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Analisi matematica. — Multiple periodic solutions for Hamiltonian systems with 
singular potential. Nota di ADDOLORATA SALVATORE, presentata (*) dal Corrisp. A. 
Ambrosetti. 

ABSTRACT. — In this Note we prove the existence of infinitely many periodic solutions of prescribed 
period for a Hamiltonian system with a singular potential. 

KEY WORDS: Singular Hamiltonian systems; Periodic solutions; Critical points. 

RIASSUNTO. — Molteplicità di soluzioni periodiche per sistemi Hamiltoniani con potenziale singolare. In 
questa Nota si stabilisce l'esistenza di infinite soluzioni periodiche di periodo assegnato per un sistema 
Hamiltoniano con potenziale singolare. 

1. INTRODUCTION 

In this paper we look for periodic solutions of prescribed period of the following 
Hamiltonian system 

(HS) x + ax+V'(x) = 0 

Here x={xiy. ..,%)> N ^ 3, a e R, V: RN — S—> R is singular on S> i.e. V(x) -» — oo 
as x—>dS. 

This problem has been studied by many authors (see e.g. [1-3], [8-10], [12-
14] and their references). 

Without loss of generality, we can assume that S is a single point, for example the 
origin. Slight modifications of our methods permit to deal with more general compact 
sets S. 

Let us denote by | • | the euclidean norm and by (•, •) the usual inner product of 
RN. 

Assume that V satisfies the following hypotheses: 

(V!) VeC2(RN-{0},R),N^3; 

(V2) there exist two real constants a and R, R > 0 , such that 

(V(x)v,v)^a\v\2 V x e i î N - { 0 } , H ^ R , VveRN; 

(V3) limV(x) = - o o ; 
|*|-»o -; 

(V4) there exist a function Ue C1 (RN - {0},i?) and a neighborhood W of 0 in RN 

such that 
Ì) lim U(X) = — 00; 

|x|->0 

ii) -V(x)&\U'(x)\2 VxeW-{0}; 

(V5) lim V(x)x/|x|2 = + oo. 

|x|->0 

(*) Nella seduta dell'8 febbraio 1992. 
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The «strong force condition» (V4) has been introduced by Gordon in [12]. Let us 
observe that V(x) ~ — \x\~r (near 0) satisfies (V4) when y ^ 2 , but it does not satisfy 
(V4) when y < 2 . 

In particular the gravitational potential — M"1 does n o t verify the strong force 
condition (V4). 

The following Theorem holds: 

THEOREM 1.1. If V(x) satisfies assumptions (Vx)-(V4), then for any T > 0 , (HS) has 
infinitely many distinct T-periodic solutions, whose Morse index goes to infinity. 
Moreover, if V(x) satisfies (V5) too, then the solutions found are nonconstant. 

Now, assume that V = V(t, x) depends on / in a T-periodic way; the strong version 
of (HS) becomes 

(FHS) tx + ax+V'(t,x) = Q 

where V'(t,x) denotes the gradient of V with respect to x. 
Let (Vi), (V3), (V4) and (V5) be the natural extension of the hypotheses (Vi), (V3), 

(V4) and (V5) to a T-periodic potential V{t,x). 
Moreover, we strengthen assumption (V2) as follows: 

(V'2) there exists aeR with a + a < (izjTf and there exist some positive constants 
b,R,6<2 such that for any t eR and for |x| ^ R : V(t,x) ^ b\x\\ 

{V"{tyx)v,v)^M2 VveRN. 

The following result holds: 

THEOREM 1.2. If V(t,x) is a T-periodic potential satisfying (Vi)-(V4), then (FHS) 
possesses infinitely many distinct T-periodic solutions whose Morse index goes to in­
finity. Moreover, if V(t, x) satisfies (V5 ) too, then the solutions found are noncon­
stant. 

REMARK 1.3. Analogous results have been stated by Majer in [14] by different 
methods and under slightly different assumptions on V (instead of (Vx) and (V2) he 
assumes V of class C1 and V'(x)x — 2V(x)^ai \x\6 for | x | ^ R with 0<2) . 

Let us point out that, if V(x) is bounded, that assumption implies that 
V'(x)x^02\x\6 while by (V2) it follows V(x)x^a3\x\2. 

If condition (V4) (or (V4)) is dropped, a solution of (HS) (or (FHS)) can vanish 
and therefore such «collision orbit» cannot be a classical solution. Using the defini­
tion of generalized T-periodic solution of (HS) (or (FHS)) introduced in [3], the fol­
lowing results will be stated: 

THEOREM 1.4. If V(x) satisfies (Vx), (V2), (V3) and (V5), then, for any T > 0 , (HS) 
has infinitely many distinct nonconstant generalized T-periodic solutions. 
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THEOREM 1.5. If V(t,x) is T-periodic in t and satisfies (Vi), (V2), (V3) and 
(V5), then (FHS) has at least one nonconstant generalized T-periodic solution. 

REMARK 1.6. The existence of generalized solutions has been stated by Bahri and 
Rabinowitz in[3] (cf. also[13]) in the case where # = 0, V < 0 , V—»0 and V—>0 
as |x|—» +00. On the other hand, the existence of a T-periodic «non collision orbit» 
has been proved in[2, 9] and [10] when V(x) — — \x\~r (near 0) with y<2. 

REMARK 1.7. Let us point out that we can always assume, in the autonomous case 
also, that a + a < {n/Tf. Infact, if that is not true, it is sufficient to look for T/k-peti-
odic solutions of (HS) with k so large that a + a < {kn/Tf. 

Moreover, without loss of generality, we can suppose that there exists /3 e R such 
that 

(V6) V(x)^p VxeRN-{0}. 

Indeed, if we take ae]a + a, {n/T)2 [, problem (HS) can be written as 

x + ax + V'(x) = 0' 

where V(x) = V(x) — l/2(â — a)\x\2 satisfies assumptions (Vi)-(V6). 

Now, we introduce some notations which will be used in the following. For any 
T > 0 , let |-|2 and \'\œ the usual norms in L2 = L2([0,T], RN) and C([0,T], RN); 
moreover let H1 = H1 ([0, T], RN) be the Sobolev space obtained by the closure of the 
C00 T-periodic /^-valued functions x = x{t) equipped with the norm 

1Mb |(|i(/)|2 + |x(/)|2)à 
1/2 

In the sequel we shall consider the following equivalent norm in H1 

T 

\x{0)\2 + \\k{t)\2dt 
1/2 

Then, clearly, 

(1.8) Hl=RN + Hl 

where 

H% = {xeH1\x(0) = 0}. 

Given x e H1, if we set x{t) = x{t) — x(0), it follows that XEHQ and' therefore 

(1.9) FI2 i T/TU\X\: 

Finally, let us recall the following inequality 

(1.10) 

where p(x) = min\x(t)\. 

;T/w|x|2+V^p(*) 



(2.3) 
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2. T H E STRONG FORCE CASE 

From now on, Q will be denote the open set RM — {0} and AlQ the loop space on 
RN-{0}, i.e. AlQ = {xeHl\x{t)^0lot any te[0,T\}. 

Let us consider the functional 
T T T 

(2.1) I(x) = 1/21\x{t)\2 dt - a/2 \ \x{t)\2 dt-\ V(x(t)) dt 
0 0 0'' 

defined on the open subset AlQ. It is easy to verify tha t / e C2 (AlQ,R) and its critical 
points are T-periodic classical solutions of system (HS). 

Unfortunately, the action functional I(x) is not bounded from below and does not 
satisfy the Palais-Smale compactness condition. Then, arguing as in [6] (cf. 
also [5]), we shall use a penalized functional. 

Let UeC2(RN,R+) be a function with the property 

(2.2) U(X)/|X|2-H>+OO a s l^l-^+oo. 

Moreover, for every cr>0 let ^ eC2(R+,R+) such that 

f&W = o if *^* : 

and 

(2.4) U9{x) = k(U(x)). 

Finally, we define the C2-functional I(7:A
1Q-*R as follows: 

(2.5) I,(x) = I(x) + t£(x(0)) 

where I is the functional defined in (2.1). 
In the sequel we shall denote by q some positive constants. 
The following Lemmas will be needed: 

LEMMA 2.6. Let V satisfy (Vx) and (V4). If {x„} cA1Q and {xn} converges weakly 
in H1 to xeAlQ, then 

T 

JV(x,W)<fc->-«> 
0 

(and therefore Ia{xn)—> + 00 as «—» + <»). 

PROOF. See Theorem 0.1 in [8]. 

LEMMA 2.7. For any <r>0, Ja is bounded from below. 

PROOF. By (V6) and (1.10) we have that, for any e > 0 , 

IAx)&l/2\?\l-a/2\m+x(0)\2 "j8T + U,(x(0))^ 

^ 1/2(TT/7)2 |x|i - a/2\x\j - aT/2\x(6)f - a\/T\x\2 |X(0)| - J8T+ Ua(x(0)) ^ 

^ l/2{[(7r/712-^-s2]|x|| - 4 T + ^iye2)|x(0)|2} - # T + Uff(x(0)). 
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Choosing e small enough, by (2.2) and (2.4) it follows that 

(2.8) IM^ cx\x\2 + c2\x{0)\2 - ci 

and therefore Ia is bounded from below. 

LEMMA 2.9. For any <r> 0, Ja verifies the Palais-Smale condition on A1Q, i.e. every 
sequence {xn} cAlQ such that 

(2.10) ttr(*»)} is bounded 

and 

(2.11) {VÀxn)} converges to 0 as /z—>+<*>, 

possesses a subsequence convergent to an element of A1Q. 

PROOF. Let {xn} be a sequence in AlQ satisfying (2.10) and (2.11). By (2.8) it fol­
lows that the sequences {|xj2} and {|x„(0)|} are bounded. Then 

(2.12) {W2} is bounded. 

Moreover, by (2.10) and (2.12) also {|xj2} is bounded, and therefore there exists 
a positive constant Mff such that 

(2.13) | | x J^M a for any neN. 

Then there exist a subsequence of {xn}, still denoted {xn}y and x e H 1 such that 
xn —» x weakly in H1 and uniformly in [0, T]. 

By (2.10) and by Lemma 2.6 we have that xeA1Q. 
Finally, using standard arguments, it can be shown that {xn} strongly converges to 

x in H1 (cf. e.g. [7]). 

REMARK. 2.14. From now on, we shall consider the singular homology with coeffi­
cients in a field G such that Hq(A

1Q}G)¥=Q for infinitely many qeN (cf. [11], 
Prop. 3.6). 

Moreover, let us denote by m{x) (respectively by m* (x)) the strict Morse index 
(resp. the large Morse index) of a critical point x of / i.e. mix) (resp. m* (x)) is the di­
mension of the maximal subspace of H where the second derivative / " (x) is negative 
definite (resp. negative semidefinite). 

By Lemmas 2.6, 2.7 and 2.9 and by an abstract critical point theorem proved 
in [6] (cf. also [5], [4] and [15]) we get the following 

PROPOSITION 2.15. For any cr>0, the functional Za has a critical point xff in AlQ 
corresponding to the critical value 

(2.16) ca= inf supl(7(x) 

where Tq = {̂ 4 cA1Q\i* {Hq(A,G) ^0 )} and i:A->AlQ is the inclusion map. 
Moreover 

(2.17) m{Xç) ^ q ^ m* (xa) 

where qeN and q is independent of a. 
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Now, we can prove Theorem 1.1. 

PROOF OF THEOREM 1.1. Let qeN, q>N, such that Hq(A
1Q)G)¥:0. For any 

or > 0 let xG be a critical point of 4 satisfying (2.16) and (2.17). In order to prove Theo­
rem 1.1, it suffices to show that there exist two positive constants <r and c4 such 
that 

(2.18) ta|« ^.£4 for any <T>œ. 

Indeed, if (2.18) holds, for any o->max{â,c4} it results Ua (xff (0)) = 0, then 
I(J(x<T) = I{xa) and xa is a critical point of I. 

Assume by contradiction that (2:18) does not hold, i,e. there exist {o-„}—» + 0 0 and? 
{xn} cA1Q such that xn is a critical point of ln = 1 ^ satisfying (2.16), (2.17) and 

(2.19) ta|oo—>+00 as #—>+o°. 

As the singular homology has compact support, by (2.16) it follows that there 
exists c5 such that 

(2.20) ln (x„) ^ c5 for any n e N. 

By (1.10) and (V6), as Ua(x(0))^0, it follows that 

(2.21) In (xn) ^ l/2\kn\
2

2 - a/2[{T/n)\k\2 + \[T9{xn)f ^ 

^ 1/2[(1 -a{T/n?)\x\l -aTp2(x„)l ~ (a\fT9{xn\/n)\kn\2 . 

By (2.19), (2.20) and (2.21) we have that 

minta(/)|—> +00 as #—>+o°, 

then there exists v e N such that 

(2.22) ta (/)I ^ R for any n > v, for t e [0, T], 

where R is the constant introduced in assumption (V2). 
So, by (2.22) and (V2) (cf. Remark 1.7 also) it follows that, for any # > v , 

T 

(2.23) Z(*„)[*, v\ = \[\b\2 - a\v\2 - ( V" (xn) v, v)] dt+(lTH (xn (0)) *(0), v(0)) ^ 
0 

^ [(TT/T)2 - a - a] Mi > 0 for any v e HQ1 . 

By virtue of (1.8) and (2.23) we can deduce that m* (x„)^N for any n > v, in con­
tradiction with (2.17). 

We conclude that (2.18) holds, and therefore the action functional J has infinitely 
many distinct critical points whose corresponding Morse index increases to infinity. 

Finally, let us prove that the solutions found are nonconstant, if the potential V 
satisfies the additional condition (V5). 

Indeed, by (V5), there exists â>0 such that 

|x| ^ S for any xeRN- {0} with V'(x) +ax = 0. 

Let x be a constant critical point of I (i.e. a constant solution of the equation 
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V (x) + ax = 0); there are two possibilities: 

î) \x\>R ii)S^\x\^R. 

In the first case, arguing as in (2.23), it results m* (x) ̂  N; in the second case, as V" 
is bounded on the set {x e RN \S^ \x\ ^ R } , there exists a constant c6y independent of 
xy such that m*(x)^c6. Choosing q large enough, the conclusion follows by 
(2.17). 

PROOF OF THEOREM 1.2. See proof of Theorem 1.1. 

3. THE WEAK FORCE CASE 

In this section we will state the existence of T-periodic solutions of (HS) (or 
(FHS)) when assumption (V4) is dropped. It is known that, if the potential V satisfies 
the «weak force» condition (V3), there exist x e H1 such that x{t) = 0 for some t and 
I(x) < H-00, then the critical points of I may enter the singularity, i.e. may be «collision 
orbits». So, we shall use the following definition of a generalized solution introduced 
in [3]: 

DEFINITION 3.1. We say that xeH1 is a generalized T-periodic solution of (HS) 
(or (FHS)) iff 

(i) The set D= {teR\x(t) = 0} has zero measure; 

(ii) x = x(t) is C2 and solves (HS) (or (FHS)) on R-D. 

As the sublevels lh = {x e Hl \l(x) ^ b) are not complete, we modify V by 
setting 

(3.2) V£ (x) = V(x) - e/\x\2 for any e> 0. 

System (HS) becomes 

(HS)£ x + ax + V(x) + 2ex/\x\4 = 0 

with energy functional 
T T 

(3.3) I (x) = j[l/2(\x\2 - a\x\2) - V(x)] dt + \ e/\x\2 at. 
0 0 

PROOF OF THEOREM 1.3. Let qeN, q>Ny such that Hq{AlQ,G) =^0. Since (V£) 
verifies conditions (V!)-(V4), Theorem 1.1 implies that for any £ > 0 the functional I£ 

has a critical point x£ in AlQ such that 

(3.4) Ie(xs)= inf supJe(x) 
AeTq xeA 

and 

(3.5) m{x€) ^q^m* (x£). 

As the singular homology has compact support, by (3.4) there exists a positive 
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constant c7 such that 

(3.6) I£(x£)^c7 for any e e ] 0 , l ] . 

Arguing as in the proof of Theorem 1.1, by (3.5), (3.6), and (V2) it follows that 
there exists a positive constant c8 such that |x£|oo ^cs for any se]0,1] , 

Then there exists a sequence {xn}, xn = x£n, with s„ —> 0, such that xn —> x weakly in 
H1 and uniformly in [0, T]. 

By (3.6) and (V3), the set D where x vanishes has measure 0. Since xn solves (HS)£w, 
it is easy to prove that x is a classical solution of (HS) on R — D, and therefore x is a 
generalized solution of (HS). 

Finally, we prove that x is nonconstant. This is obvious if D =£ 0; assume D = 0, />. 
x e A 1 ^ ; by (3.5) it results 

(3.7) w*(x)^#. 

On the other hand, by (V5) and arguing as in the proof of Theorem 1.1, there 
exists a positive constant c9 such that 

(3.8) m* (x) ̂  c9 for any x e RN - {0} with y (3c) + ax = 0. 

By (3.7) and (3.8), choosing q large enough, we can conclude that the solution 
found is nonconstant. Then for any T > 0 (HS) has a nonconstant generalized T-peri-
odic solution. Now, for each keN, let Xk (/) be a nonconstant T/k periodic solution 
of (HS); say xx (t) has minimal period Tjkx. Then for k > kh x^ (t) is distinct from xi (t). 
Arguing similarly, it can shown that infinitely many of the functions xk{t) are 
distinct. 

PROOF OF THEOREM 1.5. See proof of Theorem 1.3. 
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