant, which lies in the background of the 
Burchnall and Chaundy calculations (cf. [7]); and the Krichever dictionary (cf. [6]) 
and give an algebraic proof of Weil's reciprocity which generalizes the observation we 
made for P1 . We hope that this mechanism may find an extension to the multidimen­
sional case, in the same vein as the adelic construction and the «other» algebraic proof 
referred to in the title, which introduces the Kac-Peterson representation [1]. The 
proofs of the basic facts on the resultant are short and elegant and we sketch them for 
completeness. 

(*) Nella seduta del 10 novembre 1990. 
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1. THE ALGEBRAIC AND DIFFERENTIAL RESULTANT 

1. Let/=tf0 + tfi*+ ... + a„xn
y g = b0 + &!#+ ... 4- bmxm e C[x]. It is well known 

(cf. for example [5]) that / and g have a common zero if and only if the resultant 
R ( / , g ) » 0 , where 

R(/,g) = det 

<k> 

0 

h 

«1 

4B 

£« 

a„ 
an 

0 

0...0" 
0...0 

...0 
= det 

G 3 G4 

0 

(G2 is m X #z, G3 is « X #) 

,,»-! 
This can be seen in many ways, but the spirit of our proof will be reprised in a differ­
ent context. We consider the vector space Vf = C[x]/(/(x)), with basis l,x,. 
where multiplication by x is given by the companion matrix of /: 

-ao/an 

Q = 

0 0 
1 0 -*\l*n 

1 -a„-Jan 

Gi 

G3 

G2" 

G4 

" 0 

_G2"
1 

I 

—G2~ G ì 

As follows from the Euclidean algorithm in C [x], multiplication by g(x) on ty is in-
vertible if and only if/and g have no common roots. Now multiplication by g has ma­
trix (G3 — G4G21 Gl)

T whose determinant is R(f,g)/a% as can be seen by writing 

I 0 

G4 CJ2 O3 ~~ O4 CJ2 Cr̂  

2. Let (for simplicity) / and g be monk, {a^,..., a„} {/^,...,fim } be the zeroes of / 
g, resp. Then 

/» « 

R(/,i)=n/(ft)=(-iriigw. 
1 - 1 / = i 

This can be seen by a standard argument of unique factorization by regarding the 
a and fi as indeterminates, but we insist on the point of view taken in 1. R (f, g) as we 
saw is the determinant of the multiplication by g(x) on V/; we change basis so as to 
write C/ as an upper triangular matrix with a1? ...,a„ on the diagonal (Jordan form) 
and use the fact that it represents multiplication by x; clearly then 

det(g(x)H ft «(«/). 

3. If L = d* + ^_1(x)a*-1 + ... + «0(x), B = 3*+tfc-i(x)9w~1 '+.. . + M*) are 
commuting differential operators (here 3 = d/dx) whose coefficients are analytic func­
tions in a neighborhood of, say x = 0, we define the resultant polynomial R (LyB) = 
= det A (A, fx) where A (A, ju) = [A^] is the (« + m) X (# + m) matrix whose first m rows are 
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given by the coefficients of 

&o(L-X) = 
n + m— 1 

2 AJ+lti+1d
i 

i=0 
( / = 0 , . . . , ^ - l ) 

and last n rows by the coefficients of dJo(B— (x) similarly arranged (J = 0,..., n — 1). It 
is a consequence of the commutativity that R (L, B) is independent of x: indeed, it is 
the characteristic polynomial of the endomorphism obtained by applying B on the 
vector space Vx = Ker (L — A). This can be seen by choosing a fundamental system of 
solutions (at x = 0) for L —A: ji(x,A), ...,y„(x,X); then since B preserves Vx, 

(B-!x)yi ... (B-ti)yH 

((B-ix)yiy 

((B-p)yi) ( ' -1- ) 

((B-ti)ynY 

((B-M)y.) 

K 

y\ 

y[ 

(»-D 

(»-D 

,0.-1) 

M=(G3-G4G21Gi: 

Vi 

y\ 

y[ 

(n-l) 

y n 

y'n 

where M is a suitable constant matrix and Gi,..., G4 are blocks of the matrix A (A, /x) of 
the same size as above. The required characteristic polynomial is detMT, which can be 
seen to coincide with R (L, B) by setting x = 0 in the formula. 

2. BURCHNALL-CHAUNDY-KRICHEVER DICTIONARY 

Here we only recall how to set up a conversion between meromorphic functions 
on a Riemann surface, regular outside one fixed point P», say, and differential 
operators. 

1. CONSTRUCTION (Krichever, cf. [6]). Let S be a Riemann surface of genus g with 
a fixed point Pœ and a local parameter z~l centered at P^; let D be a fixed divisor of 
degree g on S with h° (D) = 1, D = Xx + ... + Xg; there exists a unique function <p(x, P), 
depending on a (small) parameter xe C and point PeS such that <p is meromorphic on 
S\Poo with poles at most on D, and near ?«, the expansion </> = exz(l + 0 (z - 1 )) holds. 
For any meromorphic function / on S with a pole of order n at P<» and regular else­
where, there exists a unique differential operator L/ = dn + un-2 (x) dn~2 4-... + UQ (X) 
such that Lfip = f(P) <£. 

2. LEMMA. With the notation of the above construction, if £ g are two functions 

with pole of order n} m at Pœ resp. and regular elsewhere, and if their expansion in z~l 

begins with zn, zm, resp., then 
m n 

n/(A-)=(-ir ligia,) 
where the a/s, fi/s are the zeroes offg, counted with multiplicity. 
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PROOF. We set up R (Lf,Lg) as in 1.3, using the operators that correspond to/ ,g as 
in 2.1. Viewed as a polynomial in X,R has leading coefficient (—i)mn(—\)m\m

 anc[ 
constant term 

(-ir n A,-; 

viewed as a polynomial in /x, it has leading coefficient (—l)n(xn and constant 
term 

(-ir n &. 
Notice that the normalization assumption comes in when one computes the leading 
coefficient of the operators Lf,Lg> which in turn appears in the unipotent matrix G2; a 
different normalization would cause an explicitly computable constant to appear. No­
tice also that because of this normalization the poles of À and [x «cancel out» so that 
the statement of the lemma is really Weil's reciprocity. 

3. WEIL'S RECIPROCITY 

1. OBSERVATION. Weil's reciprocity for P 1 is the formula for the resul­
tant 1.2. 

PROOF. Le t / g be any two functions on P1 , with disjoint divisors. We can express 
them as rational functions in one parameter z and normalize them so that 

(z-ai)...(z-an) _ (z-c1)...(z-cm) 
f~ (z-bx)...(z-bn) ' g~ ( z - ^ ) . . . ( z - 4 ) 

(after possibly dividing g by a constant); now l e t / , / and gly & be the polynomials 
that appear as numerator, denominator, resp. of/ g, resp. Write the resultant formula 
1.2 for the pairs ( / , &) and ( / , & ) , multiply side by side, write the formula for 
( />&)>(/> gi)> multiply side by side, divide the results side by side. 

2. PROPOSITION. The Krichever dictionary and the resultant formula prove Weil's 
reciprocity on any Riemann surface S. 

PROF. Le t / g be meromorphic functions on S with disjoint divisors, and P^ a fixed 
(disjoint) point on S. Let (/) = (Px 4-... + P,) — (Qx + ... + Q,), P{ being the zeroes of/ 
and Q/the poles. For n large enough, nPœ — (Pi + ... + Pr) is linearly equivalent to an 
effective divisor and if n is the smallest such number, the dimension of H° (n Pœ — 
- (Px + ... + Pr)) cannot be larger than 1. The dimension of H° (n Pœ - {Qx + ... + Q)) 
must be the same, for the divisors 2 P/ and 2 Q are linearly equivalent. Let / , / be 
the essentially unique functions that have a pole of order n at Pœ and zeroes on 2 P/, 
2 Q/ resp. and notice t h a t / / / - 1 must be a constant, for it has neither zeroes nor 
poles. By choosing a local parameter z~l around Pœ and normalizing all functions so 
that their Laurent expansions near P^ is monic in z, we can wri te/= / / / , g = g\/gz by 
the same procedure, apply Lemma 2.2 in the same manner as in the observation 3.1 
and conclude. 
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3. COMMENT. The main advantage I see in this proof is that Weil's reciprocity ap­
pears as the consequence of an action by multiplication: indeed, the matrix of the ac­
tion by Lg say, expressed by using A and p as in 1.3, can be viewed as the matrix of 
multiplication by pt, which is a twisted endomorphism of the vector bundle n* (£), 
where n is the projection to P1 given by the function A = / a n d £ is the line bundle of 
the divisor D of the Baker Akhiezer function: 

,fc* 
£-X 7z*£® 0{[m/n\+ <*), 

where oo corresponds to A = oo on P 1 and by [m/n]+ we denote the smallest integer 
greater than or equal to m/n. This point of view brings the spirit of the formula very 
close to the multiplication argument in 1.1; it should generalize to two interesting sit­
uations: (a) 7z: Si~^S2 a morphism of Riemann surfaces where S2 has genus greater 
than zero (an elliptic situation is surveyed in [8]) and (b) a multipoint Krichever 
map, where Poo is replaced by P^i, ...,Pooj and the Baker function has more than one 
parameter Zi,...,Zj, (cf. [2]); finally, it suggests that letting the divisor D of the 
Krichever map vary, one may get an interpretation of Weil's reciprocity on the Jaco-
bian of S. 
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