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Geometria algebrica. — Another algebraic proof of Weil’s reciprocity. Nota di Emma
Previato, presentata (*) dal Socio G. Zacuer.

Asstract. — The Burchnall-Chaundy-Krichever correspondence which converts meromorphic func-
tions on a curve into differential operators is used to interpret Weil’s reciprocity as the calculation of a
resultant.

Kevy worps: Riemann surface; Ordinary differential operator; Resultant.

Ruassunto. — Un’altra dimostrazione algebrica della reciprocita di Weil. Il meccanismo di Burchnall-
Chaundy-Krichever che trasforma funzioni meromorfe su una curva in operatori differenziali viene usato
per interpretare la reciprocitd di Weil come il valore di un risultante.

Weil’s reciprocity [9] says that if £, g are two meromorphic functions on a com-

pact Riemann surface S and their divisors (f), (g) are disjoint then

I1 f(p)»@ =[] gP)»"

PeS PeS
where vp signifies the valuation at P, hence is nonzero for a finite number of points on-
ly. In the limit, a similar statement for singular curves and/or ovetlapping divisors
could be formulated but is beside the point of this Note. The resultant of a pair of
monic polynomials in one variable f(x), g(x) € C[x] equals

11 A8) = (=0 I g6a)
where
f=M-a), g=Ile—p).

This gives immediately Weil’s reciprocity for § = P! whereas the traditional proof
for higher genus is transcendental, as it involves logarithms[4,9]. In this Note we
combine: the Euclidean algorithm for differential operators, which goes back at least
to[3]; a remarkable analog of the resultant, which lies in the background of the
Burchnall and Chaundy calculations (cf.[7]); and the Krichever dictionary (cf.[6])
and give an algebraic proof of Weil’s reciprocity which generalizes the observation we
made for P!. We hope that this mechanism may find an extension to the multidimen-
sional case, in the same vein as the adelic construction and the «other» algebraic proof
referred to in the title, which introduces the Kac-Peterson representation[1]. The
proofs of the basic facts on the resultant are short and elegant and we sketch them for
completeness.

(*) Nella seduta del 10 novembre 1990.
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1. THE ALGEBRAIC AND DIFFERENTIAL RESULTANT

lLLetf=ay+ax+..+a,x", g=by+bx+..+b,x" € Clx]. It is well known
(cf. for example[5]) that f and g have a common zero if and only if the resultant
R (£, g) =0, where

fay & ... a, 0..07
0 4 .. a 0.0
G G
R(f,g)=det b B 0 j”o =det[G; Gj (G, is mXm, Gy is nXn).
-0 bm

This can be seen in many ways, but the spirit of our proof will be reprised in a differ-
ent context. We consider the vector space V; = C[x]/( f(x)), with basis 1,x,...,x"",
where multiplication by x is given by the companion matrix of f:

0 0 .. —aa,

1 0 —a/a,
G- a,/a

0 ... 1 =—a,_1/a,

As follows from the Euclidean algorithm in C[x], multiplication by g(x) on Vyis in-
vertible if and only if f and g have no common roots. Now multiplication by g has ma-
trix (G; — G,G; 1 G;)T whose determinant is R (f, g)/a? as can be seen by writing

G, Gz} 0 I _ I 0
G GG -GG GG G -GGG

2. Let (for simplicity) f and g be monic, {a;,...,a,} {81, ---,B } be the zeroes of f,
g, resp. Then

R(9)= 11 £8)= (-0 1 g(a).

This can be seen by a standard argument of unique factorization by regarding the
« and B as indeterminates, but we insist on the point of view taken in 1. R (f, g) as we
saw is the determinant of the multiplication by g(x) on Vj; we change basis so as to
write C; as an upper triangular matrix with «;, ..., a, on the diagonal (Jordan form)
and use the fact that it represents multiplication by x; clearly then

n

det (g(x)) = IT g(a).

i=1
3. f L=0"4+u,1(x)3 '+ ...+u(x), B=3"+v,,(x)3" 1+ ... +1,(x) are
commuting differential operators (here 3 = d/dx) whose coefficients are analytic func-
tions in a neighborhood of, say x =0, we define the resultant polynomial R (L, B) =
= det A(A, ) where A(A, 1) = [A;] is the (# + 72) X (n + m) matrix whose first 7 rows are
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given by the coefficients of

n+m—1

a,O(L—)L)= '20 Aj+1,,-+18i (/'=0,.‘.,m—1)

and last # rows by the coefficients of 8’c(B — ) similarly arranged (=0, ...,z —1). It
is a consequence of the commutativity that R (L, B) is independent of x: indeed, it is
the characteristic polynomial of the endomorphism obtained by applying B on the
vector space V, = Ker (L — 1). This can be seen by choosing a fundamental system of
solutions (at x =0) for L — A: y;(x,2), ..., y,(x,2); then since B preserves V,,

(B—w)y (B—w)9,

(B=wyn) . (B=wy) |_

(B=wy)"™ Y ... (B—wy)?
T T ¥
- N Vn M=(G3_G4G2..1Gl) M1 n
y Y gl yr P i

where M is a suitable constant matrix and Gy, ..., G, are blocks of the matrix A(2, x) of
the same size as above. The required characteristic polynomial is det M, which can be
seen to coincide with R (L, B) by setting x=0 in the formula.

2. BurcHNALL-CHAUNDY-KRICHEVER DICTIONARY

Here we only recall how to set up a conversion between meromorphic functions
on a Riemann surface, regular outside one fixed point P., say, and differential
operators.

1. ConstrucTioN (Krichever, cf. [6]). Let S be a Riemann surface of genus g with
a fixed point P, and a local parameter 77! centered at P.; let D be a fixed divisor of
degree g on § with 5°(D) = 1, D=X, + ... + X,; there exists a unique function {(x, P),
depending on a (small) parameter x € C and point P € § such that ¢ is meromorphic on
S\ P., with poles at most on D, and near P,, the expansion ¢ = ¢~ (1 + O(z™!)) holds.
For any meromorphic function f on § with a pole of order # at P, and regular else-
where, there exists a unique differential operator Ly = 8" 4 #,_, (x) 8" 2 + ... + (%)

such that Ly y = f(P)¢.

2. Lemma. With the notation of the above construction, if f, g are two functions
with pole of order n, m at P, resp. and regular elsewbere, and if their expansion in z*
begins with 2", 2", resp., then

T £8) = (=17 T g6a)

where the a/’s, Bis are the zeroes of f, g counted with multiplicity.
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Proor. We set up R (L, L,) as in 1.3, using the operators that correspond to £, g as
in 2.1. Viewed as a polynomial in A, R has leading coefficient (—1)"”(—1)” A" and
constant term

(G VA | R ¥
Pysm) =
viewed as a polynomial in g, it has leading coefficient (—1)"u” and constant
term
(=0 I w.
. (> = o
Notice that the normalization assumption comes in when one computes the leading
coefficient of the operators Ly, L,, which in turn appears in the unipotent matrix G,; a
different normalization would cause an explicitly computable constant to appeat. No-
tice also that because of this normalization the poles of A and u «cancel out» so that
the statement of the lemma is really Weil’s reciprocity.

3. WErL’s RECIPROCITY

1. Osservation. Weil’s reciprocity for P! is the formula for the resul-
tant 1.2.

Proor. Let £, g be any two functions on P', with disjoint divisors. We can express
them as rational functions in one parameter z and normalize them so that
(z—a)...(z—a,) (z—¢)...(z—¢,)

I b 4T a—d)w—d)
(after possibly dividing g by a constant); now let £, £, and g;, g be the polynomials
that appear as numerator, denominator, resp. of £, g, resp. Write the resultant formula
1.2 for the pairs (f, &) and (%, &), multiply side by side, write the formula for
(i, &), (£, g1), multiply side by side, divide the results side by side.

2. Proposition. The Krichever dictionary and the resultant formula prove Weil’s
reciprocity on any Riemann surface S.

Pror. Let £, g be meromorphic functions on § with disjoint divisors, and P., a fixed
(disjoint) point on §. Let () = (P, + ... + P,) — (Q; + ... + Q,), P; being the zeroes of f
and Q, the poles. For # large enough, #P, — (P, + ... + P,) is linearly equivalent to an
effective divisor and if # is the smallest such number, the dimension of H° (%P, —
— (P, + ... + P,)) cannot be larger than 1. The dimension of H(z P, — (Q; + ... + Q,))
must be the same, for the divisors 2, P; and 2, Q; are linearly equivalent. Let £, /; be
the essentially unique functions that have a pole of order # at P,, and zeroes on >, P,
2 Q; resp. and notice that f£, 7! must be a constant, for it has neither zeroes nor
poles. By choosing a local parameter z~! around P, and normalizing all functions so
that their Laurent expansions near P,, is monic in z, we can write f= f,/f, 2= g1/2 by
the same procedure, apply Lemma 2.2 in the same manner as in the observation 3.1
and conclude.
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3. ComMmenT. The main advantage I see in this proof is that Weil’s reciprocity ap-
pears as the consequence of an action by multiplication: indeed, the matrix of the ac-
tion by L, say, expressed by using A and p as in 1.3, can be viewed as the matrix of
multiplication by u, which is a twisted endomorphism of the vector bundle =, (£),
where = is the projection to P' given by the function A = f and £ is the line bundle of
the divisor D of the Baker Akhiezer function:

r, £—% 7, £QO([mfn], ),

where ®© corresponds to A =% on P! and by [#/#], we denote the smallest integer
greater than or equal to 72/n. This point of view brings the spirit of the formula very
close to the multiplication argument in 1.1; it should generalize to two interesting sit-
uations: (¢) =: $; =5, a morphism of Riemann surfaces where S, has genus greater
than zero (an elliptic situation is surveyed in[8]) and (b) a multipoint Krichever
map, where P, is replaced by P..,, ..., P.; and the Baker function has more than one
parameter zj,...,2;, (cf.[2]); finally, it suggests that letting the divisor D of the
Krichever map vary, one may get an interpretation of Weil’s reciprocity on the Jaco-

bian of S.
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