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Meccanica dei fluidi. — The nappe profile of a free overfall. Nota (*) del Socio 
ENRICO MARCHI. 

ABSTRACT. — The phenomenon of the free overfall at the sharp drop of a channel bed has been 
deeply investigated experimentally since the pioneering work of Rouse (1933). Its behaviour is well 
known at least in the usual case of a wide rectangular channel. However, no complete theoretical sol­
ution has yet been obtained. Assuming the steady flow to be two-dimensional, irrotational and friction-
less, an analytical solution for the flow field is obtained accounting for the presence of two free bound­
aries. By applying the conservation laws we then derive an equation for the lower nappe profile which is 
found to fit the observed data satisfactorily. 

KEY WORDS: Open-channel; Free overfall; Nappe. 

RIASSUNTO. — II profilo della vena fluente in una caduta libera. Il fenomeno della caduta libera di una 
corrente nel salto brusco di fondo di un canale è stato esaminato con cura sperimentalmente fin dall'ini­
ziale lavoro di Rouse del 1933. Il suo comportamento è ben noto almeno nella situazione consueta di ca­
nale rettangolare largo. Tuttavia, una completa soluzione teorica non è stata ancora ottenuta. Assumen­
do che il moto permanente sia bidimensionale, irrotazionale e senza resistenze, si ricava una soluzione 
analitica per il campo di moto mettendo in conto la presenza di due contorni liberi. Applicando le leggi 
di conservazione, si deduce quindi un'equazione del profilo inferiore della vena libera che risulta in ac­
cordo con i rilievi sperimentali noti. 

NOTATIONS 

p = liquid density; 

g = acceleration of gravity; 

q* = rate of discharge per unit span; 

Y* = {q*2/g)lh = critical depth. 

Dimensionless variables: 

x = x* /Y* = horizontal co-ordinate; 

y = y* /Y* = vertical co-ordinate; 

h — h*JY* = vertical co-ordinate of the upper profile; 

z — z* /Y* = vertical co-ordinate of the lower profile; 

Y = h — z = stream depth or vertical dimension of the nappe; 

Yo = Y$ /Y* = brink depth (depth at the cross section x - 0); 

Yu — Y*/Y* = depth for uniform supercritical flow (x—» — °°); 

YL = y * / y * = vertical dimension of the nappe at the limit section (*—•«>); 
vx — v*/(gY*)1^2 = horizontal velocity component; 

vy = v*/{gY*)1/2 = vertical velocity component; 

W=Y* jq* = stream function; 

p—p*I'pgY* — pressure (over the atmospheric value); 

H = H * / y * = total head; 

M — M*/pgY*2 = total momentum per unit span. 

(*) Presentata nella seduta dell'8 febbraio 1992. 
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1. INTRODUCTION 

The open-channel flow at the sharp drop of a wide rectangular channel - the so-
called free overfall (see [7,8] and fig. 1) - is studied below, under steady conditions, 
as a frictionless, irrotational and two-dimensional flow. Reference is made to an orthog­
onal system x*, y* with x* the horizontal axis and the origin located at the edge of the 
channel. Denoting by 3;* = h* (x*) and y* = z* (x*) the equations of the upper and 
lower profiles of the flowing stream, v* and v* the velocity components, p* the pres­
sure, p the constant density and g the gravity, in any vertical section we write: 

(1.1) 

(1.2) 

(1.3) 

Y*=h*-z*, 

H* = y* +p*/Pg + {vf + vf)/2g, 

M' = \(p*+Pvf)dy*, 

where Y* is the depth of the stream or the vertical dimension of the nappe, H* is total 
head referred to the x*-axis and M* is the «total» momentum, i.e. the momentum 
flow rate corrected for changes in the horizontal pressure force. 

With reference to a discharge q* per unit span, the following scaling is 
introduced: 

a) lengths are scaled by the critical depth Y* defined as 

(1.4) i ? = (**7s)1/3; 

Fig. 1. - Definition sketch of the free overfall. 
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b) velocities are scaled by the critical speed {gYf)l'2\ 

c) pressures are scaled by the pressure pgY*; 

d) the stream function Y* is scaled by the discarge q*. 

Each dimensionless variable will be written using the same symbol as for the di­
mensional one dropping the star: x = x*/Y*, etc. 

2. EQUATIONS OF MOTION 

The dimensionless stream function Y{x, y) is assumed to be zero at y = z and, con­
sequently, Y = 1 at y = h. It is expanded in a power series of (y — z), truncated at the 
third order. The procedure follows that proposed by Benjamin and Lighthill [1] to 
study cnoidal waves flowing over a flat horizontal bottom. 

Since the function Y must be a harmonic function, it can be written in the 
form 

(2.1) n*,y) = (y ~ z)f(x) +±(y-z)2(2z'f+ z"f) -jjiy- z?f" 
where f(x) is arbitrary and a prime denotes differentiation with respect to x. 

By imposing the boundary condition 

(2.2) <P(x,h) = l 

and by using the dimensionless form of eq. (1.1) 

(2.3) Y=h-z 
it follows 

(2.4) /(*) = 1 / y - (l/2)(2z'/ ' + z"f) Y+ (1/6)/"Y2 . 

We then differentiate twice eq. (2.4) and neglect terms contributing to the fourth 
order in eq. (2.1) to obtain 

(2.5) f = -(l/Y2)(h'-z'), 

(2.6) / " = (l/73)[2(£' - z'f - Y(h" - z")i. 

Substituting/' and/" from (2.5) and (2.6) in eq. (2.1), we can write the expression 
of the stream function Y to the previous order of approximation and, consequently, 
the velocity components 

(2.7) 

[Yz"-2z'(h'-z')i + 
y — z\2 

~Y j(h"-z")-(h'-z')2 

(2.8) «, = - F , = -^{z'+2L_£ (*'-*') 

The total head is then derived from (1.2) in the dimensionless form 

(2.9) H = H*/Y*=y + p + (l/2){ii+tj). 

Now, in any steady, inviscid and irrotational flow the quantities H and M must 
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take constant values; hence, we can calculate H with reference to the streamline 
y = h = Y 4- z where the relative pressure vanishes 

(2.10) H=Y+z + 
2Y2 1 + j(2h" + z") -jh'2 + ^z'2+j h'z' 

(2.11) 

The total momentum M*, given by eq. (1.3), is equivalent to 

Y*+z* 

1 
M* = J *[H* 2g 

dy* 

and, in non-dimensional form: 

Y+z 

(2.12) M = 3 ï = H Y - T - Y Z + ï / < * - # * • 

Substituting (2.7) and (2.8) in eq. (2.12), we obtain 

(2.13) h'2 + z'2 + h'z' = - 3 7 3 + 6H72 - 6M7+ 3 - 6Y2z 

which reduces to the equation of Benjamin and Lighthill [1, p. 458] when z and z9 

vanish everywhere (flat horizontal bottom). 
Eliminating H from eqs. (2.10) and (2.13) and solving for M we finally find 

,'2 
(2.14) 

Y2 1 y Lf2 il Lr„r 
1 + ~(2£" + z") - 2— + V + ÌLT 

6 3 6 6 

3. PRESSURE DISTRIBUTION 

Recalling that the flow is steady and irrotational (hence H = const), from eq. (2.9) 
we obtain 

(3.1) 
Bvv Bvv &P_ =__1_v ZIL - v ZZL 

By Bx y By 

Differentiating eqs. (2.7) and (2.8) to the order of approximation stated before 
and substituting in eq. (3.1), we have 

(3.2) 
dy y2 Y} y4 

from which the following pressure distribution is obtained 

(3.3) p(x,y) = - J -^-dy = b-y + 
z"(h-y) z'(h'-z')(h-y) 

Y2 Y} 

h2 - y2 z(h - y) 

2Y4 Y4 
[(h'-z')2-Y(h"-z")~\ 

where p(x, h) = 0. 
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On the lower profile (y = z) the pressure reads 

A" _L 7 " h'2 — 7a 

(3.4) p(x>z) = y+*jt2L_±_JL... 

Therefore, in order for the pressure to vanish on the lower profile of the nappe the 
following condition 

(3.5) 2 7 3 + Yh" + Yz" - h'2 + z'2 = 0 (for * > 0) 

must be satisfied. 

4. FORMS OF FREE OVERFALL 

Free overfall is the flow which takes place at the drop of a flat channel when the 
bottom presents a discontinuity such that the stream detaches from the bottom (see, 
for example, [5]). The flow may originate upstream from a subcriticai state or from a 
supercritical state depending on the channel slope, respectively smaller or greater than 
the critical slope for the given discharge. In the supercritical case, the upstream flow is 
assumed to take always the uniform depth. 

Proceeding upstream from the brink section - the crosss section at the end of the 
channel (x = 0) - it was experimentally observed that the flow reaches the critical 
depth y* (° r t n e uniform depth Y* in the supercritical case) at a distance not greater 
than 4Y* (or 4Y*). Since this channel stretch - represented by the whole field of 
negative abscissae in the present model - is very short, we may neglect the energy dis­
sipation and assume the channel bottom to be horizontal. In fact, physically, this as­
sumption is equivalent to considering the slope of the total head line coincident with 
the slope of the channel bottom. 

Therefore the above two configurations are characterized by the following 
conditions: 

a) Upstream subcriticai flow 

(4.1) [Y]x—» = 1; H = 3/2; M = 3/2; 

b) Upstream supercritical flow (uniform stream) 

(4.2) mx—»=Yu; H = HU = YU + 1/2Y2; M = MU = Y2/2 +l/Yu. 

5. THE NAPPE 

A number of approximate solutions have been proposed to obtain the nappe pro­
file. They are based on relaxation methods [9], iterative methods [3] or electrical 
analogy [4]. Here we propose an analytical solution derived on the basis of the above 
mentioned hypothesis, namely that the total momentum M, expressed by eq. (2.14), 
maintains a constant value. Inserting eq. (3.5), valid for x ^ O , in eq. (2.14) the 
result is 

(5.1) Yh"-V2 + h'z' = - y 3 + GUY-6 
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and 

(5.2) YzT + z'2 -h'z' = -Yò- 6MY + 6. 

Subtracting (5.2) from (5.1) it follows 

(5.3) Y(h" - z") - (*' - z'f = 12MY- 12, 

that is 

(5.4) YY" - Y2 - 12MY + 12 = 0. 

The integral of eq. (5.4) is 

(5.5) Y=YL+Ae~Bx 

where A and B are arbitrary constants and YL is the &>»// value of Y for x—> <*> (where 
r = r ' = 0). This gives 

(5.6) 7L = 1/M. 

In the case of upstream subcriticai flow YL has the well known [8] value 

(5.7) YL=2/3. 

Otherwise, if the jet derives from an upstream supercritical flow with uniform 
depth Yu, the value of YL is 

(5.8) YL = l/Ma=2YB(7B
3 + 2)-1 

as obtained from (4.2). 
As regards the constant A, we refer to the section x = 0. Denoting by Y0 the brink 

depth, it follows 

(5.9) A = Y0-YL. 

In order to determine the constant B we differentiate twice eq. (5.5) 

Y = -ABe~Bx; Y' = AB2e~Bx 

and substitute these expressions in eq. (5.4) 

(5.10) YAB2e~Bx-A2B2e-2Bx- 12M7+ 12 = 0. 

Inserting (5.5) in the latter relationship, it becomes 

(5.11) 7 L B 2 - 1 2 M = 0 

that is 

(5.12) B = -\J\2M/YL. 

Summarizing we find: 

(5.13) upstream subcriticai flow: B = 33^2; 

(5.14) upstream supercritical flow: B = 31^2 '2MU. 
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6. THE PRESSURE DISTRIBUTION ON THE NAPPE 

By applying eq. (3.2) to the nappe profiles - where eqs. (5.1) and (5.2) hold - we 
obtain 

(6.1) [dp/dy]y=z = (6MY-6)/Y\ 

(6.2) idp/dyly.k = -(6MY- 6 ) / 7 3 . 

These equations show that the ^-component of the pressure gradient has the same 
absolute value on both profiles; along any vertical section of the jet the pressure distri­
bution is symmetric. 

In particular, at the limit section , where h' = z' and Y—YL = l/M, it follows from 
(5.1) and (5.2) that 

(6.3) h" = z"=-Y2 

and hence, by means of eq. (3.2) 

(6.4) [dp/dy]Y=YL = 0. 

Thus we find the known result that the pressure p attains the atmospheric value in 
every point of the limit vertical section. 

7. THE LOWER NAPPE PROFILE 

The relative difference between the vertical dimension of the jet at an arbitrary 
section and the dimension of the limit section is given by eq. (5.5) 

(7.1) (Y- YL)/YL = (Y0/YL - 1) e~Bx. 

When the upstream flow is subcriticai we can assume the brink depth Y0 to take 
the experimental mean value 0.716 found by Rouse [8]. Using the value B = 33^2 (see 
(5.13)), eq. (7.1) leads to results some of which are listed in table I. 

TABLE I. 

X 

0 
0.1 
0.2 

(Y-YL)/YL 

0.074 
0.044 
0.026 

X 

0.3 
0.4 
0.5 

(Y-YL)/YL 

0.016 
0.009 
0.005 

The relative difference given by eq. (7.1) has the maximum value of about 7% at 
x = 0 and becomes smaller than 1% if x ̂  0.4. In the case of an upstream supercritical 
flow this difference is even less, because Y0/YL is smaller than 1.074 and B is larger 
than 33 / 2 . 

On the basis of these observations, in order to calculate the lower profile of the jet, 
we may assume y to be constant and equal to YL along the whole jet. Under this con-
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dition it follows that h' =z', h" = z" and, by eq. (3.5), 

(7.2) f=~Yl 

just as in the limit section. 
The integral of eq. (7.2) is 

(7.3) z' = -Ylx-b 

where b (assumed to be positive) can be derived from eq. (2.13) at x = z = 0, that is 

(7.4) 3[z'?o = - 3YI + 6HYI - 6MYL + 3 
with the previous assumption that [Y]0 = YL. Therefore, we have 

(7.5) b = ( - Yl + 2HYI - 2MYL + l)1/2. 

Inserting (7.5) in eq. (7.3), it follows that 

1 
(7.6) -z = j - Ylx2 + x(-Yl + 2HYI - 2MYL + 1)1/2 

being z = 0 at x = 0. 
For upstream subcriticai flow, where Ŷ  = 2/3, eq. (7.6) becomes 

(7.7) -z = 0.222 x2 + 0.192 x 
which is valid for a gravitational jet flowing from a smooth channel and unaffected by 
surface tension [2,6]. 
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Fig. 2. - The lower profile (7.7) of the nappe - corresponding to upstream subritical flow - compared 
with the experimental data of Rouse [7]. The theoretical profiles corresponding to Yu = 0.5 and 

Yu = 0.7 are also plotted (dashed lines). 
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Recalling the expression (5.6) for YL, eq. (7.6) may be written in the form: 

(7.8) -z = ax2 + bx 
with 

(7.9) a = (l/2)M~2 

(7.10) b = (2HÀT2 - M"3 - 1)1/2 . 

Some values of a and b, as functions of Yu, are given in table II. 
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Fig. 3. - Comparison of the lower profile (7.7) of the nappe with the experimental data of D'Alpaos[2] 
referring to small values of the critical depth. 
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TABLE IL 

I T ] -

Yc = l 

ra = o.9 
Yu = 0.S 

n=o.7 
y„ = o.6 
Ya=0.5 

H 

3/2 

1.517 
1.581 
1.720 
1.989 
2.500 

M 

3/2 

1.516 
1.570 
1.674 
1.847 
2.125 

YL 

2/3 

0.660 
0.637 
0.597 
0.541 
0.471 

a 

0.222 

0.217 
0.203 
0.178 
0.147 
0.111 

b 

0.192 

0.182 
0.157 
0.123 
0.087 
0.055 

The nappe lower profile corresponding to Yc = 1 (eq. (7.6)) is plotted in fig. 2 to­
gether with the experimental points of Rouse [7] referring to a horizontal smooth 
channel. The agreement appears to be satisfactory. In the same fig. 2 two profiles cor­
responding to the upstream condition Yu = 0.5 and Yu = 0.7 are also plotted. 

In fig 3 we have plotted the experimental data of D'Alpaos [2], related to water 
streams characterized by small values of the critical depth (0.79 4- 2.70 cm), so as to 
point out the influence of surface tension on the nappe. As Y* increases - hence the 
Weber number decreases - the effect of surface tension on the lower profile is found 
to vanish. We may observe that our curve (7.7), representing the theoretical profile of 
inviscid liquid subject only to gravity, fits satisfactorily the experimental points corre­
sponding to the larger values of critical depth tested by D'Alpaos. 
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