ATTI ACCADEMIA NAZIONALE LINCEI CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI LINCEI MATEMATICA E APPLICAZIONI

Stefano De Michelis

Line bundles with $c_1(L)^2 = 0$. A six dimensional example

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Serie 9, Vol. 2 (1991), n.3, p. 225–227.

Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLIN_1991_9_2_3_225_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Accademia Nazionale dei Lincei, 1991.

Rend. Mat. Acc. Lincei s. 9, v. 2:225-227 (1991)

Topologia. — Line bundles with $c_1(L)^2 = 0$. A six dimensional example. Nota di STEFANO DE MICHELIS, presentata (*) dal Corrisp. C. PROCESI.

Abstract. — We exhibit a six dimensional manifold with a line bundle on it which is not the pullback of a bundle on S^2 .

KEY WORDS: Surgery; Manifold; Line bundles.

RIASSUNTO. — Fibrati in rette con $c_1(L)^2 = 0$. Un esempio di dimensione 6. Si costruisce una varietà di dimensione 6 con fibrato di linea che non è la preimmagine di una mappa su S^2 .

In a previous paper [2] we considered the following question: Let L be a line bundle on an *n*-dimensional oriented manifold M and let $c_1(L)^2 = 0$. When is L the pull-back of a line bundle over S^2 ?

We proved that the answer is always «yes» if $n \le 5$ (the case of $n \le 4$ is trivial) while there are examples with non vanishing obstructions for $n \ge 7$. The case of n = 6 was left open. In this paper we shall prove that there exists a 6-dimensional manifold and a line bundle over it with nonvanishing obstruction. The construction is somewhat indirect: we first construct a Poincaré type and then we prove that it can be realized as a smooth manifold using obstruction theory and the surgery techniques of Browder-Novikov. It would be interesting to exhibit it explicitly.

THE POINCARÉ DUALITY SPACE

Consider the wedge $S^2 \vee S^4$. Its homotopy groups are given by the Hilton-Milnor theorem and in particular we have $\pi_5 (S^2 \vee S^4) = Z \oplus Z/2 \oplus Z/2$. The generators are respectively $[i_2; i_4]; \alpha; \eta$ with i_2, i_4 the identities, α the nontrivial element of $\pi_5 (S^2)$ and η the double suspension of the Hopf map, generating $\pi_5 (S^4)$.

The six-dimensional complex will be obtained by attaching a 6-cell e^6 to the wedge according to some map $f: S^5 \rightarrow S^2 \times S^4$. The homotopy class of the complex will depend on the class of $f \in \pi_5 (S^2 \vee S^4)$. Observe that if we want the complex to satisfy Poincaré duality we have to choose the component of f along the Whitehead product to be one. There are four possibilities, depending on the $Z/2 \oplus Z/2$ factor. Let f be $[i_2; i_4] + \varepsilon \alpha + \delta \eta, \ \varepsilon, \delta = 0, 1$, we will analyze the possible candidates:

If $\delta = 1$, $Sq^2 : H^4(M; Z/2) \to H^6(M; Z/2)$ will be surjective on the Poincaré complex. We have proved in [1] that the six-dimensional obstruction is determinate only up to the image of $Sq^2 : H^4(M; Z/2) \to H^6(M; Z/2)$, so to find an obstruction we need s = 0. If $\varepsilon = 0$, too, we have the homotopy type of $S^2 \times S^4$, which is not interesting. We are left with $\varepsilon = 1$, $\delta = 0$.

We call the corresponding space X.

(*) Nella seduta del 15 dicembre 1990.

THEOREM 1. There is a line bundle L over X such that $c_1(L)^2 = 0$ but L is not the pullback of any line bundle on S^2 .

PROOF. Let L be the line bundle with $c_1(L)$ dual to the homology class of S^2 in X. The couple (M; L) satisfy the hypotheses of Theorem 1 of [1]; so we have to prove that the obstruction defined there does not vanish.

Consider the retract $r: X \to S^2 \bigcup_{\alpha} e^6$. There is a line bundle L' on $S^2 \bigcup_{\alpha} e^6$ such that $r^*(L')$ is L. Moreover the obstruction ν of L will be the pullback of the obstruction associated to L'; since the latter does not vanish (almost by construction, see [1]) and r^* is an isomorphism on H^6 , the result follows.

Construction of a manifold with the homotopy type of X

In this section we prove:

THEOREM 2. The space X of Theorem 1 can be assumed to be an orientable, simplyconnected piecewise linear manifold.

In order to make X a manifold we will associate to it a surgery problem and we will prove that the latter is solvable; a general reference for the method is [2].

We recall that given a homotopy type we can associate to it its «Spivak normal bundle», which has structural group G: the inductive limit for N going to infinity of the homotopy equivalences of S^N . If X has to be a manifold a first requirement is that this bundle has a reduction to a *PL*-bundle. The latter would play the role of the stable normal bundle. Such a reduction exists if and only if there exists a section of the associated G/PL-bundle. We refer to [1] for details. The obstructions to constructing such a section lie in $H^{n+1}(X; \pi_n(G/PL))$. Recall that the homotopy groups of G/PL are known from [3].

$$\pi_i(G/PL) = \begin{cases} 0 & \text{if } i \text{ odd,} \\ Z/2 & \text{if } i = 4k+2, \\ Z & \text{if } i = 4k. \end{cases}$$

It follows that in our case all the obstruction groups vanish. The next step is to consider the surgery exact sequence in dimension 6, see [4].

$$(*) \qquad \dots \to L_7(1) \stackrel{\partial}{\longrightarrow} \mathcal{S}_{PL}(X) \stackrel{\gamma}{\longrightarrow} [X; G/PL] \stackrel{\mathscr{I}}{\longrightarrow} L_6(1) \to .$$

X will have at least a manifold structure if and only if the surgery obstruction map in (*) is zero. As observed in [1] we can always use the plumbing construction to make the obstruction vanish in the *PL* category. Notice that we may change the reduction from *G* to *PL*.

This ends the proof of Theorem 2.

References

- [1] W. BROWDER, Surgery on simply connected manifolds. Springer Verlag, Berlin 1972.
- [2] S. DE MICHELIS, Line bundles with $c_1(L)^2 = 0$. Higher order obstructions. Rend. Mat. Acc. Lincei, s. 9, vol. 2, 1991, 219-224.
- [3] D. SULLIVAN, Smoothing homotopy equivalences. Thesis, Princeton University, 1965.
- [4] C. T. C. WALL, Surgery on compact manifolds. Academic Press, 1970.

Department of Mathematics - Harvard University 1, Oxford Street - 02138 CAMBRIDGE, Mass. (U.S.A.)