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Fisica matematica. — Note on a mixed variational principle in finite elasticity. 

N o t a ( * ) d i G E R A R D A. M A U G I N e C A R M I N E T R I M A R C O , p r e sen t a t a da l C o r r i s p . 

T . M a n a c o r d a . 

ABSTRACT. —- In the present context the variation is performed keeping the deformed configuration 
fixed while a suitable material stress tensor <f and the material coordinates are required to vary inde
pendently. The variational principle turns out to be equivalent to an equilibrium problem of placements 
and tractions prescribed at the boundary of a body of finite extent. 

KEY WORDS: Elastostatics; Conservation laws; Fracture. 

RIASSUNTO. — Su di un principio variazionale misto in elasticità finita. Si fissa la configurazione defor
mata di un solido elastico mentre si richiede che le coordinate materiali e che J*, un opportuno tensore 
materiale degli sforzi, possano variare in modo indipendente. Si tova che il principio variazionale propo
sto corrisponde ad un problema di equilibrio meccanico. 

1. INTRODUCTION 

The variational equation here proposed is equivalent to an equilibrium problem of 
placements and tractions expressed in a material frame work. The introduced func
tional depends explicitly on the material position X in the reference configuration 
through the energy density. Such a dependence accounts for material inhomogeneities 
of the body. The forces related to the inhomogeneities turn out to be balanced inside 
the body by the so called «configurational forces» through the derived Euler-La-
grange equations. At the boundary an extra force has to be added to the configur
ational force in order to balance the external tractions and attain equilibrium. 

The functional may possibly depend explicitly on x both through the energy den
sity and through the external tractions. Since the variation is performed at x fixed, 
these Eulerian fields are unaffected by such a variation. Thus, the tractions behave as 
dead-loading though they are not «dead» in the common understanding of the term 
[1, p. 310]. This class of Eulerian fields and tractions is of some interest in mechan
ics and in electromagnetism. 

The functional may also depend on a suitably chosen stress tensor J* as well as on 
x (through C - 1 , C being the right Cauchy strain tensor). In this case the variational 
principle is a mixed one in the sense that the fields J* and X may vary independently. 
We will be concerned with this class of functionals and the corresponding E. L. equa
tions will be interpreted as material equilibrium equations. These equations turn out 
to be equivalent to the Eshelby's conservation law provided that the quantities in
volved are properly transposed in the reference configuration [2-5]. Since the diver
gence of the Eshelby energy-momentum tensor is interpreted as the configurational 
force in the deformed configuration we are led to interpret the tensor's divergence 

(*) Pervenuta all'Accademia il 25 settembre 1991. 
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term, which appears in the derived conservation law, as the configurational force in 
the deformed configuration. The important role of this force has been pointed out by 
many authors who have been concerned with the description of microscopic defects, 
craks or even liquid crystals in the continuum theory [3-6]. A comparison with a 
classical variational problem shows that an equivalence holds between the latter and 
the present principle provided that the identity of the material point be pre
served. 

The present variational principle seems to be of interest in the study of brittle frac
ture. In fact there is a possibility of establishing path-independent integrals in finite 
elasticity. These integrals represent an extension of the so called Rice integral [7] or 
of the Bui integral [8]. The latter is concerned with the complementary stress 
energy. 

2. THE VARIATIONAL PRINCIPLE 

Consider a hyperelastic body of finite extent whose deformed configuration is de
noted by V. dV and n denote the boundary and the external unit normal to it, respect
ively. The corresponding reference configuration is denoted by V, while dV and N 
represent the corresponding boundary and external unit normal, respectively. V and 
V are bounded open sets in R3 and their boundaries are assumed to be regular enough 
to apply Gauss Theorem. Consider the mapping %.X—» x, XeV and % e C3(V). The 
gradient of deformation is denoted by F and the usual assumption det F=JF > 0 is as
sumed to hold. 

As we wish to perform the variation of the reference configuration while the de
formed one is kept fixed, a natural choice of the field describing the deformation is 
the inverse mapping x~l (*)• Then, having introduced the elastic energy density w (per 
unit volume of the deformed configuration), we assume it to depend on the deforma-

A 

tion through E= 1/2(1— C (x)) We also introduce the following Lagrangian stress 
tensors 
(2.1) J , * = 9(W)/S£ and tf = Jf1

tf^ 

where W = JF w represents the energy density per unit volume of the reference config
uration. In addition, we introduce the complementary energy density Wc( tf*,X), the 
quantity W which is defined as 

(2.2) W( J**>E,X)= J**-E-Wc( J\X) 
as well as the functional 

(2.3) EÇX, J*yx) = \Vw + m~\dv+ \ JF-ln-(X-XQ)ds+ \ T*{x):Xds 
V ffVi dV2 

where c ^ u SV2 = 9V; &VX ndV2=0 and w =Jf1W. 
Notice that the relation 

(2.4) a W 3 £ = a W 3 £ = J* 

holds true. We are now able to state the 
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THEOREM. The fields X(x) and J* are solutions of the equilibrium problem of 
placements and tractions 

(2.5) 

d i v ( J T - 1 ) - / f 1 V R ( l F ) + / f 1 / ^ ) e x p l = 0 in V, 

SF-ln=T* 

x-x0 = o 
on 9V2 

on dVx 

if and only if they satisfy the following variational equation 

(2.6) SXE- jWN-SxXds = 0. 
dV 

REMARK. The mixed stress tensor £7^= *SF~l = — Jf1 dW/dF"1, plays the dual 
role of the first Piola-Kirchhoff stress tensor. 

Performing the two-fold variation with respect to X and S we derive the follow
ing expression 

(2.7) /I • a r + | ^ - * j " dv + 

+ \ 
dw 

BF~l 
- wFT\ n + T* •SXds + \{X-X0)-8{J>F-ln)ds = 0. 

dv. 

Since SX and SJ* are independent and arbitrary in V and on dV, the equations 

3/7-1 \aX/expl. 

(2.8) 
dw 

= 0 in ^ , 

wf^n + r* =o on a 2̂, 

on S^!, 

3F~l 

x-x0 = o 

hold. Equation (2.8)x establishes the equilibrium among the «configurational forces» 
div {dw/dF~l ) and the forces (dw/dX) due to the inhomogeneities. Equation (2.8)2 ex
plicitly reads 

(2.9) 
t 3WC dWc 

dJ* JF dJ 

and the remaining equations (2.8) are equivalent to eqs. (2.5). This equivalence can be 
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proved taking into account the following identities: 

(2.10) i„) — = —-jF-wjppr, 

Hi) div(/F-1FT) = 0. 

Once converted to the Eulerian form, the Lagrangian equation (2.8)3 is required to be 
equivalent to the well known Eulerian condition of equilibrium at the boundary 
3V2: 

(2.11) tn = Td. 

Then one finds the Cauchy's stress tensor t under the following form of a stress-energy 
tensor 

(2.12) -FT-"^+wI=t 
dF~l 

and 

(2.13) FT-iT*=Tdt 

Consequently, T* corresponds to the Lagrangian form of the external forces at equi
librium in the deformed configuration. With reference to equation (2.8)3 notice that 
the equilibrium surface force acting at the internal boundary cannot be recovered by 
the «configurational force» (dw/dF~1)n alone. Notice also that since T* is assumed to 
depend only on xf T* does not change under the variational operator Sx while the ma
terial points in x may change with the variation and are acted upon different forces. 
This may be the case of a body immersed in a fluid or in an electromagnetic 
field. 

REMARK. Equation (2.8)! is also equivalent to Cauchy's equilibrium equation in the 
absence of body forces. This equivalence may be proved by multiplying eq. (2.8)! to 
the left by FT~X and taking into account the explicit form of ^w(F~l (x)yX(x)). 

The final result is 

(2.14) div(FT-1-^-wl) = -dwt = 0 

which is consistent with the previous remark. 

3 . A CLASSICAL VARIATIONAL PROBLEM 

Several authors [9-12], have proposed a principle of stationary complementary 
energy for a body of finite extent following Hellinger's original idea (1914) [12]. We 
follow Reissner version of the principle. 
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The equilibrium problem reads 

' d iv R PS-V$ = 0 in V, 

(3.1) <FSN=tR o n S V i , 

x — XQ = 0 on 3Vi, 

where $(x) represents the potential energy of the body forces and 5 the 11° Piola-
Kirchhoff stress tensor. Equations (3.1) as well as the following 

(3.2) E = 111 ( C - 1 ) = dWc/dS 

may be derived from the variational principle 

(3.3) <?XF, = 0 
where 

(3.4) Fc = j{S-E-Wc(S,X) + $(x)}dV- \ {x-x0)-FSNds0- j tR{X)-xds. 
V dVi dV2 

Once again the variation is mixed since x and S may vary independently. As the trac
tions tR are assumed to depend only on X, they behave like dead-loading, i.e. are unaf
fected by the variational operator dx-

4 . A THEOREM OF EQUIVALENCE 

We require now that the identity of the material point has to be preserved in the vari
ation 8X- Such a requirement is formulated in the following form: 

(4.1) -f*"1 (*(*),«) 
9e 

Whence we derive the 

= 0. 
X fixed 

LEMMA. The identity 

(4.2) SxX + F-l8xx = 0 
holds true. 

We are able now to state the 

THEOREM. The variational equations (2.6) and (3.3) are equivalent to one another 
provided # is constant. 

The proof of the Theorem follows straightforwardly by substituting the identity 
(4.2) into (2.6) or (3.3). 

COMMENTS. 

(i) The correspondence among «J*, S and t is the following 

Jt* = CSC = JFFTtF. 

The stress tensor J** has no specific denomination in the proper literature while J* is 
known as the convected stress tensor. The latter has been introduced by Green and 
Rivlin[13]. 
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(ii) The body forces do not appear in the conservation law expressed by eq. 
(2.8)! though they have been taken into account in the functional (2.3). On the other 
hand, they appear explicitly in eq. (3.1), while the material force density —dw/dX, 
which appears in eq. (2.8)i, is absent in eq. (3.1)i. Since the explicit dependence of W 
on X takes into account the inhomogeneities of the material space (true material inho
mogeneities) we may refer to <f>(x) as expressing the presence of inhomogeneities in 
Eulerian space. Gravitation and interaction with Maxwellian electromagnetic fields 
belong to this last class. 
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