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Meccanica. — On the history of suspension bridge theory. N o t a d i T . M A L C O L M 

C H A R L T O N e P L A C I D O C I C A L A , p resen ta ta (*) da l Socio P . C I C A L A . 

ABSTRACT. — A linearized formulation of the elastic theory of suspension bridges is confronted with 
early investigations in the field. For decades, the structure was schematized as a beam (deck or girder) re­
lieved by a one parameter distribution of forces exerted by the cable, disregarding the influence of beam 
deflection on that distribution as given by the linearized approach. An anonymous note presented the es­
sential conclusions of this theory anticipating results of investigations following the methods started by 
Cotterill and Castigliano. Cotterill's approach is applied to a hyperstatic scheme. 

KEY WORDS: Suspension bridges; Structural analysis history; Elastic structures. 

RIASSUNTO. — Sulla storia della teoria dei ponti sospesi. Una formulazione linearizzata della teoria ela­
stica dei ponti sospesi è confrontata con le prime indagini nel campo. Per decenni la struttura fu schema­
tizzata in una trave sostenuta da una uniparametrica distribuzione di forze trasmesse dal cavo, trascuran­
do l'influenza della deformata della trave su quella distribuzione come risulta dall'esame linearizzato. 
Una nota anonima presentò le conclusioni essenziali di quella teoria, in anticipo sulle ricerche che furono 
sviluppate seguendo i metodi fondati da Cotterill e Castigliano. Il procedimento di Cotterill è applicato 
allo schema con trave iperstatica. 

1. About mid nineteenth century, construction of the first major suspension 
bridges confronted structural analysts with a problem of remarkable difficulty due to 
the presence of an element (chain or cable) capable of large deflections leading to geo­
metric nonlinearity. In order to examine the simplified formulations, the linear theory 
will be sketched. 

2. The structure is formed by a horizontal beam (girder) of flexural stiffness EI 
connected to a rod (cable) of zero flexural stiffness by vertical suspenders: these are 
assumed to constitute a continuous system of rigid bars. Starting from an initial con­
figuration of dead loading, the straight girder is subjected to a live load of intensity p 
per unit length. This is assumed to be so small to allow disregarding powers of its ef­
fects in presence of linear terms. 

The position vector x leading to the cable axis is written 

(1) x=(x + Ç)i+(y-ri)j 

where i,j are orthogonal unit vectors, withy vertical upward; x, y are the coordinates 
of the axis in the initial configuration; Ç, rj are displacement components due to the 
load p. The coordinate x is taken as independent variable: derivatives d/dx are denot­
ed by apex. Thus the unit tangent vector to the cable axis t is given by the 
relation 

(2) x' = rt=(i + Ç)i + (y'--n')j. 

(*) Nella seduta del 14 giugno 1991. 
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The modulus r = ds/dx derivative of the arch length s, is given by 

(3) ^ = u + r ) 2 + (/-v?')2-
Prior to loading, t and r have the values t0 > ?b given by (2), (3) for f = t] = 0. If T0 is 

the tension T in the cable under dead load, the equilibrium of the cable element 
yields 

(4) d(t0 T0) = jq0dx, d(tT) = j{q0 + q)dx. 

Integrating the scalar products of (4) by i leads to 

(5) T ( l + * ' ) / ' = H +Ho, H0 = T0/r0 

giving the (constant) horizontal components of cable tension. From j components of 
(4) we obtain 

(6) q=Uy'-r,')T/r-T0y'/r0y. 

Denoting by s the thermic and/or elastic dilatation of the cable and linearizing the 
definition r2 = ^ (1 + s)2 yields the relation 

(7) Ç=l(y'r)' + ef$)dx. 
o 

Integration is started from x = 0, abscissa of the cable anchorage, assumed to coin­
cide with the beam end point. The integral extended over the span equals zero. Hence 
and from (5) the linearised form of (6) is obtained 

(8) q = Hy"-HM{ri' + sy'))t. 

For the girder, linear elasticity gives the equation 

(9) (Elr[')"=p-q 

completed by 4 boundary conditions at girder end points. Eliminating q from (8), (9) 
yields a fourth order equation for rj containing the unknown constant H to be deter­
mined from the terminal value £ = 0 of (7) with e as given by cable dilatation by use 
of (5)!. 

3. The above formulation implies an approximation in eq. (4)2 : it neglects the ro­
tation of the suspenders due to the displacements £ which in the linearised theory, in­
troduce a component due to q0 in (4)2. The approximation may be justified by assum­
ing that y » d along the cable, whose dip is d. A further approximation is usually 
adopted: the H0 term in (8) is disregarded. Thus the problem reduces to ordinary 
beam theory with the unknown H calculated from (7). This will be termed I-theory, 
denoting as Il-theory the analysis based on the simplified resultant equation 

(10) EIr}""-H0ri"=p-Hy". 

With the particular solution r\ = sin (nx/L), the ratio of the second summand to 
the first term is H0/P with P = T? EI/L2 : this measures the ratio of the stiffness due to 
cable reaction and the stiffness due to beam reaction and evaluates the order of mag­
nitude of the deviation of I- from Il-theory. For both, the compatibility condition is 
written as follows. 
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Denoting by r\q upward beam deflections due to the cable loading q and by rjp the 
deflections due to live load for the beam not sustained by the cable, by product inte­
gration we obtain from (7) 

(11) f Ayrj"q dx = JAyrj"p dx- Jef$ dx 

with integrations ranging to the whole span. Here Ay is the difference of the current 
ordinate and that of the anchorage. For a parabolic symmetric cable Ay = {x2 — 
-lx)4d/Py q = SHd/P. 

4. Let the girder be subjected to a force —jF at the station x = a = I— b. For the 
beam of constant stiffness, with built-in ends, ordinary theory gives for 0<x<a 

(12) -Elri; = Fxbll+Fab{xb-xa- bl)/l3. 

The expression reduces to its first summand for the simply supported beam. In 
this case we obtain 

a 

(13) Eljrj; (x2 - Ix) dx = Fab(4a2l-3a3)/12. 
o 

The related expression for the segment a < x < I is obtained by interchanging a, b. 
Denoting by Ip the sum of the two expressions 

(14) Ip=Fab(a2+3ab + b2)/12. 

For the built-in beam under uniform loading we know that 

(15) -EIri"q = q{lx - x2)/2 - ql2/12. 

For the simply supported beam the last summand is missing. Hence 

( 16) Iq=qj(^- lxf dx/2 = qP/60. 

By virtute of eq. (11), with e = 0 we have ql = 5Fab(a2 +3ah + b2)/l4. 
Analogous computations for the built-in beam give 

(17) Ip=Fa2 b2/12, Iq-ql>/360. 

From (1.1), in the case of uniform elongation e of the cable, the simply supported 
girder without external loading suffers a decrease in the cable support measured 
by 

(18) q =-(l + 16d2/312) 15 EI s/l2d. 

5. Rankine [1] was probably the first to address the problem of the stiffened sus­
pension bridge. He assumed that the (parabolic) cable contributes a uniformly dis­
tributed reaction to bending of the girder, via the suspenders, of intensity given by the 
total live load divided by the span: according to (11), this holds true only in the case of 
uniform live loading. The essential results of the I-theory were first presented in an 
anonymous note [2] published in an engineering magazine in 1860. Interest in this 
paper resides primarily in the derivation and application of the compatibility condi-
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tion written in the form J y'(drjp — drjq) == 0. Hence the results expressed in (14), (16) 
were obtained. Also eq. (18) was found from the last summand in (11). The paper 
contains an accurate examination of the experimental results found by Barlow [3] 
and a clear discussion on the deviations arising from simplifications in the I-theory. 
An interesting remark in [2] deserves mention: for e = 0, uniform loading on half the 
girder gives rise to an antisymmetric stress distribution. Later, the I-theory was dealt 
with, along the same lines but more extensively, by Levy [4]. 

6. For the suspension bridge with simply supported girder subjected to a mid-
span load the solution was obtained by Cotterill [5] from the moment form of I-the­
ory. CotterilPs work started the statical indeterminacy analysis of elastic structures. 
His method is recalled here, considering only beam bending, for brevity. 

Let Va, with a = 1,..., N, be the parameters appropriate to define the moment dis­
tribution. For instance, for the built-in girder subjected to the force F at x = a9 these 
are the bending moments Mx at x = 0, M2 at x = a, M3 at x = / and the supporting ac­
tion q, defining the curvature of the parabolic arcs giving intermediate moments. The 
parameters Va are subjected to a number n of equilibrium conditions, written in the 
form 

(19) F„ = F?(V.), >3= 1 « 

with F̂  as prescribed values. Hence the variation equations are derived 
(dFp/dVa) SVa = 0. The elastic energy U of the structure is written in terms of the pa­
rameters Va: the extremum condition for U is added to the system in the form 
(dU/dVa)SVa = 0 . Compatibility of the system for increments is ensured by the N 
equations (*) 

(20) Xfi(dFp/dVa) = dU/3Va. 

In linear theory, eqs. (19), (20) constitute a linear system for the N parameters Va 

and n Lagrange multipliers Ag. Extension of the incremental form to geometric nonlin-
earity is immediate. 

This method is used here to check the solution obtained for the I-theory, with 
built-in girder. We may use the expression of U given by Cotterill, here restricted to 
the segment a of the girder 

2EIU(a) = (Af? +M!M2 + M2)a/3 - {Ml+M2)qaò/12 +q2a5/120. 

This is to be summed to the expression where M\, a are replaced by M3, b respec­
tively. The equilibrium equation at the load point yields 

(21) F = (M2 - Mx)/a + (M2 - M3)/b - ql/2. 

O Explicit use of the Lagrange multiplier method was made by Cotterill when dealing with pro­
blems where the unknowns are functions of the coordinates and (19) are differential equations {Further 
application of the principle of least action, Philosoph. Magaz., 1965, 430-436). In the case under considera­
tion, he adopted elimination of increment ratios. Castigliano proved the minimum complementary ener­
gy theorem for trusses by means of the multiplier method (Dissertazione ... Laurea in Ingegneria, 
1873). 
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In the present case (N=4 ,« = 1) the compatibility conditions write XdF/dVa = 
= dU/3Va with a =1,2,3,4. 

With the moments given in (12) and (15) and the value of q giving Ip = lq in (17) we 
find the resultant moments 

(22) M1 = (3a - 2b) Fab2121\ M2 = (9a2 - \2ab + 9b2) Fa2 b21215 

and consequent M3. The compatibility conditions are satisfied with 

(23) A = (4a2 - lab + 4b2) Fa3 P /6 P. 

7. In engineering textbooks the «Castigliano approach» is usually adopted start­
ing from the statically determinate scheme, where N — n stress parameters are nulli­
fied or are assigned to take given values. Thus N — n self-equilibrated configurations 
are constructed: these are introduced with factors Xr (j = 1,..., N — n) in combination 
with a stress configuration equilibrating the applied loads. The «elasticity equations» 
from which the factors Xr are calculated, in particular 

(24) j(M/EI)(dM/dXr)dx = 0 

emerged from energy considerations in Menabrea's and Castigliano's works, almost 
contemporary to Cotterill's contributions. They acquire their wide significance 
through the interpretation of virtual work: dM/dXr is an arbitrary stress configuration 
in equilibrium without working forces. In the specific case, Ay is one such moment 
distribution in equilibrium with a cable tension change of unit horizontal component: 
thus (11) attains an alternative interpretation, maintaining its ample value. In fact, for 
the structure with 3 statical indeterminacies it has reduced the solution to one un­
known. This consideration may help when the girder is stiffened by additional cables. 
For eqs. (20), the virtual stress configurations contain working loads represented by 
dFp/dVa: the multipliers are the related displacement parameters. In the example, 
X/EI is the deflection of the loaded point. The elimination of multipliers which 
reduces the system (19), (20) to eqs. (24) may lead to more complicated expressions. 
As in the above application, the «Cotterill approach» may turn out to be more expe­
ditious than recourse to eqs. (24). 

8. The above concepts offered a variety of methods to deal with suspension bridge 
problems. By introduction in (24) of additional terms due to axial deformations of 
elongation of the cable can be accounted for in agreement with the results furnished 
by (11). As in the I-theory the internal loading is independent of deflections r], also 
elongations of the suspenders are readily considered. Thus the theory was variously 
developed by W. Ritter, Muller-Breslau, Frankel [6-9] : see [10]. Introduction of 
the H0 term in eq. (8) seems to have been not immediate. The problem was felt with 
regard to early suspension bridges with very flexible girders. In an anonymous 
note [11], obviously by the same author of [2], the analysis was started under the 
extreme assumption EI = 0 for the girder, maintaining the remaining assumptions. 
This implies the solution of the equation p = q with the aid of the expression (8). The 
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Anon, did not find this expression but proceeded through simplifications suggested 
by the smallness of slopes / . This analysis, leading to an angular point on the cable at 
the point where a concentrated load is applied is to be considered as an introductive 
investigation. The same author made an attempt toward a second approximation ap­
proach [12], but this analysis was not completed. 

9. The evolution of the theory of suspension bridges has received an excellent 
presentation by Pugsley[13]. Some additional remarks suggested by certain differ­
ent points of view are here in order. 

Chapt. 3 deals with the theory of [12]; Chapt. 4 is devoted to the Rankine theory: 
as this stems from an unjustified assumption we have left it aside. Chapt. 5 develops 
the I-theory («elastic» in the usual denomination: it could be better termed «linear»). 
No reference is made to the note [2], mentioned elsewhere to state that Rankine 
had taken cognizance of it. In fact, that paper has been overlooked by most subse­
quent investigations. Even in [4] no reference is made to it. Applications of (11) in 
eqs. (12)-(18) evidence its fundamental role: the equivalent forms of the magnitude 

\y't]'dx, namely — I Ayrj"dx, and — y" \ Arjdx (for the parabolic cable) establish im­
portant connections between the various approaches. As above noted, in [2] the set­
tlement of the girder due to cable elongation was calculated: the expression (18) con­
forms exactly with the assumptions of the theory, whereas the corresponding eq. (44) 
in [13, p. 63] is not equally satisfactory. 

Chapts. 6 to 9 give a lucid account of the II-theory (deflection theory) as governed 
by eq. (10) complemented by (11), considered in different form. These developments 
are beyond the scope of the present paper. We remark that derivation through lin­
earised theory indicates for the second summand in (10) the form H0 (t% r\ )' and yields 
an additional summand due to cable dilatation. Further complications arise if the in­
fluence of horizontal displacements of the cable axis on the direction of the sus­
penders is taken into account: then the horizontal component of the cable tension 
cannot be considered as constant along the span. In case these refinements were to be 
undertaken, recourse to discretized computation should be preferred. 
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