
ATTI ACCADEMIA NAZIONALE LINCEI CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI LINCEI
MATEMATICA E APPLICAZIONI

Claudia Comi, Umberto Perego

A variationally consistent generalized variable
formulation of the elastoplastic rate problem

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche,
Matematiche e Naturali. Rendiconti Lincei. Matematica e
Applicazioni, Serie 9, Vol. 2 (1991), n.2, p. 177–190.
Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLIN_1991_9_2_2_177_0>

L’utilizzo e la stampa di questo documento digitale è consentito liberamente per mo-
tivi di ricerca e studio. Non è consentito l’utilizzo dello stesso per motivi commerciali.
Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma
bdim (Biblioteca Digitale Italiana di Matematica)

SIMAI & UMI
http://www.bdim.eu/

http://www.bdim.eu/item?id=RLIN_1991_9_2_2_177_0
http://www.bdim.eu/


Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e
Naturali. Rendiconti Lincei. Matematica e Applicazioni, Accademia Nazionale dei
Lincei, 1991.



Rend. Mat. Ace. Lincei 
s. 9, v. 2.177-190 (1991) 

Meccanica dei solidi. — A variationally consistent generalized variable formulation 
of the elastoplastic rate problem. Nota di CLAUDIA COMI e UMBERTO PEREGO, presen
tata (*) dal Corrisp. G. MAIER. 

ABSTRACT. — The elastoplastic rate problem is formulated as an unconstrained saddle point problem 
which, in turn, is obtained by the Lagrange multiplier method from a kinematic minimum principle. The 
finite element discretization and the enforcement of the min-max conditions for the Lagrangean function 
lead to a set of algebraic governing relations (equilibrium, compatibility and constitutive law). It is 
shown how important properties of the continuum problem (like, e.g., symmetry, convexity, normality) 
carry over to the discrete problem if «generalized variables» are used in the discretization. A couple of 
dual kinematic and static minimum properties in generalized variables are finally derived. 

KEY WORDS: Plasticity; Finite elements; Generalized variables; Extremum properties. 

RIASSUNTO. — Formulazione variazionalmente coerente in variabili generalizzate del problema elastopla
stico incrementale. Il problema elastoplastico per il continuo, in termini di velocità di variazione, viene 
formulato come un problema di punto sella non vincolato partendo da un principio di minimo cinemati
co e utilizzando il metodo dei moltiplicatori di Lagrange. L'imposizione delle condizioni di min-max per 
la funzione lagrangiana, discretizzata ad elementi finiti, porta ad un sistema algebrico di equazioni gover
nanti (equilibrio, congruenza e legge costitutiva). Si dimostra come importanti proprietà del problema 
continuo (quali ad es. simmetria, convessità, normalità) si trasferiscano al problema discreto qualora si 
utilizzino variabili generalizzate per la discretizzazione. Infine, si formula una coppia di proprietà duali 
di minimo cinematico e statico. 

1. INTRODUCTION 

In the formulation of elastic-plastic problems, it is customary to express the plastici
ty condition in the space of stresses and static internal variables. In displacement based 
finite element methods, this fact implies the evaluation of static variables at a discrete 
number of points and the enforcement of the constitutive law at these points only [1]. 
Corradi [2,3] showed how the discrete enforcement of the constitutive law implicitly 
amounted to the introduction of an arbitrary interpolation for the static variables. In or
der to provide a more consistent formulation, he proposed to discretize all fields in 
terms of conjugate static and kinematic variables, «generalized» in Prager's sense [4]. 
The generalized variables are interpolation parameters such that the scalar product of 
vectors containing conjugate generalized variables is equal to the integral over the do
main of the scalar product of the relevant fields. The adoption of such a discretization 
for the constitutive law results in a set of relations in terms of generalized variables 
which can be interpreted as the «constitutive law» of a finite portion of material (typi
cally a finite element). The same concepts have been applied for the modelling of fields 
over the internal cells in boundary element plastic analysis. In this case, the use of gener
alized variables allows for a consistently symmetric formulation with noteworthy theo
retical and computational advantages [5-7]. 

(*) Nella seduta del 15 dicembre 1990. 
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A variational motivation for the constitutive law in generalized variables, resting 
on the principle of maximum plastic work, has been proposed in this context by 
Polizzotto[8]. The independent modelling of displacements, strains and stresses has 
also been given a rigorous treatment in [9,10]. In [9], conditions on the stress and 
strain modellings were derived starting from a Hu-Washizu functional, while in [10] 
the equations governing the boundary value problem were obtained by independent 
modelling of displacements and stresses on the basis of a Hellinger-Reissner-type 
functional. In [11], the generalized variable approach was investigated from both the 
theoretical and computational point of view. As in [9], a Hu-Washizu-type function
al was used to derive the compatibility equations between nodal displacements and 
generalized strains. 

In the present paper use is made of an extension of a rate kinematic theorem [12] 
to a more general internal variable material model. According to this theorem, the so
lution of the elastoplastic boundary value rate problem can be obtained by minimizing 
a constrained functional with respect to displacements, elastic strains, kinematic inter
nal variables and plastic multipliers. By using the Lagrange multiplier method, this 
variational principle is transformed into an unconstrained min-max problem. Since all 
fields (static and kinematic) are considered as independent, the saddle-point problem 
can also be regarded as a generalization to the present elastoplastic context of Hu-
Washizu principle. The finite element discretization of the Lagrangean functional and 
the enforcement of the saddle-point conditions straightforwardly generate the dis-
cretized version of equilibrium, compatibility and constitutive equations. If, in addi
tion, the unknown fields are modelled in terms of generalized variables, the dis-
cretized constitutive relations are formally identical to the local ones and preserve es
sential properties like symmetry, normality, convexity. 

Finally, a couple of dual constrained minimization theorems are obtained by elimi
nating some variables from the Lagrangean function and by adding suitable con
straints. The extremum properties proved herein represent the counterparts in rates 
(for At->0) to those established in [11] for a finite-step backward-difference time 
integration. 

2 . E L A S T O P L A S T I C R A T E P R O B L E M F O R C O N T I N U A 

Reference is made to a solid of volume Q and boundary T — Tu u rh Tu and Tt be
ing the constrained and free part of the boundary, respectively. We are concerned 
with the evaluation of the quasi-static, small-displacement response to given external 
actions, namely: body forces F(x) {x e Q) and surface tractions t(x) (xert). Let the de
formation process be described by the vector u(x) of displacement components and 
by the second order tensors of total, elastic and plastic strains, represented in vector 
notation by £(#), e(x) mdp(x), respectively. The material is assumed to obey an elas
tic-plastic, time-independent constitutive law described by an internal variable model 
in terms of strains, stresses a{x) and static and kinematic internal variables x(x) and 
r/(x) [13]. We postulate the existence of two convex potential functions: U[e{x)'], the 
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elastic strain energy potential and V[q(x)], the stored strain energy due to structural 
rearrangements at the microscale. The latter assumption rules out unstable plastic be
haviour («softening»). 

With the above symbology, considering the system in a known configuration and 
state at a given instant, the governing relations in terms of rates (dotted symbols) can 
be expressed as follows: 

(1) CT<r(x)+F(x) = 0, xeQ; n(x)ò(x) = ì(x), xeTt; 

(2) Cù(x) = s(x) = è{x)+p{x), xeQ; u(x) = Q, xeTu; 

(3) <r(x) = - ^ - e{x), x(x) = - ^ r\{x) xeQ; 
de de1 di\dr\ 

^+§ (4) $((F,z)=^TÏ<r(x)+^rjXM^O, xeQp; 

(5) A(JC)^0, xeQp; A(x) = 0, xeQe; Q = QeuQp; 

(6) $(x)X(x) = 0, xeQ; 

(7) p(x)=^- (c7, x) m ; nix) = -1£ (<r, x) A(x), x e Qp. 
da dx 

Equations (1) and (2) express equilibrium and compatibility, C being the 
compatibility linear differential operator and n(x) being a suitable matrix con
taining the components of the outward normal to the (smooth) boundary. Equa
tions (3) relate the static variables a and x to the corresponding kinematic vari
ables è and t]. In (4) <j>(0,z) denotes the continuously differentiable yield function. 
The elastic domain is therefore defined by the condition j>(cr, x) ^ 0- @p is that part 
of the volume where, at the considered instant, <p(&,x) ~ 0> i-e-> the stress point a 
belongs to the boundary of the instantaneous yield surface of the material. On the 
other hand, Qe is the complementary part of the volume where 4>(<r,x) < 0. Plastic 
strain rates can occur only at material points belonging to Qp and eqs. (4)-(6) 
express the loading-unloading conditions, X being a nonnegative plastic multi
plier. 

The eiastoplastic rate problem can equivalently be formulated as a constrained 
minimization problem, e.g.: 

(8) min \s=\ \èT-^TèdQ+l- IifT^-i]dQ- fPHdQ- \fudr • 
è,ij,ù,X 2 J de de 2 J dndn J J 

a QP Q rt 
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subject to: 

(9) 

(10) 

(H) 

(12) 

*(x) = 0, xeru, 

Ck(x) — è(x) = 0, xeQe, 

dò 
Cu(x) - è(x) - ^ ( ( 7 j ) A W = 0, x eQp, 

dò 
f|(x)+^f(<7,#)A(x) = 0, À(x)^0, x e £ p . 

The quadratic functional (8) is convex in view of the assumed convexity of U 
and V. 

This extremum property can be regarded as a generalization to the present internal 
variable model of a theorem presented by Capurso and Maier in [12]. The equiva
lence of the rate problem (l)-(7) with the minimization problem (8)-(12) can be 
shown by writing its optimality conditions according to the Lagrange multiplier 
method. 

(13) 

(14) 

/ 
d2u 

de de1 ,e — s Se dû . . . / - 1 / + C 
dr\dr\ 

"p -

- \PT SkdQ - \iT SùdT + \[CT sY SùdÛ = 0, 

8Ì}dQ = 0, 

(15) 

(16) 

/ 
dò dò 

d<rT dxT 
SXdQ = 0> 

f(x)^0, f(x)À(x) = 07 xeD 'p-

These conditions need to be supplemented by eqs. (9)-(12) which define the feasi
ble domain. In eqs. (13)-(16), s(x), c(x) and/(jc) are Lagrange multiplier functions; Sé, 
Sr\ and SX are free variations in Q of é, fj, and À respectively; Su is a variation in Q of ù 
such that Sù{x) = 0 for xeTu. Enforcement of eqs. (13) for arbitrary Se and STJ implies 
that the corresponding terms in square brackets vanish. Therefore, s(x) and — c(x) can 
be identified with stress rates <F(X) and static internal variables x(x)- Since Su is by defi
nition compatible, eq. (14) can be interpreted as a virtual work equation expressing 
equilibrium in Q and on rt. From eqs. (15) and {IGa) it follows that/fr) = —$(x) ^ 0 in 
Qp and, hence, eq. {16b) coincides with eq. (6). 

An equivalent unconstrained formulation of the constrained minimum problem 
(8)-(12) can be obtained as follows. First, transform the inequality constraint (12£) in
to an equality by introducing the slack variable a2(x) so that À — a2 = 0. Then, write 
the Lagrangean functional £3 associated to the original problem, taking into account 
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the above constraint modification: 

(17) £s(u,è,iiXs,cJ,a)='± \èT-f^TèdQ+± [rf-f^-ndD-
2 J dedeT 2 J dndnT 

- \FTûdQ-\iTûdr+ l[Cù-è]TsdQ + 
ûe 

+ J Ci-é--^(<r,/)A do 
3„[ sdÛ+\ 

dé 

Sx 
cdQ + j[X-*2]fdQ. 

Enforce now the condition of vanishing first variation of £3 with respect to arbitrary 
variations of è, îJ, À, s, c, / , a in Q and to variations of k such that u(x) = 0 for x e Tu. A 
stationary point of £3 such that the second variation with respect to a is nonnegative 
minimizes E and viceversa. In a more compact form, it can be stated that the following 
unconstrained saddle-point problem: 

(18) min maxljEg} 
ù,è,ri,X,oc s,c,f 

is equivalent to the original constrained minimization problem (8)-(12). 

3 . DlSCRETIZED ELASTOPLASTIC RATE PROBLEM 

Let us subdivide the domain Q in finite elements and introduce in £E independent 
interpolations of all fields (including a2) over each element e. 

(19) ub (x) = Ni (x) ue, l*2(xf\b = K (x)(a 2\e 

1 
F = -

\ 

r...i\ 
s ? | 

[•••ij 

(20) èh(x) = Ne
e(x)Ìe, if(x) = N<(x)rl

e, 

(21) sh(x)=Ne„(x)P, -ch(x) = M(x)xe, 

Xh(x) = Ne
x(x)ke; 

f(x)=N;(x)p. 
In eqs. (19)-(21) a superscript h marks modelled fields over the considered element; 
barred symbols denote independent parameters, matrices N[.-] (x) collect suitable inter
polation functions whose features are to be specified later; the notation used in eqs. 
(21) has been chosen because of the special meaning that the Lagrange multipliers as
sume at the solution. In what follows ue will be interpreted as a vector of displacement 
nodal values, i.e. its components can be identified as the displacements of specific ma
terial points; on the contrary, the components of the other barred vectors not neces
sarily will be given a physical meaning. 

Henceforth, all symbols without the superscript e will denote «global» vectors rel
evant to the whole assembled aggregate of finite elements. Consider now the dis-
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cretized form £s of £*: 

(22) £s{ÙXnXWx,<l>,à)=\ \eTNj^-NeedQ + 
2 J de de1 

Q 

• / 
+ \lCNuM-Neèì1N0 TffdQ+ I 

Q, 

CNuu-Nj-
da* au KtrdQ-

" / K l ? + f ^ * TNxXdO + j[NxÌ-Naa
2]TN^dQ. Sx 

up up 

The solution of the boundary value rate problem discretized by eqs. (19)-(21), is ob
tained by enforcing the first derivatives of £3 to vanish and its second variation with 
respect to a to be nonnegative: 

(23) - ^ = \NT
uC

TN,adQ- [NT
UF<1Q- fiVjj</r = 0, 

Su J J J 

(24a) 

(24b) 

de J \dedeT 

Q 
S-J* 
-̂H a2 y 

01/ \ 8 , 8 V ^ , - ^ I * - 0 ' 

(25) ^ = / i V j ( - ^ . Ì - f ^ î + NtfU-O, 

(26) 

(27) 

(28) 

(29) 

[CNuû-NedidQ+ IN; 
!• 

—f = J Nj(N,X-Nxa
2)dO = 0, 

d<l> a. 

d<p 
CNUÛ-Neï--^N,X dO = 0, 

JKt,+ |£jvAX 
fy 

àì = o, 

d£i 

da 
^ = - diag [IxiWlN^dQ = 0, 
\n J 

d2£3 

dada1 
(30) < î a r J ^ ^ £ a = - £ a r diag D4, ]<&<?« 3=0 V<?a, A=NjNÀ, 
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where A{ in (30#) denote the /-th component of the column vector A defined in (30c). 
In eq. (29) it was taken into account that 3a2 /da = diag [2a/]. Equations (23)-(30) 
can also be regarded as characterizing the solution of an unconstrained saddle-point 
problem: 

(31) min max {£s } . 

So far, the interpolation matrices N^ (x) were kept purposedly unspecified. A set 
of governing relations formally similar to the one governing the continuum rate prob
lem can be obtained in terms of the barred quantities by a suitable choice of the inter
polation matrices. Let us assume that: t) two barred vectors relative to conjugate static 
and kinematic quantities {i.e. 0" and e, x a n d % $ and ^) have the same number of com
ponents; it) the product of the shape matrices pertinent to conjugate fields gives a 

nonsingular matrix I e.g. det f j NjNa dû j # 0 j . 

Considering, e.g., eq. (24a) one has: 

JNjKdQ JNJ (32) <T = 
d2u 

de de1 
NedQe^E(ë)e. 

Equation (32) can be thought of as the discrete counterpart of Hooke's law, eq. (3a), 
E playing the role of the matrix of current tangent elastic moduli. However, it is worth 
noting that, for an arbitrary choice of Ne and Na complying with i) and it), E is not 
symmetric. On the other hand, if the shape matrices are assumed to satisfy the addi
tional «orthogonality condition»: 

(33) JNjKdQ=I, /=diag[l], 

E turns out to be symmetric. Similar considerations, applied to the other equations of 
set (23)-(30), suggest that the shape functions in the couples N^ -r- Nx and Nx + N$ be 
chosen such as: 

(34) JNfNx dQ=I, JNj[Ni dD=I. 

By introducing the additional conditions (33)-(34) in (23)-(30) and taking Na =NX 

one obtains: 

(35) CT<J = F, having set: C = JNjCNudQ, F= jN^FdQ + jNT
utdT, 

(36) a — \ 
Nj-f^-TNeda 

de de 
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(37) 

(38) 

(39) 

(40) 

(41) 

/ 
NT^V 

<i> 

N„dQ n, 

a + da' 

C « = ë in Qe> C « = ë + 

/ 

k£* dQ 

X> 

X in Qpy 

I N.dD X in Q 
/>> 

k = a2^0, 2a,-fr = ()=>*,& = 0, 0 ^ 0 in û p . 

It is worth noting that, at the considered instant, U[e(x)]y V[i](x)] and $[<r(x),x(x)] 
are known functions of the position and therefore need not be modelled. However, a 
substantial simplification in eqs. (36)-(40) can be achieved by modelling e(x), if(x), 
a(x) and x(x) by the same interpolation functions used for è{x), t](x)y s(x) and —c(x)y 

respectively. In fact, the following relations can be easily shown to hold: 

(42) U[eh (*)] = U[Ne (x) êl => f Nj - f^ - NedQ = - ^ J - , V=t U[eh (*)] <&, 

(43) ^(X)i=VlNv(x)^JN^-^-NvdO=^T, V-jW(*)]JQ, 
a»/* a»/' di]di\ 

tfo* (x),yt (*)] = ftN*(*) a,Nx (x)Xl^ j N j -^NadQ= ^ , 

(44) 

I Nj^Nxdû=^, <l> = JNJt[ab(x),X
h(x)]dQ. 

With the additional interpolations, eqs. (36)-(40) can be written in the form: 

(45) 

(46) 

<r = aëaëT< 
- a 2 v -

dljdtj 

do — dd> — 

(47) C i ^ e i n O , , C« = e+ - ^ i i n û . , 
3(7 

3 0 T t fj = — X in 0D 

3/ 
Equations (35), (41) and (45)-(47) are the discrete counterparts of the relations 

which govern the continuum rate problem. Equations (35) and (Ala, b) express equi
librium and compatibility in terms of the unknown interpolation parameters. All oth-
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er relations (41), (45)-(46) and (47c), can be regarded as a «global» constitutive law in 
the sense that they are written in terms of a discrete number of parameters concerning 
the whole structure rather than single material points chosen for the enforcement of 
the material model. 

4 . DlSCRETTZED ELASTOPLASTIC RATE PROBLEM IN GENERALIZED VARIABLES 

4.1. «Generalized» variables. - The barred variables appearing as parameters in the 
interpolations (19)-(21) are «generalized» in Prager's sense [4], when the adopted 
interpolations are such as to satisfy conditions (33) and (34). In fact, according to 
Prager's definition, a static and a conjugate kinematic variables (typically moments 
and rotations) relative to one element are said to be «generalized» if their scalar prod
uct equals the virtual work done over the same element by the corresponding continu
ous fields. With reference to eqs. (20) and (21), this means that: 

(48) Pi = J[i* (x)]Tèb (x) dQo \N7(xfNe(x) dû = / , 
Q Q 

(49) XTV = jlXh (*)1T yf'(x)dOoJNx (x)TN, (x) dQ=I, 
ûp ap 

(50) ïj>TX = jl$h(x)]Xh(x)dQoJNi(x)TNx(x)dQ=I. 
Q, ap 

A possible way of satisfying the ortogonality condition (48b) is to choose Nc as follows, 
for given Ne: 

(51) NAx) = Ne(x) JNe(x)TNe(x)dQ - 1 

and viceversa. Similarly for (49b) and (50b). 
By substituting into the integral in eq. (48a) the interpolation (21a) of ó^(#)/ìn 

terms of <r, one has: 

(52) are = ffJNj(x)èh(x)dÛ Va => e = jNj(x)èh(x)dQ. 
Q Q 

Similar substitutions for the other fields (both static and kinematic) provide analogous 
expressions for all generalized variables. Therefore, all generalized components can 
be interpreted as particular weighted averages of the corresponding interpolated 
fields over the domain Q, the weights being the interpolation functions of the conju
gate fields. As a consequence, it can be shown that the generalized governing relations 
(35), (41) and (45)-(47) do not imply a pointwise fulfillment of the corresponding con
ditions in terms of continuous fields. Consider, e.g., the compatibility eq. (47a) which 
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comes from the stationarity of £s with respect to a (eq. (26)): 

(53) f Nj(x)[Cuh(x) - eh(x)]dQ = 0. 

As it can be easily seen, the compatibility constraint between interpolated displace
ments and elastic strains in Qe turns out to be enforced only in a weighted average 
sense, Nj being the matrix of the weight functions. 

REMARK 4.1. Let us assume that the interpolated fields satisfy pointwise eqs. (1)-
(7). This implies fulfillment of the corresponding equalities in eqs. (35), (41) and (45)-
(47) in terms of generalized variables. It is easy to show that this does not apply to in
equalities. For instance, define X by an expression of the type of (52 b): 

(54) X = JNj(x)Xh(x)dQ. 

Since the interpolation functions N$ (x) are not necessarily sign-constrained, the non
negativeness of Xh(x), VxeQpy is not sufficient to guarantee the nonnegativeness of 

i 
REMARK 4.2. As noted at the end of Sect. 3, if no special assumptions are made on 

the interpolation functions, the relations describing the constitutive law at a «global» 
level would exhibit a coupled dependence on generalized variables pertaining to dif
ferent portions of the domain. The constitutive coupling shows up even if the orthog
onality conditions (48b)-(50b) are fulfilled. The portion of space to which a general
ized variable pertains is here intended as that part of the domain where the shape 
function which multiplies that variable does not vanish identically. 

This coupling is present at difference from what happens for the constitutive law 
of the continuum where only values relative to a single material point are involved. 
Furthermore, this coupling entails a most unfavourable computational burden when 
an integration in time is carried out along the process of loading [11]. For this rea
son, desirable choices of the interpolation functions are such that the «global» consti
tutive law can be written as an ensemble of decoupled relation sets, each involving on
ly generalized variables pertaining to a single finite element. Assume, in addition, that 
the kinematic fields are interpolated in terms of their local values at the Gauss points 
(the static fields are interpolated according to (48b)-(50b)) and the integrations are 
carried out numerically by using the same Gauss points. In this case a complete de
coupling occurs and the constitutive law can be written for each Gauss point separate
ly, also when expressed in terms of generalized variables [11]. 

4.2. On the convexity of the generalized yield functions. - If a given elastoplastic 
material obeys the principle of maximum dissipation [14], its yield function can be 
easily shown to be a convex function of stresses and static internal variables. It is here 
proved that, if such a material is considered, its generalized yield functions are convex 
in the generalized (stress and static internal) variables. 
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The principle of maximum dissipation can be formulated at a local level as follows 
(p and r\ being assigned fields): 

(55) max {D(x) = <?(x)p(x) -X
T(x) rç(x)|#*,*,*) ^ 0 VxeQp}, 

D denoting the dissipation function. 
Integrating the dissipation rate over the volume and using the classical Lagrange 

multipliers method as in Sect. 2, one is led to consider the following functional: 

(56) £D = - j[(Tr(x)p(x) - xT(x) fj(x)] dQ + J[#<r,*,x) +/S2 (*)] X(x)dQ, 
Qp Qp 

where fi2 is a slack variable and X(x) is a Lagrange multiplier. It is easy to show that the 
stationary point of JSD maximizes D(x) under the condition that the second variation 
of £$ with respect to /3 is nonnegative. Let us model all fields in (56) by using for r\ and 
À the interpolations (20b} c) and for a and x the interpolation matrices Na and Nx of 
(21a, b). Moreover, let us set: 

(57) ph (x) = Ne (x)p, [p2(x)ih = Nç (x) ~p2. 

Taking into account the orthogonality conditions (48b)-(50b) and making use of the 
definition (44d) of $, the discretized version of £D reads: 

(58) ÌD(^£X^) = - ^ + F ^ + ( ^ ^ ) + J82)rl 

For given p and fj, a saddle point of £D (max with respect to X and min with respect to 
0,X>P) is obtained from the following conditions: 

dóT - - 3óT -
(59) -p+-^X = 0; î / + - ^ A = 0; 

da Sx 

(60) ïj) + p2 = 0; diag[2Â] A = 0 = ^ ^ = 0; 2A,^0 . 

Let us mark by an asterisk * the solution of problem (59)-(60). The following inequali
ty holds: 

(61) 5 D ( 5 * , / * , A * , ? * ) ^ £ D ( â , z , A * , ^ ) . 

Making use of the definition (58) of £Dy of eqs. (59) and (60d), one has: 

» -£ <**>#* 
Equation (62) expresses the convexity of 0(<r,^). 

4.3. Minimum properties in generalized variables. - The problem of finding 
a stationary point of £E can be reformulated as a constrained minimization problem 
by reversing the procedure followed in Sect. 2. Namely, some independent variables 
in the expression (22) of £E can be removed by introducing suitable constraints 
on the remaining variables. The addition of supplementary constraints is admissible 
as long as they are satisfied at a stationary point of £3. Depending on the 
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nature of the variables which appear in the resulting function, either a kinematic 
(/) or a static {it) extremum property is obtained. 

{i) Eliminate the Lagrange multipliers s, c and/from the expression (22) of £s 

by adding the constraints (26), (27) and (28). Eliminate a2 by transforming the con
straint (28) in the inequality Â ^ 0. The following constrained minimization problem is 
thus obtained: 

2 Sede1 2 drjotf 
(63) 

subject to: 

(64) 

min 
«, e, % À, 

C Cu = e in Qe> Cû = ë-\—%rk in Qp, 
da 

(65) i}=--~i in Qpy i^OinQp. 

{it) A second minimization problem is obtained by considering the following 
feasible domain: 

(66) CTa-F=0 in Û, 0 = - ^ f f + ^ / ^ 0 in £L. 
So-1 3/T 

A stationary point of £3 satisfies eq. (66) because they coincide with eqs. (23), (25) 
and (30&), respectively. Introducing eqs. (66) in the expression (22) of £Sy the saddle 
point problem (31) is transformed as follows: 

. f l ,T d2V A , i ^ d2V ^ A r - - T - - T / S 0 - 3 0 - \ l 
(67) mmmax - e J — — - e + - î | J i f - g J cr- i / J / - a 2 ~ = f ^ + ~ ^ * 

è,5,5 i ï [ 2 dedeT 2 djjSrf \ s<? d/T /J 

subject to constraints (66). 
The kinematic variables e and r\ are eliminated by defining Uc {&) and Vc {x) as Leg-

endre transforms of U{e) and V{TJ), respectively: 

(68) LJc(<7) = - û ( ë ) + â r ë , vc(x)=jV(n)+xTn-

Since the last term in (67) is always nonnegative and a2 does not play any role in other 

—2
T\ 30 — _^ 30 -

addends, at the solution it must be a —=-a-\—=z%\ = 0. Therefore, problem (67)-
(66) can be recast in the form: \ % 

(69) max 

subject to constraints (66). 

2 dadeT 2* dxdX
T \ 

REMARK 4.3. The kinematic extremum property, eqs. (63)-(65), and the static one, 
eqs. (69) and (66), are formulated in terms of rates. A formulation in terms of finite in
crements can be achieved subdividing the history of loading in finite time intervals 
and introducing an approximate integration scheme. In particular, it can be shown 
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that the adoption of a backward-difference integration would lead to the same kine
matic and static theorems presented by Comi et al. in [11]. The existence of ex-
tremum properties for the finite-step problem is of practical interest inasmuch as it al
lows to provide convergence conditions for a commonly used predictor-corrector iter
ation algorithm [7, 15]. 

REMARK 4.4. It is worth noting that a direct discretization in terms of generalized 
variables of the objective function E (eq. (8)) and of the constraints (9)-(12) of the 
minimum problem of Sect. 2, would not lead to the same kinematic problem (/) (eqs. 
(63)-(65)) of this Section. In fact, while the objective function would be the same 
(E = 6), the discretized version of the constraints (9)-(12) would not coincide with 
(64)-(65). 

5. CONCLUSIONS 

This paper was aimed at a variationally consistent formulation of the elastoplastic 
boundary value rate problem in generalized variables. By «variationally consistent» we 
mean here that all governing relations are obtained from the stationarity conditions of 
a variational principle. The path of reasoning adopted to this purpose can be summa
rized as follows: a) starting from an extension of Capurso-Maier's kinematic theorem, 
the elastoplastic continuum rate problem is formulated as an unconstrained saddle-
point problem; b) a finite element independent discretization of all fields is intro
duced; c) the discretized version of the governing relations is obtained by the saddle-
point conditions on the discretized functional; d) at this stage, the generalized variable 
interpolation appears to be the most natural choice, as it provides discretized consti
tutive equations formally identical to the ones for the continuum problem; e) the con
vexity of the generalized yield functions is proved by discretization of the principle of 
maximum dissipation which holds when the material is stable. 

As a further result, a couple of minimum properties in generalized variables has 
been presented. The adoption of a finite-step backward-difference time integration 
would transform these minimum principles into those presented in [11]. 
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