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Meccanica dei continui. — Frame Indifference. Nota(*) del Socio RONALD 

RTVXIN. 

ABSTRACT. — It is shown, in the context of the Thermomechanics of simple materials with memory, 
that frame indifference and, equivalently, rotation invariance are necessary consequences of the laws of 
classical Mechanics and the definition of the stress matrix and heat flux vector. 

KEY WORDS: Constitutive equations; Frame indifference; Rotation invariance. 

RIASSUNTO. — Principio di indifferenza materiale. Nel contesto della Termomeccanica dei materiali 
con memoria, si dimostra che il principio di indifferenza materiale e quello, equivalente, di invarianza ri­
spetto alle rotazioni sono conseguenze necessarie delle leggi della Meccanica classica e delle definizioni 
di matrice di stress e di vettore flusso di calore. 

1. INTRODUCTION 

One of the basic elements of continuum mechanics is the concept of rotation in­
variance, or its equivalent frame indifference. It was used in the middle of the nine­
teenth century in the formulation of the Navier-Stokes equation for Newtonian fluids. 
Since then it has been widely employed to place restrictions on the possible forms 
which can be taken by the constitutive equations of continuum mechanics and ther­
momechanics. In 1957 Green and Rivlin[l] applied it to obtain restrictions on the 
constitutive functional for the Cauchy stress in a simple material with memory subject­
ed to isothermal time-dependent deformations. 

It is a commonly held belief that the requirement that frame indifference be satis­
fied by a constitutive equation is an axiom, independent of the laws of classical ther­
momechanics. Its validity has been questioned, notably by Miiller[2], Edelen and 
McLennan [3], and Ryskin and Rallison[4]. Miiller's concerns are based mainly on 
the observation that the second-order constitutive equations for the Cauchy stress and 
heat flux vector in a gas undergoing a thermomechanical process, derived from the ki­
netic theory by Burnett (see, for example, Chapman and Cowling [5]), are not frame 
indifferent. The concerns of Ryskin and Rallison stem from a micromechanical theory 
developed by Ryskin [6] for the flow of a suspension of hard spheres in a Newtonian 
fluid. Truesdell[7] is unconcerned that the Burnett equations do not satisfy frame 
indifference and maintains that this probably results from the approximations which 
are made in deriving them, without, however, identifying the point at which the error 
is introduced. Wang [8] appears to take a similar position. Woods [9] maintains 
that the nature of the approximations made in arriving at the Burnett equations are 
not such as could lead to the introduction of the non-invariant terms. 

The present paper is a contribution to the debate concerning the validity of frame 

(*) Pervenuta all'Accademia il 5 settembre 1991. 



52 R. RIVLIN 

indifference. It is shown that within the context of thermomechanical processes in 
simple materials with memory, for which the constitutive assumptions in (2.4) below 
are appropriate, frame indifference must indeed be valid. It is seen that if it were vio­
lated, then the manner in which the applied surface tractions and body forces trans­
form from one reference frame to another rotating relative to it would depend on the 
material to which the forces are applied. 

We conclude that frame indifference is not an axiom, independent of the laws of 
thermomechanics, but is implied by them. This, of course, leaves unresolved the con­
flicts with the Burnett equations and with the results of Ryskin. These will be ad­
dressed in a later paper. 

2. THE CONSTITUTIVE ASSUMPTION 

We consider a body to undergo a thermomechanical process Qi in the time inter­
val [t0, t{\. For times r < t0y the body is in mechanical and thermal equilibrium and no 
forces are applied to it, nor do any temperature gradients exist in it, i.e. the body is in 
its virgin state. In the process 0 a generic particle S of the body has vector position 
x(r) at time T, referred to an arbitrarily chosen rectangular cartesian coordinate system 
x, and temperature 0(T). Let / be some arbitrarily chosen time in the interval [t0,ti]. 
We adopt the abbreviations 

(2.1) x0=x(t0), * = *(/), 0O=0(4>)> 0 = d(t). 

The thermomechanical process is described by specifying the dependence of x(r) 
and 0(T) on x0 and T: 

(2.2) * M = ;T(Xô,T), 6{T) = ìP(X0)T). 

The deformation gradient matrix g(r) and temperature gradient y(r) are defined by 

(2.3) g(T) = dx(z)/dx0, y(r) = de(T)/dx0. 

The vector field x(r) and scalar field 0(T) together define the configuration x(r) of 
the body at time T. The configurations at times t0 and / will be denoted by x0 and x 
respectively. 

In this paper we are concerned with materials with memory and shall make the 
constitutive assumption that the Cauchy stress matrix <r and heat flux vector q at time 
/, referred to the coordinate system x, are functionals of the histories of g(r), / (T) and 
0(T) in the interval [t0,t]. Then we may write 

(2.4) <T= ^{g(z), y ( T ) ) „ ( T ) } ; q = W{g{r), 7(T), 0(T)} , 

where $W is a symmetric matrix-valued functional and &C is a vector-valued 
functional. 

3. THE GOVERNING EQUATIONS 

We consider that in order to effect the process â?, body forces (j)(z) per unit mass 
and surface forces/(T), per unit area measured at time T, must be applied to the body. 
Also, we suppose that heat flows out of the body through its surface at a rate #(T), per 
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unit area measured at time T. Let p(r) be the mass density at time T. We introduce the 
abbreviations 

(3.1) * = «(/), / = / W , q = q(t), P = P(t). 

Let ÉS be the domain occupied by the body at time / and let 3 ÉB be the boundary 
of this domain. Then, a must satisfy the equation of motion (*) 

(3.2) (V<T)+ + p(j) = px in M , 

and the force boundary condition 

(3.3) f=an on 305 , 

where V = d/dx and n denotes the outward-drawn unit normal to SèB. A dot over a 
symbol denotes its material time derivative. 

Let v be the velocity of the particle <$ at time / and let d be the velocity gradient 
matrix: 

(3.4) v = x, d=3v/Sx. 

Also, let U be the internal energy per unit mass at time t. Then, the energy balance 
equation may be written as 

(3.5) plJ = tr((rd)-Vq in Œ 

and the heat flux boundary condition may be written as 

(3.6) q = q*n on 368. 

4. FRAME INDIFFERENCE 

Let x be a rectangular Cartesian coordinate system which coincides with the sys­
tem x at time t0 and undergoes a rotation relative to it. We suppose that the origins of 
the systems x and x coincide at all times. The particle &, which has vector position 
X(T) at time T referred to the coordinate system x, has vector position x(r) referred to 
the system x, where 

(4.1) X(T)=R(T)X(T), 

and R(T) is a proper orthogonal matrix-valued function of time such that R(t0) =1. 
The deformation gradient matrix g(r) and temperature gradient / (T) , referred to the 
system x, are given by 

(4.2) g(r) = dx(r)/Sx0 = R(r) g(z), / (T) = /(T) . 

We note here that the temperature 0(r) is the same in all reference systems. 
The Cauchy stress matrix <r and heat flux vector q at time t, referred to the coordi­

nate system x, are given by expressions of the forms (cf. (2.4)) 

(4.3) <r=^{f(T),7M,0(T)} ; ? = ^ { I ( T ) ) 7 ( T ) ) 0 ( T ) } ) 

O Throughout this paper vectors will, in general, be regarded as column matrices and correspon­
dingly the operator V will be a row matrix. Here and throughout this paper a dagger denotes the 
transpose. 
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where ÇF is a symmetric matrix-valued functional and 9C is a vector-valued 
functional. 

The functionals SF and %̂~ in (4.3) must necessarily be the same as the function-
als &* and &C in (2.4); so that (4.3) may be replaced by 

(4.4) <r= ^{g(T),7(T),e(r)}, tf = ^ {#(T), 7(T),0(T)}. 

This follows trivially from the fact that the laws of mechanics are independent of the 
reference frame in which we choose to express them; the outcome of an experiment 
which measures the dependence of the stress and heat flux vector on the histories of 
the deformation and temperature is independent of the rotation of the laboratory as a 
whole, absent any external influences such as gravitation. 

We suppose further that <r, q are related to a, q by the relations 

(4.5) v = R<rR\ q = Rq, 

where R = R{t). If the relations (4.4) and (4.5) are satisfied, for all R(z) such that 
R{t0) = J, the constitutive equations (2.4) are said to be frame indifferent. We have al­
ready seen that (4.4) is necessarily valid. We will show in §5 that this is also the case 
for the relations (4.5). 

From (2.4), (4.2), (4.4) and (4.5) we see that the functionals £Fand &V in (2.4) 
must satisfy the relations 

[ ^ { « W j W , 7(r), 0(T)} = R& {g(T), 7(T), 0(T)} i ? f , 
( 4 ' 6 ) [&?{R(T)g(T), 7(T), 0(T)} = R9C {g(r)y 7(T), 0(T)} , 

for all proper orthogonal R(T) such that R(t0) = / . It can be shown that the necessary 
and sufficient conditions for (4.6) to be satisfied is that £Fand &C in (2.4) be ex­
pressible in the forms 

^ { g M , 7(T),e(T)} =g(t) ^ { C ( T ) , / ( T ) , 0 ( T ) } £ + W, 
( 4 ' 7 ) [ ^ {*(*), 7(T),0(T)} =gW ^ { C ( T ) , 7 ( T ) , 6 ( T ) } 

where C(T) is the Cauchy strain matrix at time r defined by 

(4.8) C(i)=gi(*)g(T), 

& is a symmetric matrix-valued functional and « ^ is a vector-valued functional. 
A number of derivations of (4.7) from (4.6) have been given. For a recent deriva­

tion of (4.7)! from (4. G)i and for some comments on earlier derivations see [10]. The 
result (4.7)2 can be derived from (4.6)2 in a similar manner. 

5. P R O O F OF FRAME INDIFFERENCE 

The equations of motion, boundary conditions, and energy balance equation re­
ferred to the coordinate system x may be written as (cf. (3.2), (3.3), (3.5), 
(3.6)). 

(5.1) (Va)i+p<j) = px in 6B, 
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(52) }=ën on défi, 

(5.3) PÎJ = tt(âd)-Vq in 6B9 

(5.4) q = tf n on 3 ^ . 

As in § 4, symbols with an overbar are defined with respect to the coordinate system x in 
the same way as those without an overbar are defined with respect to the system x. 

We note that 

(5.5) n = Rn. 
It follows from (3.3), (5.2) and (5.5) that if (4.5)! is satisfied then 

(5.6) J=Rf. 

Similarly, from (3.6), (5.4) and (55), if (4.5)2 is satisfied then 

(5.7) q = q. 

Now, suppose that (4.5)i is not satisfied, i.e. 

(5.8) G±RGR\ 

It then follows with (5.5) that, in general, 

(5.9) an ^ Ran 

and hence, from (3.3) and (5.2), 

(5.10) }*Rf. 

Similarly, if (4.5)2 is not satisfied, i.e. 

(5.11) q^Rq, 
it follows, with (3.6), (5.4) and (5.5), that, in general, 

(5.12) q±q. 

Now, for elastic solids and Newtonian fluids which satisfy Fourier's Law the relations 
(4.5) are satisfied and consequently 

(5.13) ~f=Rf, q = q. 

We accordingly conclude that unless (4.5)i is satisfied for all simple materials the man­
ner in which forces applied to the surface of the body transform, from one coordinate 
system to another rotating relative to it, will depend on the nature of the material of 
which the body consists. Also unless (4.5)2 is satisfied for all simple materials, the rate 
at which heat flows out of the body through its surface may depend on the reference 
coordinate system for some materials and not for others. 

It follows that, at any rate on the surface SES, the relations (4.5) must be satisfied 
and, consequently, the constitutive functionals £F" and &(7 must be expressible in the 
forms given in (4.7). In the constitutive assumptions (2.4) it is assumed that the man­
ner in which a and q at a particle depend on the histories g(r), / (T) , 0(T) is indepen­
dent of whether the particle considered lies on the surface or in the interior of the 
body. Consequently, the stress matrix and heat flux vector must satisfy the relations 
(4.5) throughout the body and the constitutive functionals must be expressible in the 
forms given in (4.7) throughout the body. 
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6. TRANSFORMATION OF BODY FORCES AND INTERNAL ENERGY 

If (4.5)i is satisfied, (5.1) yields with (4.1) 

(6.1) i?(V<r)+ + p4> = P(Rx + 2Rx + Rx). 

By comparing (6.1) with (3.2) we obtain 

(6.2) 4> = R<j> + 2Rx + Rx. 

If on the other hand (4.5)i is not satisfied we obtain from (5.1), (3.2) and (4.1) 

(6.3) . [V(Riê-<rRi)y+p($-R<l))=p(2Rx + Rx). 

Since (4.5)i is satisfied for an elastic solid and a Newtonian fluid it follows that the as­
sumption that it is not satisfied for all simple materials leads to the unacceptable con­
clusion that the transformation law for the body force must depend, in general, on the 
constitutive equation for the material to which the force is applied. 

We now suppose that (4.5) are satisfied. Then (5.3) yields, with (4.5) and 
(4.1), 

(6.4) pU = tT(<rd)-\q. 

(To see this we note from (4.1) that 

(6.5) d = RdRi + RRi. 

Since R is orthogonal, RRf is a skew-symmetric matrix. It then follows, since a is a 
symmetric matrix, that ttoRR* = 0.) By comparing (6.4) and (3.5) we find that 

(6.6) Ù = Û . 
If, on the other hand (4.5)! is satisfied but (4.5)2 is not, then from (5.3) and 
(3.5) 

(6.7) piU-tD^Viq-R'q); 

the manner in which the internal energy transforms depends, in general, on the con­
stitutive equation for the material considered. 

7 . R O T A T I O N I N V A R I A N C E 

Instead of discussing a single thermomechanical process which is described in two 
coordinate systems in relative rotation, we may consider two processes 0 and 0 tak­
ing place in the time interval [A),/J, which differ only by a superposed rigid rotation 
and are described in the same coordinate system, x say. We employ the notation in 
§ §2 and 3 for quantities pertaining to the process 0 and we. use an overbar to denote 
the corresponding quantities pertaining to the process 0. We suppose that the pro­
cess 0 is described by (2.2). The process 0 is then described by 

(7.1) X ( T ) = U ( T ) * ( T ) , 0(T) = 0(T), 

where R(T) is a proper orthogonal matrix and R(t0)=I. 
We note that in order to effect the process 0 we must apply, in addition 
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to the forces appropriate to the process 0, body forces which annul the inertial 
and Coriolis forces associated with the superposed rotation. 

Let x be a rectangular Cartesian coordinate system, whose origin coincides with 
that of the system x, and which rotates relative to it with the rotation by which the 
process 0 differs from the process 0 . We use an overhat to denote quantities ap­
propriate to the process 0 referred to the system x. Thus x(r) and 0(T) denote the 
vector position and temperature respectively, in the process 0, of the particle iZ? at 
time T, referred to the coordinate system x. Then, with (7.1), 

(7.2) x(z) = Rf
 (T) X(T) = X(T) , 0(T) = 0(T) = 0(T). 

It follows that 

(7.3) g(T)=gW, 7(r) = 7(r). 

If a and q are given, for the process 0, by (2.4), then a and q are given, for the 
process 0, by 

(7.4) G= ^ { £ ( T ) , 7 ( T ) , 0 ( T ) } , q= ^ { £ ( T ) , / ( T ) , 0 ( T ) } . 

This arises in the same manner as (4.4). With (7.2), (7.3) and (2.4) 

(7.5) a =(7, q = q. 

If, in addition, 

(7.6) â = R<rR\ q = Rq, 

where R = R(t), the constitutive equations (2.4) are said to be rotation invariant 
(cf. (4.5)) 

Applying (2.4) to the process & we obtain 

(7.7) â=&-{g(T),y(T),ë(r)}, q=W{g(T),YW,0(r)}-

3C(T), 6(V) and X(T), 0(T) describe the same process 0 in two coordinate systems, x and 
x respectively, which are in relative rotation. From the conclusions of § §5 and 6 it fol­
lows, with (7.2), that (cf. (4.5)) 

(7.8) â = RaR\ q = Rq. 

With (7.5) we obtain 

(7.9) â = RffR\ q = Rq; 

the constitutive equations (2.4) are necessarily rotation invariant. 

8. SOME FURTHER REMARKS ON FRAME INDIFFERENCE 

We note that, as far as the stress is concerned, the argument advanced in §5 de­
pends essentially on the definition of the stress matrix at the particle <$ as the matrix 
whose columns are the stress vectors on three orthogonal planar elements at <$. Ac­
cordingly, if the constitutive equation for the stress is not frame indifferent these stress 
vectors may transform in a manner which depends on the material considered. 

We now suppose that the body considered consists of two different materials 1 
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and 2 which at time / occupy the sub-domains ÉSXi ÉB2 of M. Let 3é#12 be the inter­
face between Œx and &$2. We suppose that at time / the only external forces acting 
on the body are body forces acting throughout Œ and surface forces on 3 èë ; no ex­
ternal surface forces are applied to the interface d&fi12. 

Let <£ be a generic particle which lies o n 3 ^ 1 2 at time /. Let n be the unit normal 
to dÉSu at iZ?, outward-drawn from ÉS1. Then if ax and 02 a r e t n e Cauchy stresses in 
É&i and É$2 respectively at <£ at time /, we have 

(8.1) fi2=Gin, f2i = -G2ny 

where/12 (f2\) is the surface force at iZ? per unit area of 3â?12 exerted by the material 
in É&2(ÉS1)

 o n that in Ô81{&32). All the symbols in (8.1) are referred to the coordi­
nate system x. According to Newton's Third Law 
(8-2) f12 = -f2l. 

We now suppose that the material 2 is a material which satisfies frame indifference 
while the material 1 does not. Then, denoting the surface forces on 3â?1 2 referred to 
the coordinate system x by /12 and /21) we have 

(8-3) %i=Rf2i, 
and, in general, 

(8-4) h*Rfu. 
(The inequality (8.4) must necessarily be true for some value of n and we suppose that 
the interface is such that this is the case). It follows from (8.3) and (8.4) that 

(8.5) ~f12 * - } 2 1 ; 
Newton's Third Law is violated. This paradoxical situation can be avoided only if we 
suppose that the manner in which the constitutive equation for the stress transforms is 
the same for all choices of the constitutive functional S^" in (2.4)^ 

9. SOME REMARKS ON THE CONSTITUTIVE ASSUMPTION 

In discussing frame indifference we have considered thermomechanical processes 
taking place in a time interval [/0, t\, the material being in its virgin state for T < /0- The 
deformation was described by (cf. (2.2)) 
(9.1) *(T) = * (X 0 ,T ) , 

where x0 denotes the vector position of the particle considered at time /0. Correspond­
ingly, for purely mechanical processes the Cauchy stress matrix at time / is given by 
(cf. (2.4)0 
(9.2) er = & {g{z)} y g{r) = dx(z)/dx0. 

Plainly, by using the chain rule we can replace g(r) by the deformation gradient matrix 
relative to the configuration at any specified time, r say, in the interval [to, t]. We have 

(9.3) g(r)^g(r)g-Hto), g(r) = dx(T)/dx(r). 
Hence, from (9.2) 

(9.4) <r= ^ { g W f ' W } = ^ " { | ( T ) } say. 

Instead of describing the deformation by (9.1), Truesdell and Noll [7, §21] de-
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scribe the deformation by 

(9.5) X(T)=Z*(X,T), 

where X is the vector position of the particle <B considered in a configuration X 
which «may be, but need not be, one actually occupied by the body in the course of its 
motion». They consider deformations taking place in the time interval (— °°, t\ for 
which the body is not necessarily in its virgin state at any time. Truesdell and Noll 
adopt the constitutive assumption 

(9.6) *=&*{g*(r)} T = ( - » , / ] 

where 

(9.7) g*(T) = dx(z)/dX. 

Unless the functional £F* is expressible in the form 

(9.8) &*{g*(r)} = &&*)}, 

where g(r) is defined in (9.3) and z is some specified time in the interval (— <»., / ] , it 
does not contain the kinematic information required for the determination of a. 
Moreover, even if éF* is expressible in the form (9.8) the argument g(z) does not, in 
general, contain the necessary kinematic information unless the material is in its virgin 
state at some time during the interval (— °°, i\. 
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