ATTI ACCADEMIA NAZIONALE LINCEI CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

Rendiconti Lincei Matematica e Applicazioni

GIOVANNI PROUSE

A uniqueness theorem for the approximable solutions of the stationary Navier-Stokes equations

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Serie 9, Vol. **3** (1992), n.4, p. 261–269.

Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLIN_1992_9_3_4_261_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Accademia Nazionale dei Lincei, 1992.

Analisi matematica. — A uniqueness theorem for the approximable solutions of the stationary Navier-Stokes equations. Nota (*) del Corrisp. GIOVANNI PROUSE.

ABSTRACT. — It is proved that there can exist at most one solution of the homogeneous Dirichlet problem for the stationary Navier-Stokes equations in 3-dimensional space which is approximable by a given consistent and regular approximation scheme.

KEY WORDS: Fluid dynamics; Approximation schemes; Weak solutions.

RIASSUNTO. — Un teorema di unicità per le soluzioni approssimabili delle equazioni di Navier-Stokes. Si dimostra che esiste al più una soluzione del problema di Dirichlet omogeneo per le equazioni stazionarie di Navier-Stokes in 3 dimensioni che sia approssimabile mediante uno schema di approssimazione consistente e regolare.

1. – The aim of this paper is to prove a uniqueness theorem relative to the solution of the homogeneous Dirichlet problem for the stationary Navier-Stokes equations in 3-dimensional space. This will be done, basically, by introducing the definition of «approximable» weak solution and of the corresponding «approximation scheme» and showing that *there cannot exist two weak solutions which are approximable by the same approximation scheme*; hence, for instance, a certain finite difference scheme leads to only one solution, which however can be different from the one obtained by another approximation scheme.

Let Ω be a bounded, open set $\subset R^3$ and denote by N, N^s ($s \ge 0$) respectively the space of vectors $\boldsymbol{v} = \{v_1, v_2, v_3\} \in \mathcal{Q}(\Omega)$ such that div $\boldsymbol{v} = 0$ and the closure of N in $H^s(\Omega)$; we shall, in particular, consider the Hilbert spaces N^0 and N^1 , in which the scalar product is defined by

(1.1)
$$(\boldsymbol{u}, \boldsymbol{v})_{N^0} = (\boldsymbol{u}, \boldsymbol{v})_{L^2(\Omega)}, \quad (\boldsymbol{u}, \boldsymbol{v})_{N^1} = (\boldsymbol{u}, \boldsymbol{v})_{H_0^1(\Omega)}.$$

Setting

$$A\boldsymbol{v} = -\mu \Delta \boldsymbol{v}, \qquad B(\boldsymbol{v}) = (\boldsymbol{v} \cdot \nabla) \, \boldsymbol{v} = \sum_{j,k=1}^{3} u_j \, \frac{\partial u_k}{\partial x_j} \,,$$

we shall say, following a well known definition (see, for instance [1, 2]) that u is a weak solution in Ω of the stationary Navier-Stokes equations satisfying homogeneous Dirichlet boundary conditions if

i) $\boldsymbol{u} \in N^1$;

ii) $\forall \varphi \in N^1$, $\langle A u + B(u) - f, \varphi \rangle = 0$, having assumed that $f \in (N^1)'$ and denoted by \langle , \rangle the duality between $(N^1)'$ and N^1 .

In order to introduce the concept of approximable weak solution, we must recall some definitions, due essentially to Temam [1], regarding approximation schemes

^(*) Presentata nella seduta del 24 aprile 1992.

relative to Navier-Stokes equations; in what follows, *h* will denote a real index which will, eventually, $\rightarrow 0$ ⁽¹⁾.

Let W be a Banach space $\subset L^2(\Omega)$; we shall call approximation of W a set consisting of:

 a_1) A Banach space $F \in L^2(\Omega)$ and an isomorphism ω of W into F;

 b_1) A family of triples $\{W_b, p_b, r_b\}$ such that, $\forall b, W_b$ is a Banach space $\subset L^2(\Omega)$, p_b is a continuous linear mapping of W_b into F, r_b is a mapping of W into W_b .

An approximation of W is said to be stable if

(1.2)
$$||p_b|| = \sup_{\|u_b\|_{W_b} = 1} ||p_b u_b||_F \le M$$
 (*M* independent of *b*).

An approximation of W is said to be convergent if:

 $a_2) \lim_{b \to 0} p_b r_b \boldsymbol{u} = \omega \boldsymbol{u} \quad \text{in } F, \quad \forall \boldsymbol{u} \in W;$

 b_2) \forall sequence $\{u_{b'}\}$ of elements of $W_{b'}$ such that $\lim_{b'\to 0} p_{b'}u_{b'} = \psi$ in F, there exists $u \in W$ such that $\psi = \omega u$.

Let now $\{(N_b^1, p_b, r_b), (\omega, F)\}$ be a stable and convergent approximation of N^1 ; we introduce the forms $a_b(\boldsymbol{u}_b, \boldsymbol{v}_b), b_b(\boldsymbol{u}_b, \boldsymbol{v}_b, \boldsymbol{w}_b)$ defined in the following way.

 $a_b(\boldsymbol{u}_b, \boldsymbol{v}_b)$ is a bilinear, continuous form on $N_b^1 \times N_b^1$ such that, $\forall b$,

(1.3)
$$|a_b(u_b, v_b)| \leq c_1 ||u_b||_{N_b^1} ||v_b||_{N_b^1},$$

(1.4)
$$a_b(\boldsymbol{u}_b, \boldsymbol{u}_b) \geq \sigma \|\boldsymbol{u}_b\|_{N_b^1}^2,$$

with c_1 , σ positive constants, independent of h.

 $b_b(u_b, v_b, w_b)$ is a trilinear, continuous form on $N_b^1 \times N_b^1 \times N_b^1$ such that, $\forall b$,

$$(1.5) \quad b_b(\boldsymbol{u}_b, \boldsymbol{v}_b, \boldsymbol{w}_b) = -b_b(\boldsymbol{u}_b, \boldsymbol{w}_b, \boldsymbol{v}_b).$$

(1.6)
$$|b_b(u_b, v_b, w_b) \le c_2 ||u_b||_{L^q} ||v_b||_{N_b^1} ||w_b||_{L^p}$$

with 1/p + 1/q = 1/2, c_2 independent of *b*.

We shall, moreover, assume that

*a*₃) If $\lim_{b \to 0} p_b u_b = \omega u$, $\lim_{b \to 0} p_b v_b = \omega v$ respectively in the strong and weak topology of *F*, then

(1.7)
$$\lim_{b\to 0} a_b(\boldsymbol{u}_b, \boldsymbol{v}_b) = (\boldsymbol{u}, \boldsymbol{v})_{N^1};$$

 b_3) If $\lim_{b\to 0} u_b = u$ in L^2 , $\lim_{b\to 0} p_b v_b = \omega v$ in the weak topology of F, $\lim_{b\to 0} w_b = w$ in L^{∞} , then

(1.8)
$$\lim_{b \to 0} b_b(\boldsymbol{u}_b, \boldsymbol{v}_b, \boldsymbol{w}_b) = ((\boldsymbol{u} \cdot \nabla) \boldsymbol{v}, \boldsymbol{w})_{N^0}.$$

The set $\Gamma_b = \{(N_b^1, p_b, \Gamma_b), (\omega, F), (a_b, b_b)\}$ will be called an *approximation scheme* of the problem considered if $\{(N_b^1, p_b, \Gamma_b), (\omega, F)\}$ is a stable and convergent approximation of N^1 and if (1.3), (1.4), (1.5), (1.6), (1,7) (1.8) hold.

On the basis of the definitions given above, it is possible to define approximate and approximable solutions. We shall say that u_b is an *approximate solution*, relative to

⁽¹⁾ For other approximation schemes, using a different approach, see [3].

the scheme Γ_b , of the homogeneous Dirichlet problem for the stationary Navier-Stokes equations, with known term $f_b \in (N_b^1)'$, if:

$$i_b$$
) $u_b \in N_b^1$;

$$ii_b$$
) $\forall \boldsymbol{\varphi}_b \in N_b^1$, $\mu a_b(\boldsymbol{u}_b, \boldsymbol{\varphi}_b) + b(\boldsymbol{u}_b, \boldsymbol{u}_b, \boldsymbol{\varphi}_b) = \langle f_b, \boldsymbol{\varphi}_b \rangle$,

where \langle , \rangle denotes the duality between $(N_b^1)'$ and N_b^1 .

Let f be an arbitrary function $\in (N^1)'$ and $\{f_b\}$ a set such that $f_b \in (N_b^1)'$ and (1.9) $\lim_{b \to 0} \langle f_b, \varphi_b \rangle = \langle f, \varphi \rangle$ $\forall \text{ set } \{\varphi_b\} \text{ such that } \varphi_b \in N_b^1 \lim_{b \to 0} p_b \varphi_b = \omega \varphi \text{ in } F.$ We shall see that d

We shall say that the approximation scheme Γ_b is consistent and regular if:

 α) $\forall b$ there exists one, and only one, approximate solution u_b corresponding to f_b ;

 β) It is possible to select, from any sequence $\{u_{b_n}\}$ a subsequence $\{u_{b_n}\}$ such that

 $p_{b_{n'}} \boldsymbol{u}_{b_{n'}} \rightarrow \omega \boldsymbol{u}$ weakly in F, $\boldsymbol{u}_{b_{n'}} \rightarrow \boldsymbol{u}$ weakly in L^2 , (1.10)where u is a weak solution corresponding to f;

 $\gamma) \forall \text{ fixed } \overline{b} > 0, \lim_{b \to \overline{b}} u_b = u_{\overline{b}} \quad \text{weakly in } L^2.$

We shall, finally, say that the weak solution u, corresponding to the known term f, is approximable by the consistent and regular scheme Γ_b if there exists a sequence $\{u_b\}$ of approximate solutions, corresponding to the known terms f_{b_n} satisfying (1.9), such that

(1.11)
$$\lim_{n \to \infty} p_{b_n} \boldsymbol{u}_{b_n} = \omega \boldsymbol{u} \quad \text{weakly in } F.$$

In the sections which follow, we shall prove the following

THEOREM. Let Γ_b be a consistent and regular approximation scheme. There exists at most one weak solution which is approximable by such a scheme.

The guideline of the proof is the following.

a) If there exist two weak solutions which are approximable by the same consistent and regular approximation scheme Γ_b , then there exist infinitely many weak solutions, with the power of the continuum, which are approximable by Γ_b . The set of these solutions will in the sequel be denoted by U (Lemma 1).

b) The set U is compact in L^4 (Lemma 2).

c) Let $\{u_n\}$ be any sequence $\subset U$; $\{u_n\}$ cannot then be a basis of U (Lemma 3). The proof of the Theorem will then consist in showing that

 α) It is not possible that there exist a sequence $\{v_n\}$ of linearly independent solutions (since, in this case, $\{v_n\}$ would be a basis, against c));

 β) it is not possible that there exist only a finite number p of linearly independent solutions (since, in this case, U would contain only a finite number of elements, against a)).

2. - Let $\{g_j\}$ be an orthonormal basis in N^1 and denote by \tilde{g}_j the (eventual) elements of $\{g_j\}$ such that $(u, g_j)_{N^1} = 0 \quad \forall u \in U$; the remaining elements of $\{g_j\}$ will form a sequence which we shall denote by $\{g_j^*\}$ (eventually $\{g_j^*\} = \{g_j\}$). We shall, moreover, denote by N^{*1} be the subspace of N^1 spanned by $\{g_j^*\}$.

We now state and prove the Lemmas mentioned in the preceding section.

LEMMA 1. Let u, v be two weak solutions, corresponding to the same known term f, approximable by the same consistent and regular approximation scheme Γ_b . There exist then infinitely many (with the power of the continuum) weak solutions which are approximable by Γ_b .

Let u_b be the approximate solution corresponding to the scheme Γ_b ; by the assumptions made, there exist a function $\varphi^* \in N^0$ and two sequences $\{u_{b_j'}\}, \{u_{b_j''}\}$ such that

(2.1) $\lim_{\substack{b_{j}' \to 0}} (\boldsymbol{u}_{b_{j}'}, \boldsymbol{\varphi}^{*})_{L^{2}} = (\boldsymbol{u}, \boldsymbol{\varphi}^{*})_{L^{2}} = \alpha; \qquad \lim_{\substack{b_{j}'' \to 0}} (\boldsymbol{u}_{b_{j}''}, \boldsymbol{\varphi}^{*})_{L^{2}} = (\boldsymbol{v}, \boldsymbol{\varphi}^{*})_{L^{2}} = \beta > \alpha.$ Hence, since Γ_{b} is regular $(\Rightarrow b \to (\boldsymbol{u}_{b}, \boldsymbol{\varphi}^{*})_{L^{2}}$ is continuous $\forall b > 0$), fixed an arbitrary number $\gamma \in (\alpha, \beta)$, there exists a sequence $\{\boldsymbol{u}_{b_{j}'''}, \boldsymbol{\varphi}^{*}\}_{L^{2}}$ such that (2.2) $\lim_{b_{j}''' \to 0} (\boldsymbol{u}_{b_{j}'''}, \boldsymbol{\varphi}^{*})_{L^{2}} = \gamma.$

Since Γ_b is a consistent scheme, we may, on the other hand, assume that (2.3) $\lim_{b_j \stackrel{'''}{\longrightarrow} 0} u_{b_j \stackrel{'''}{=}} z$ weakly in L^2 ,

with $z \in U$; consequently, $\gamma = (z, \varphi^*)_{L^2}$ and, since γ is arbitrarily chosen in (α, β) , there exist infinitely many solutions with the power of the continuum, all approximable by Γ_b .

LEMMA 2. The set U is compact in L^4 .

The statement is obviously true if U consists of only a finite number of elements. Suppose now that $\{u_n\}$ is a sequence $\subset U$; setting in *ii*) of section 1 $\varphi = u$, we obtain directly (since $\langle B(u), u \rangle = 0 \quad \forall u \in N^1$)

(2.4) $\|\boldsymbol{u}_n\|_{N^1} \leq M$ (*M* independent of *n*). It is then possible to select from $\{\boldsymbol{u}_n\}$ a subsequence $\{\boldsymbol{u}_{n'}\}$ such that (2.5) $\lim_{n' \to 0} \boldsymbol{u}_{n'} = \boldsymbol{u}$

in the weak topology of N^1 and in the strong topology of L^4 . Bearing in mind that $\forall u$, $v \in N^1$, $\langle (u \cdot \nabla) u, \varphi \rangle = -\langle (u \cdot \nabla) \varphi, u \rangle$, it follows then, by (2.5), that $u \in U$. Hence, U is L^4 compact.

LEMMA 3. Let $\{u_n\}$ be a sequence $\subset U$; then $\{u_n\}$ cannot be a basis in N^{*1}

By Lemma 2, we may assume, in fact, that $\lim_{n \to \infty} u_n = u \in U$. On the other hand, it is well known that, if a sequence $\{z_n\}$ is a basis in a Banach space and if $z_n \to z$, then necessarily z = 0. If therefore $\{u_n\}$ were a basis, u = 0 would be a solution, which, by the uniqueness theorem of «small» solutions (see, for instance [1]), is unique. Hence, U would consist of only one element and could not contain a sequence. The Lemma is thus proved.

3. - Let us now prove the uniqueness Theorem stated in section 1.

We show, to begin with, that, if $\{u_k\}$ is a sequence of solutions, then the elements of $\{u_k\}$ cannot all be linearly independent in N^{*1} . Let, in fact,

(3.1)
$$u_k = \sum_{j=1}^{\infty} \zeta_{kj} g_j^* \qquad (k = 1, 2, ...)$$

where, by the assumptions made, the linear combinations $\sum_{j=1}^{\infty} \zeta_{kj} g_j^*$ are all linearly independent in N^{*1} . Since $\{g_j^*\}$ is a basis in U, it follows that also $\{u_k\}$ is a basis in U, and this, by Lemma 3, is not possible.

Finally, we must consider the case in which all solutions \boldsymbol{u} are linear combinations of a finite number p of solutions: $\boldsymbol{u} = \sum_{k=1}^{p} \alpha_k \boldsymbol{v}_k$. Since, by the assumptions made, there exists an infinite number of solutions, all satisfying (2.4), there must exist a solution, \boldsymbol{u}^* , which is a limit point for U; we shall then denote by σ the neighbourhood of \boldsymbol{u}^* defined by

(3.2)
$$\sigma = \{ v \in L^4 : \| u^* - v \|_{L^4} < 1 \}.$$

By construction, σ contains an infinite number of solutions; let $q \leq p$ be the number of linearly independent solutions $\in \sigma$; these will be denoted by $v_k (k = 1, 2, ..., q)$, with $v_1 = u^*$. By (3.2) we have

(3.3) $\|v_1 - v_k\|_{L^k} < 1$ $\forall k = 1, 2, ..., q$. Let now $u = \sum_{k=1}^{q} \alpha_k v_k$ be a solution $\in \sigma$; the coefficients α_k must then satisfy the equations

(3.4)
$$\begin{cases} \sum_{k=1}^{q} \alpha_k A \boldsymbol{v}_k + \sum_{k=1}^{q} \alpha_k B(\boldsymbol{v}_k) - f \sum_{k=1}^{q} \alpha_k = 0, \\ A \sum_{k=1}^{q} \alpha_k \boldsymbol{v}_k + B\left(\sum_{k=1}^{q} \alpha_k \boldsymbol{v}_k\right) - f = 0 \end{cases}$$

and, consequently, $\forall \phi \in N^1$,

(3.5)
$$\psi_{\varphi}(\alpha_{1}, ..., \alpha_{q}) = \sum_{k=1}^{q} \alpha_{k} \left((\boldsymbol{v}_{k} \cdot \nabla) \, \boldsymbol{v}_{k}, \, \boldsymbol{\varphi} \right)_{L^{2}} - \left(\left(\sum_{k=1}^{q} \alpha_{k} \, \boldsymbol{v}_{k} \cdot \nabla \right) \sum_{k=1}^{q} \alpha_{k} \, \boldsymbol{v}_{k}, \, \boldsymbol{\varphi} \right)_{L^{2}} + \left(1 - \sum_{k=1}^{q} \alpha_{k} \right) \langle f, \, \boldsymbol{\varphi} \rangle = 0 \, .$$

Equations (3.5) constitute an algebraic system of degree 2 in the unknowns $\alpha_1, \alpha_2, ..., \alpha_q$, which, obviously, admits the q solutions $P_1(1, 0, ..., 0)$, $P_2(0, 1, ..., 0), ..., P_q(0, 0, ..., 1)$. According to Lemmas 1 and 2, on the other hand, if we assume that there exists more than one solution, in every neighbourhood of v_1 must be contained infinitely many solutions, *i.e.* the system (3.5) must admit infinitely many solutions in every neighbourhood of P_1 . We shall show that this is absurd and, consequently, that the solution is unique. The proof is given in the Appendix.

4. – The uniqueness Theorem proved in the preceding Section holds for solutions which are approximable by a consistent and regular approximation scheme.

Examples of such schemes are the finite difference and finite elements schemes described by Temam. It is, in fact, proved in [1] that these schemes are consistent and from Temam's analysis it also follows that they are regular (*i.e.* that condition γ) of section 1 is satisfied) provided that, when $h \rightarrow 0$, the sequence of grids is chosen in an appropriate way (²).

It can also easily be shown that another consistent and regular approximation scheme can be obtained by considering as approximate solutions the solutions of the Navier-Stokes equations with an «artificial viscosity» term, *i.e.*

(4.1)
$$A \boldsymbol{u}_{b} + B(\boldsymbol{u}_{b}) + b\Delta^{2}\boldsymbol{u}_{b} + \nabla p = \boldsymbol{f}, \quad \text{div } \boldsymbol{u}_{b} = \boldsymbol{0}$$

with the boundary conditions

(4.2)
$$\boldsymbol{u}_{b}|_{\partial\Omega} = \frac{\partial \boldsymbol{u}_{b}}{\partial n}\Big|_{\partial\Omega} = 0.$$

This approximation scheme falls into the general pattern described in Sect. 1 by setting $F = W = N^1$, $N_b^1 = N^1 \cap H^2$, with norm defined by

(4.3)
$$\|\boldsymbol{v}\|_{N_{b}^{1}}^{2} = \|\boldsymbol{v}\|_{N^{1}}^{2} + b\|\Delta\boldsymbol{u}\|_{L^{2}}^{2},$$

 $r_b = G$ (Green's operator, from $(N^1)'$ to N^1 , associated to $-\Delta$), p_b embedding operator from N_b^1 into N^1 . For a more detailed description of this scheme see [2, 4].

Appendix

Let us prove the following statement:

Assume that all the solutions belonging to the neighbourhood σ of v_1 introduced in Section 3 depend linearly on the q independent solutions $v_1, v_2, ..., v_q$; there exists then a neighbourhood of v_1 which contains no other solutions apart from v_1 .

The proof will be carried out considering separately the following cases:

i) It is possible to find in σq linearly independent solutions $v_1, ..., v_q$ such that the functions

(5.1)
$$z_k = (v_1 \cdot \nabla) v_k + (v_k \cdot \nabla) v_1 + A v_k \quad (k = 1, ..., q)$$

are linearly independent.

ii) Whatever choice is made of $v_1, ..., v_q$, the corresponding functions $z_1, ..., z_q$ are not linearly independent, *i.e.* there exist $(\lambda_1, ..., \lambda_q) \neq 0$ such that

(5.2)
$$\sum_{k=1}^{q} \lambda_k z_k = 0.$$

This case can be divided into two subcases:

 $(^2)$ In the finite difference scheme, for example, it is sufficient to assume that, if the net points are the centers of the grid, one net point remains fixed $\forall b$.

A UNIQUENESS THEOREM FOR THE APPROXIMABLE SOLUTIONS ...

ii₁) There exist $v_1, ..., v_q$ such that (5.2) holds with

(5.3)
$$\sum_{k=1}^{q} \lambda_k \neq 0,$$

or

ii₂) For every choice of $v_1, ..., v_q$, (5.2) holds with

(5.4)
$$\sum_{k=1}^{q} \lambda_k = 0.$$

Let us start by considering case i).

Observe that the tangent hyperplanes in P_1 to the hypersurfaces (3.5) are given by

(5.5)
$$\sum_{k=1}^{q} \alpha_k \langle z_k, \boldsymbol{\varphi} \rangle = \langle z_1, \boldsymbol{\varphi} \rangle.$$

Observe, moreover, that, if $z_1, ..., z_q$ are linearly independent, it is possible to choose $\varphi_1, ..., \varphi_q$ such that the corresponding hyperplanes are linearly independent.

Assume, in fact, that z_1, \ldots, z_q are linearly independent and set

$$(5.6) \qquad \qquad \boldsymbol{\varphi}_j = G \, \boldsymbol{z}_j$$

where G is Green's operator, from $(N^1)'$ to N^1 relative to A; by (5.5) we obtain

(5.7)
$$\sum_{k=1}^{q} \alpha_k \langle \boldsymbol{z}_k, \, \boldsymbol{G} \, \boldsymbol{z}_j \rangle = \langle \boldsymbol{z}_1, \, \boldsymbol{G} \, \boldsymbol{z}_j \rangle \quad (j = 1, \, \dots, \, q) \, .$$

If the hyperplanes (5.7) were not linearly independent, there would exist $(\lambda_1, ..., \lambda_q) \neq 0$ such that

(5.8)
$$\sum_{j=1}^{q} \lambda_j \langle z_k, G z_j \rangle = \sum_{j=1}^{q} \lambda_j (z_k, z_j)_{(N^1)'} = 0 \quad (k = 1, ..., q),$$

which is absurd, since $z_1, ..., z_q$ are linearly independent. Hence, the hypersurfaces $\psi_{\varphi_j} = 0$ (j = 1, 2, ..., q) have, in a neighbourhood of P_1 , in common only the point P_1 . Our statement is therefore true in this case.

Consider now case ii_1). By (5.1), (5.2), we have

(5.9)
$$(\boldsymbol{v}_1 \cdot \nabla) \sum_{k=1}^{q} \lambda_k \boldsymbol{v}_k + \left(\sum_{k=1}^{q} \lambda_k \boldsymbol{v}_k \cdot \nabla\right) \boldsymbol{v}_1 + A \sum_{k=1}^{q} \lambda_k \boldsymbol{v}_k = 0$$

and, consequently, multiplying by $\boldsymbol{w} = \sum_{k=1}^{q} \lambda_k \boldsymbol{v}_k$ and observing that, by (5.3), we can always assume that $\sum_{k=1}^{q} \lambda_k = 1$,

(5.10)
$$\langle (\boldsymbol{v}_1 \cdot \nabla) \boldsymbol{w}, \boldsymbol{w} \rangle + \langle (\boldsymbol{w} \cdot \nabla) \sum_{k=1}^{q} \lambda_k \boldsymbol{v}_1, \boldsymbol{w} \rangle + \| \boldsymbol{w} \|_{N^1}^2 = 0.$$

On the other hand, bearing in mind $(3.2)(^3)$,

(5.11)
$$|\langle (\boldsymbol{w}\cdot\nabla) \sum_{k=1}^{q} \lambda_{k} \boldsymbol{v}_{1}, \boldsymbol{w} \rangle \leq |\langle (\boldsymbol{w}\cdot\nabla) \boldsymbol{w}, \boldsymbol{w} \rangle| + |\langle (\boldsymbol{w}\cdot\nabla) \sum_{k=1}^{q} \lambda_{k} (\boldsymbol{v}_{1} - \boldsymbol{v}_{k}), \boldsymbol{w} \rangle| \leq ||\boldsymbol{w}||_{N^{1}}^{2} \max_{k=1,...,q} ||\boldsymbol{v}_{1} - \boldsymbol{v}_{k}||_{L^{4}} < ||\boldsymbol{w}||_{N^{1}}^{2}.$$

 $(^3)$ For the sake of simplicity, we shall assume that the embedding constants are = 1.

267

Hence, by (5.10),

(5.12)
$$\boldsymbol{w} = \sum_{k=1}^{q} \lambda_k \boldsymbol{v}_k = 0,$$

which is absurd, since $v_1, ..., v_q$ are linearly independent.

We now consider case ii₂). Let us choose arbitrarily $v_2, ..., v_q$ such that $v_1, ..., v_q$ are linearly independent solutions $\in \sigma$ and let

(5.13)
$$\boldsymbol{u} = \sum_{k=1}^{q} \alpha_k \boldsymbol{v}_k$$

be any other solution $\in \sigma$. Setting

(5.14)
$$z_{u} = (\boldsymbol{v}_{1} \cdot \nabla) \boldsymbol{u} + (\boldsymbol{u} \cdot \nabla) \boldsymbol{v}_{1} + A \boldsymbol{u},$$

there exist then $(\lambda_1, \lambda_2, ..., \lambda_q) \neq 0$ with $\lambda_q \neq 0$ such that

(5.15)
$$\lambda_q z_u + \sum_{k=1}^{q-1} \lambda_k z_k = 0, \qquad \sum_{k=1}^{q} \lambda_k = 0,$$

that is

(5.16)
$$\sum_{k=1}^{q-1} \lambda_k [(\boldsymbol{v}_1 \cdot \nabla) \, \boldsymbol{v}_k + (\boldsymbol{v}_k \cdot \nabla) \, \boldsymbol{v}_1 + A \boldsymbol{v}_k] + \lambda_q \left[(\boldsymbol{v}_1 \cdot \nabla) \, \sum_{k=1}^{q} \alpha_k \, \boldsymbol{v}_k + \left(\sum_{k=1}^{q} \alpha_k \, \boldsymbol{v}_k \cdot \nabla \right) \boldsymbol{v}_1 + A \, \sum_{k=1}^{q} \alpha_k \, \boldsymbol{v}_k \right] = 0.$$

It follows, setting $\boldsymbol{w} = \sum_{k=1}^{q-1} (\lambda_k + \lambda_q \, \alpha_k) \, \boldsymbol{v}_k + \lambda_q \, \alpha_q \, \boldsymbol{v}_q$, that
(5.17) $(\boldsymbol{v}_1 \cdot \nabla) \, \boldsymbol{w} + (\boldsymbol{w} \cdot \nabla) \, \boldsymbol{v}_1 + A \, \boldsymbol{w} = 0$

and, consequently, multiplying by w,

(5.18)
$$\langle (\boldsymbol{w} \cdot \nabla) \boldsymbol{v}_1, \boldsymbol{w} \rangle + \| \boldsymbol{w} \|_{N^1}^2 = 0.$$

Hence, repeating the procedure followed in formulas (5.9) to (5.12), we may conclude that if

(5.19)
$$\sum_{k=1}^{q-1} (\lambda_k + \lambda_q) \alpha_k + \lambda_q \alpha_q \neq 0,$$

i.e. if $\sum_{k=1}^{q} \alpha_k \neq 1$, then (5.18) implies that w = 0, which is absurd.

Consequently, (5.15) can hold only if u is given by (5.13), with

(5.20)
$$\sum_{k=1}^{q} \alpha_k = 1,$$

that is if all the solutions of (3.5) belong to the hyperplane Π of equation (5.28).

Observe now that, repeating the proof given in formulas (5.10) to (5.12), it can be shown that $z_k \neq 0$ (k = 1, 2, ..., q); by (5.4) it is then obviously possible to choose $\boldsymbol{\varphi} = \tilde{\boldsymbol{\varphi}}$ in such a way that the hypersurface $\psi_{\bar{\boldsymbol{\varphi}}} = 0$ has, in P_1 , a tangent hyperplane which coincides with Π . Hence, bearing in mind that $\psi_{\bar{\boldsymbol{\varphi}}}$ is a polynomial of degree 2, the hypersurface $\psi_{\bar{\varphi}} = 0$ has in common with Π either only the point P_1 , or a set which contains a straight line Λ .

On the other hand, if we assume that the number of solutions is infinite and denote by Γ the set of points of Π which represent these solutions, it is obvious that Γ must have infinite points in common with Λ , *i.e.* that all the second grade hypersurfaces $\psi_{\varphi} = 0$ must contain Λ . This however is absurd, because there would then exist solutions for which (2.4) does not hold.

Hence, also in this case these cannot by any other solutions in a neighbourhood of P_1 . This completes the proof of our statement.

Lavoro eseguito nell'ambito dei Contratti di Ricerca MURST 40% e 60%.

References

- [1] R. TEMAM, Navier-Stokes equations. North Holland, 1977.
- [2] O. A. LADYZHENSKAYA, The mathematical theory of viscous, incompressible fluids. Gordon and Breach, 1969.
- [3] F. BREZZI J. RAPPAZ P. A. RAVIART, Finite dimensional approximation of nonlinear problems. Num. Math., 36, 1980, 1-25.
- [4] O. A. LADYZHENSKAYA, On modifications of the Navier-Stokes equations for large velocity gradients. Sem. Inst. Steklov, Leningrad 1968 (in russian).
- [5] J. L. LIONS, Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, 1969.

Dipartimento di Matematica - Politecnico di Milano Piazza L. da Vinci, 32 - 20133 MILANO