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Geometr ia algebrica. — A remark on the Picard group of spin moduli space. N o ­

ta (*) de l Cor r i sp . M A U R I Z I O C O R N A L B A . 

ABSTRACT. — We describe a number of classes in the Picard group of spin moduli space and deter­
mine the relations they satisfy; as an application we show that the Picard group in question contains 4-
torsion elements. 

KEY WORDS: Moduli; Algebraic curves; Theta-characteristics. 

RIASSUNTO. — Una osservazione sul gruppo di Picard dello spazio dei moduli delle curve con struttura di 
spin. Si descrivono varie classi nel gruppo di Picard dello spazio dei moduli delle curve con struttura di 
spin e si determinano le relazioni che esse soddisfano; come applicazione, si mostra che il gruppo) di Pi­
card in questione contiene elementi di ordine 4. 

1. I N T R O D U C T I O N 

Spin moduli space (in genus g) is the space parametrizing all couples (smooth 
genus g algebraic curve C, theta-characteristic on C); it has a natural structure of alge­
braic variety and will be denoted Sg. A well-behaved compactification of Sg was in­
troduced in[ l ] . In the same paper several natural classes in the Picard group of this 
compactification (or rather of the corresponding moduli stack) were described. It is of 
course of interest to determine whether these classes generate the Picard group in 
question and what relations they satisfy. The answer to the first problem is still un­
known. The second problem is easier, and we can give a complete answer to it. In fact, 
all relations are already described in[l] , but the most remarkable among them is 
stated there without proof. The main purpose of this Note is to provide the missing 
proof; as a byproduct, we describe new natural classes and determine their relation to 
the ones defined in [1]. We conclude by showing that the Picard group of spin mod­
uli space contains 4-torsion. We work over the complex numbers throughout. 

2. SPIN CURVES 

In this section we collect, without proof, those facts about spin moduli space and its 
compactification that will be relevant for our purposes, referring to [1] for details. 

A spin curve of genus g is the datum of a semistable genus g curve X, plus an in­
vertible sheaf Cx °f degree g — 1 on X and a homomorphism of invertible sheaves 
a x : Çf^—^x s u c h that: 

Ì) If we call exceptional those smooth rational components of X that contain only 

two singular points of X, then no two distinct exceptional components of X meet. 

it) The restriction of £x
 t o anY exceptional component of X has degree 1. 

Hi) ax is n o t z e r o a t a general point of every non-exceptional component of X. 

(*) Presentata nella seduta del 12 gennaio 1991. 
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Notice that the definition forces <xx
 t 0 vanish identically on all exceptional compo­

nents of X and to be an isomorphism elsewhere. The datum of a Çx
 a n d a n ax satisfy­

ing it) and Ut) is called a spin structure on X. Clearly, a spin curve such that X is 
smooth amounts to the datum of X plus a choice of theta-characteristic on it. A family 
of spin curves consists of a flat family of semistable curves/: X—>B, plus an invertible 
sheaf Ç/ on X and a homomorphism a/: Ç®2 -» ay such that the restriction of these data 
to any fiber of/gives rise to a spin curve; here, and in the sequel, we write ay for the 
relative dualizing sheaf OJX/B. Given a family of spin curves as above, one sets S/ = 
= co/ ® Ç/2. Very roughly speaking, 8/ «is» 0(E), where £ stands for the divisor swept by 
the exceptional components in the fibers of/(when this is a divisor). Let k: y^B be 
another family of spin curves: an isomorphism between/: X—»B and k'.y—>B con­
sists of isomorphisms h: X—> y; y: h* (&)—> Kf such t h a t / = k°h and 7 is compatible 
with the natural isomorphism between h* (cok) and ay. Notice that this differs slightly 
from the notion of isomorphism used in[l] ; at the end of this section and at the be­
ginning of the next we shall explain how this affects the results of [1]. 

The set of isomorphism classes of spin curves of genus g is denoted Sg; it carries a 
natural structure of algebraic variety which makes it a coarse moduli space for spin 
curves, and it can be shown to be projective. One defines the parity of a spin curve X 
to be the parity of h° (X, Çx) >

 m the smooth case, this reduces to the notion of parity of 
a theta-characteristic. As in the smooth case, parity is a deformation invariant, so Sg is 
the disjoint union of two connected components Sg

v and Sg
dd consisting, respectively, 

of even and odd spin curves. 
The boundary dSg =Sg—Sg of spin moduli space is a divisor made up of ir­

reducible components Af, Af\ Bf, / = 0 , . . . , [g/2] and B°dd, z = 0,..., [(g- l ) /2] . 
The general members of these components are as follows: 

— For Af (resp., JBf ), i> 0: two smooth components Q and C2 of genera / and g — i, 
joined at points p e Q and q e C2 by a P1, with even (resp., odd) theta-characterist-
ics on C\ and Q «glued» to 0(1) on P1. 

— For Afd (resp., Ef^), i>0: as above, but with an even (resp., odd) theta-charac­
teristic on Q and an odd (resp., even) one on C2. 

— For AQV (resp., A^): an irreducible curve of genus g with one node, with an even 
(resp., odd) spin structure. 

— For BQ (resp., Bodd): an irreducible curve of genus g with one node, blown up at 
the node, with an even (resp., odd) spin structure. 

An isomorphism between families of spin curves / : X—» B and k : y —» B was de­
fined in [1] to be an isomorphism of fibre spaces h : X-> y such that there exists an 
isomorphism y: h* (Ç )̂~> ?/ compatible with h* (ajk) = o)f. This differs from the con­
vention adopted in the present paper in that the datum of y is not included in the defi­
nition; notice however that, as we observed in[l] , given h, y is determined up to 
sign on each connected component of B. This change in definitions causes no essential 
modifications in the mathematics of [1], although, of course, the wording of some 
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results has to be modified. Naturally, the most apparent change is in the structure of 
the automorphism group of a spin curve X. The «new» automorphism group is a cen­
tral extension of the «old» one by a cyclic group of order two, this being generated by 
the automorphism «multiplication by - 1 in Çx»> which will be denoted ex fr°m n o w 

on. Accordingly, all the results in[l] concerning automorphisms of a spin curve X 
are valid in our context, provided one interprets Aut0 (X) to mean the group of those 
inessential automorphisms of the semistable curve underlying X which come from au­
tomorphisms of X (an automorphism is said to be inessential if it restricts to the identi­
ty on the complement of the exceptional components). 

3. NATURAL DIVISOR CLASSES 

We denote by Sgi S™} Sgy etc., the moduli stacks of genus g spin curves, even genus 
g spin curves, smooth genus g spin curves, and so on. A line bundle on Sg is the datum 
of a line bundle Lf on B for every family/: X—» B of genus g spin curves and of an iso­
morphism between h* (L&) and Lf for every cartesian diagram of families of spin 
curves 

x ^ y 

fi k\ 
B — ^ T 

These isomorphisms are required to satisfy a suitable cocycle condition (see [4,5], 
or [6] for details). The Picard group Pic(^) consists of all isomorphism classes of 
line bundles on Sg. One similarly defines the notions of line bundle and Picard group 
for Sf, Sg and_so on. Clearly, Pic (Sg) is the direct sum of Pic (Sf) and Pic (S°dd); if r) is a 
class in Pic (Sg) we shall denote its Pic (Sg

v)~ and Pic (Subcomponents by vf° and 
riodd. 

The discrepancy between the definition of isomorphism of spin curves adopted 
here and the one adopted in [1] obviously affects Picard groups. More precisely, if L 
is a line bundle on Sg and X is a spin curve, the automorphism sx acts on Lx: the «old» 
Picard group is precisely the subgroup of Pic (sg) consisting of the classes of all the e-
invariant line bundles L, that is, those such that the action of sx on Lx is trivial for any 
X. For us, this makes litde difference, for all the divisor classes we work with are 
e-invariant. 

The most obvious classes in Pic (Sg) are the classes A and $i9 i = 0,..., [g/2], coming 
by pullback from the classes with the same name in Pic {3Jlg) (cf. [5] or [6]). For the 
line bundle L with class A, one has that Lf = det/* ay = det R/* ay for any family of spin 
curves/: X—>B, while the ^ are associated to the boundary components of Mg. In[ l ] 
we mimicked these constructions, defining classes af, af4, (3f, and $dd, associated to 
the boundary components A?, A0^, Bf', and Bfdd of spin moduli space, and a class fx 
corresponding to the line budle M such that M/ = detR/*£/ for any family of spin 
curves f:X->B. To simplify notation, we set fHffi2

 = 0 when g is even. In[ l ] it is 
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shown that 

(3.1) *0=*o+2j8o, */ = 2(a/ + j8/), / > 0 . 

There is another construction which yields classes in the Picard group of Sg. Let 
/ : X-+B be a family of noded curves, and let LyM be line bundles on X. In [2] (cf. 
also [3]), Deligne shows that the line bundle (L,M) on B defined by 

(3.2) (L,M) = detR/v (LM) ® (detR^L)"1 ® (detR^M)"1 ® detR/*0 x 

depends bilinearly on its two arguments, in the sense that there are natural isomor­
phisms (UUM) = (LUM) ® (hM)> (L,MiM2) = (L,Mi) ® (L,M2), satisfying 
suitable compatibility conditions. 

When B is a smooth curve, denoting by F a general fiber of/, by b the genus of B, 
and by (•) the intersection pairing on X, the degree of (L,M) is: 

deg (L,M)= degR/* LM - degR/* L - deg Rf*M + degR/* 0* = 

= Z(LM) - XW\F) X(0B) ~ X(L) + X(L\F) X(0B) -

-X(M) + x(M\P)x(0B) + x(Ox) ~ X(0F) X(0B) = 

= x(LM) -x(L) -x(M) + x(Ox) = (L-M). 

Using (3.2), linearity, and the fact that, for any L, detR/*(L~1oy) = detR/AL, 
we find that <L,ay> ® (m)'1 = {L,L~luf) s (detR/^w/)2 ® (detR/.L)"2 . This 
proves 

(3.3) (detR/AL)2 = (L,L) ® <L, w/)"1 ® (detRAcy)2, 

which can be viewed as a concrete version of the Grothendieck Riemann-Roch theo­
rem for / and L. On the other hand, multiplying together the isomorphisms 

(L,IM) = detR/* (L2M) ® (detRf^L)'1 ® (detR/* (LM))"1 ® detR/* ay, 

(L,L) = {L,L-1)-1 = detR/*L ® detR/* (L"1) ® (detR/* ay)"2, 

<L,M> = detR/* (LM) ® (detR/^L)"1® (detR/^M)"1 ® detR/*<of, 

( L , ^ ) - 1 = (L- ' .oy) s d e t R / ^ L - 1 ^ ) ® (detR/^L-1)-1 , 

shows that 

(3.4) detR/v(L2M)= <L,L}2 ® <L,M>2 ® ( L , ^ ) " 1 ® detR/*M. 

As / : 3C—>B varies among all families of spin curves, the line bundles (£/>Ç/) de­
fine an s-invariant line bundle on Sg. This gives rise to a class in Pic (Sg), which, by 
abuse of language, we shall indicate by ( £ Ç). Similarly, one can define classes ( <w, w ), 
(Ç,g), (8,8), and so on. The relations among these classes and the classes introduced 
in[l] are summarized in the following result, where we have set 

* = 2 * „ *=A>+E(a,- + ft). 
/>0 />o 
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(3.5) PROPOSITION. The following relations hold in Pic(^): 

i) <*>,«> =0 , 

it) <C,8> = *, 

«0 (8,8) = -2S, 

«;) <Ç,Ç> = 2 A - 2 ^ - ^ , 

0) <£<*>) = 4 A - 4 / x - ^ = -12/x~^ + a0, 

w) (*>,*>) = 1 2 A - £ = - 2 4 ^ - £ + 3 a 0 = - 2 4 / x - 2 ^ + 2 a 0 . 

We begin by proving i) and #). Let/: X—>B be a family of spin curves. Then, us­
ing the definition of 8/ and duality we find that 

<oy,g/> = detR/* (ayfy) ® (detR/* ay)"1 ® (detR/*»/)"1 ® detR/;v0x = 

= detR/*8 /-
1®(detR/*8 /r

1 , 

(Zf98f) = detRA (C/87) ® (detR/Vf C/)"1 ® ( d e t R / ^ ) " 1 ® detR/*0 x = 

= (detRA8 / )" 1®detRA(9 x , 

so <Xf\ Zj —» ay yields canonical trivializations of (ay, 8/) and (C/,8/) away from the 
fibers of/that lie in Af,Afdd, i>0, or in Bfv,Bfd,i^0. Thus, both (co,8) and <Ç,8> 
are integral linear combinations of boundary classes other than 0$ and ag^. To com­
pute the coefficients, it suffices to evaluate the degrees of (ojf,Sf) and (C/,8/) for fam­
ilies/: X-+B of spin curves such that B is a smooth curve and the general fiber of/is 
smooth. For any i> 0 (resp., any / ^ 0) denote by Ef- (resp., F/) the divisor on X con­
sisting of all exceptional components of type Af or Afd (resp., Bf or Bf^) in the 
fibers of/. Notice that 8/ = 0 X ( 2 £/ + 2 F,). Then, since ay and £/ restrict, respective­
ly, to a trivial line bundle and a line bundle of degree one on each exceptional 
component, 

deg(W/ ,8 /) = (W/-8/) = 0, 

deg (Çf,&f) = (Çf&f) = E deg/(a,) + 2 deg/(ft) = de g /^. 

This proves /) and «); since 8 = coC~2> /«) follows from them by linearity. That 
(cu, co) = 12X — S is due to Mumford[5]. As for iv), formula (3.3), applied to L = £ 
yields (Ç,Ç) = (Ç,a)) +2(x- 2A. Since 8<f = w, «") and the bilinearity of (, ) imply iv). 
Formula iv), in turn, implies the following result, whose proof is the main goal of the 
present Note. 

(3.6) THEOREM. a0 = 4A + 8̂ 1. 

To see this, notice that 1 2 * - $ = (to,co) = (8,a>> +2(Ç,a>> =2<Ç,8> +4(Ç,Ç> = 
= 2S + 8A - 8/jt - 4tf. Noticing that it follows from (3.1) that 

(3.7) S = 2$ + <x0, 

this proves (3.6). The remaining parts of (3.5) follow by combining (3.6), (3.7), and 
parts i), it), Hi), and iv) of (3.5) itself. 
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The construction of A and p can be generalized as follows. Fix integers n> m and, 
for any family/: X->B of spin curves, set L/ = detR/* (£/£f ). This defines a line bun­
dle on Sg; we shall denote by \Ln>m the corresponding class in Pic(Sg). Notice that 
/*i,o = / x an<i Aat, by duality and because of the fact that w = 8Ç2, fj )̂W equals 

/ x 2 ~ » , l - w 

(3.8) PROPOSITION. For <z/z;y integers n and m, the following holds in Pic(Sg): 

P*,« = (^2 ~ 2^)(^ ~ ft) ~ (n2 - n + 2 ^ 2 - 2«w) tf/2 + A. 
In view of (3.5), formula (3.4) makes it possible to calculate (xn>m provided one 

knows how to express fx0>0, fx1>0> |Ut01, and jutu, in terms of A, fx and S. Now, fx0,o Is Just 

>̂ f*i,o equals /x, while, using duality, (3.4), and (3.5), one gets |x1;1 =fx10 =n, ^0,1 = 

= 1*2,0 =h~$- The remaining computations are left to the reader. 
All the classes we have defined belong to the subgroup G of Pic (Sg) generated 

by the classes ^ , [xodd
y X

e\ Xodd, af, afd, i= 1,..., [ | /2], ff, z = 0,..., [g/2], and # " , 
/ = 0,..., [(g — l) /2] . These generators are independent, as follows from (3.6) and the 
independence of the classes À", Xodd

y *T, afd, ffî, and ^ , proved in[ l ] . Thus, so 
far as we know, Pic (Sg) has no torsion. Remarkably, as was already observed in[ l ] , 
Theorem (3.6) implies instead that A + 2pt maps to a 4-torsion class in Pic (Sg). More 
exactly, if we denote by p the restriction map from Pic (Sg) to Pic (Sg) we have the fol­
lowing result. 

(3.9) PROPOSITION. The subgroup p(G) of Vic (Sg) is the direct sum of two infinite 
cyclic groups generated by p ( / 0 and p(p.odd) and of two cyclic groups of order four generat­
ed by p (A^+2^ ) and p(Xodd + 2ixodd). 

To prove this, notice that, since all boundary classes map to zero in Pic (Sg), p(G) is 
generated by p ( / 0 , pi^odd)> P ( A ^ + 2 / / * ) , and p(Xodd + 2[xodd). Moreover, (3.6) shows 
that 4p(A^ + 2[iev) = 4P{Xodd + 2fxodd) = 0. Suppose there are integers h and k such that 
hp(yfv) + kp{Xev + 2[xev) = 0. Then V + k{Xw + 2^) is a linear combination of even 
boundary classes. Using (3.6), we find that V * + HX™ +2(xev) = 4/(Aw + 2 ^ ) + ..., 
where the dots stand for a linear combination of even boundary classes different from 
off. It follows from the independence of/*, Aw, af, / > 0 , /3f, / > 0 , that h = 0 and 
41*, as desired. The argument for p({xodd) and p(A°^ + 2 ^ ) is the same. 
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