ATTI ACCADEMIA NAZIONALE LINCEI CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI LINCEI MATEMATICA E APPLICAZIONI

GIULIANA GIGANTE, GIUSEPPE TOMASSINI

Foliations with complex leaves

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Serie 9, Vol. 4 (1993), n.2, p. 115–120.

Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLIN_1993_9_4_2_115_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Accademia Nazionale dei Lincei, 1993.

Geometria. — Foliations with complex leaves. Nota di GIULIANA GIGANTE e GIUSEPPE TOMASSINI, presentata (*) dal Socio E. Vesentini.

ABSTRACT. — Let X be a smooth foliation with complex leaves and let \mathcal{Q} be the sheaf of germs of smooth functions, holomorphic along the leaves. We study the ringed space (X, \mathcal{Q}) . In particular we concentrate on the following two themes: function theory for the algebra $\mathcal{Q}(X)$ and cohomology with values in \mathcal{Q} .

KEY WORDS: Foliations; Several complex variables and analytic spaces; CR-structures.

RIASSUNTO. — Foliazioni con foglie complesse. Sia X una varietà differenziabile fogliata con foglie complesse e sia \mathcal{Q} il fascio dei germi delle funzioni differenziabili su X, olomorfe lungo le foglie. Si studia lo spazio anellato (X, \mathcal{Q}) ; in particolare la teoria delle funzioni per l'algebra $\mathcal{Q}(X)$ e la coomologia a valori in \mathcal{Q} .

1. Preliminaries

1. In the following new results on foliations with complex leaves are announced. Complete proofs will appear elsewhere.

A foliation with complex leaves is a (smooth) foliation X of dimension 2n + kwhose local models are domains $U = V \times B$ of $C^n \times R^k$, $V \in C^n$, $B \in R^k$ and whose local transformations are of the form

(*)
$$\begin{cases} z' = f(z, t) \\ t' = b(t) \end{cases}$$

where f is holomorphic with respect to z.

A domain U as above is said to be a distinguished coordinate domain of X and $z = (z_1, ..., z_n)$, $t = (t_1, ..., t_k)$ are said to be distinguished local coordinates.

k is called the real codimension of X.

As an example of such foliations we have the Levi flat hypersurfaces of C^{n} [13, 4, 11].

Let X be a smooth foliation as above. Then the leaves are complex manifolds of dimension n. Let ϖ be the sheaf of germs of smooth functions, holomorphic along the leaves (namely the germs of CR-functions on X).

 \mathcal{O} is a Fréchet sheaf and we denote by $\mathcal{O}(X)$ the Fréchet algebra $\Gamma(X, \mathcal{O})$.

X is said to be a *q*-complete foliation if there is an exhaustive, smooth function $\Phi: X \to \mathbf{R}$ which is strictly *q*-pseudoconvex along the leaves.

X is a Stein foliation if

(a) $\mathcal{O}(X)$ separates points of X;

(b) X is \mathcal{O} -convex;

(*) Nella seduta del 13 febbraio 1993.

(c) for every $x \in X$ there exist $f_1, ..., f_n, h_1, ..., h_k \in \mathcal{O}(X)$ such that

rank
$$\frac{\partial(f_1, ..., f_n, b_1, ..., b_k)}{\partial(z_1, ..., z_n, t_1, ..., t_k)} = n + k$$

 $(z_1, ..., z_n, t_1, ..., t_k$ distinguished local coordinates at x).

It is possible to prove that a Stein foliation is 1-complete.

REMARK. If we replace \mathbf{R}^k by \mathbf{C}^k and in (*) we assume $t \in \mathbf{C}^k$ and that f, b are holomorphic with respect to z, t then we obtain the notion of *complex foliation* of (*complex*) codimension k.

2. Every real analytic foliation can be complexified. Precisely we have the following

THEOREM 1. Let X be a real analytic foliation with complex leaves, of codimension k. Then there exists a complex foliation \tilde{X} of codimension k such that:

(1) $X \hookrightarrow \overline{X}$ by a closed real analytic embedding which is holomorphic along the leaves;

(2) every real analytic CR-function $f: X \rightarrow R$ extends holomorphically on a neighbourhood;

(3) if X is a q-complete foliation with exhaustive function Φ then for every $c \in \mathbf{R}$, $\overline{X}_c = \{\Phi \leq c\}$ has a fundamental system of neighbourhoods which are q-complete manifolds.

REMARK. \tilde{X} with the properties (1), (2), (3) is essentially unique.

As a corollary, using the approximation theorem of M. Freeman [5] we prove the following

THEOREM 2. Under the assumptions of Th. 1. if X is 1-complete, a smooth CR-function on a neighbourhood of \overline{X}_c can be approximated by smooth global CR-functions.

REMARK. A similar argument can be applied to prove that in the previous statement \overline{X}_c can be replaced by an arbitrary \mathcal{O} -convex compact K (*i.e.* $\hat{K} = K$).

2. Applications

1. The approximation theorem allows us to prove an embedding theorem for real analytic Stein foliations [7].

Let X be a smooth foliation with complex leaves of dimension n and of codimension k. Let us denote by $\mathcal{C}(X; \mathbb{C}^N)$ the set of the smooth CR-maps $X \to \mathbb{C}^N \cdot \mathcal{C}(X; \mathbb{C}^N)$ is Fréchet.

We have the following

THEOREM 3. Assume X is a real analytic Stein foliation. Then there exists

a smooth CR-map $X \rightarrow C^N$, N = 2n + k + 1 which is one-to-one, proper and regular.

2. We apply the above theorem to obtain information about the topology of X.

THEOREM 4. Let X be a real analytic Stein foliation. Then $H_j(X, \mathbb{Z}) = 0$ for $j \ge n + k + 1$ and $H_{n+k}(X, \mathbb{Z})$ has no torsion.

SKETCH OF PROOF. Embed X in \mathbb{C}^N and consider on X the distance function ρ from a point $z^0 \in \mathbb{C}^N \setminus X$. z^0 can be chosen in such a way that ρ is a Morse function.

Next we show that ρ has no critical point of index $j \ge n + k + 1$ [14].

COROLLARY 5. Let $X \in \mathbf{P}^{N}(\mathbf{C})$ be a closed oriented real analytic foliation and let W be a smooth algebraic hypersurface which does not contain X. Then the homomorphism $H^{j}(X, \mathbf{Z}) \to H^{j}(X \cap W, \mathbf{Z})$ induced by $X \cap W \to X$ is bijective for j < n - 1 and injective for j = n - 1. Moreover the quotient group $H^{n-1}(X \cap W, \mathbf{Z})/H^{n-1}(X, \mathbf{Z})$ has no torsion.

3. Cohomology

1. Given a *q*-complete smooth foliation *X*, according to the Andreotti and Grauert theory for complex spaces it is natural to expect that the cohomology groups $H^{j}(X, \mathcal{Q})$ vanish for $j \ge q$.

This is actually true for domains in $C^n \times R^k$ [1]. More generally we prove the following:

THEOREM 6. Let X be a 1-complete real analytic foliation. Then $H^j(X, \mathcal{Q}) = 0$ for $j \ge 1$.

SKETCH OF PROOF. Let us assume k=1 and let Φ be an exhaustive function for X. Then the vanishing theorem for domains in $C^n \times \mathbb{R}^k$, bumps lemma and Mayer-Vietoris sequence [1] yield the following: for every c > 0 there is $\varepsilon > 0$ such that

(1)
$$H^{j}(X_{c+\varepsilon}, \mathcal{Q}) \to H^{j}(X_{c}, \mathcal{Q})$$

is onto for $j \ge 1$ (and this holds true for $j \ge q$ whenever X is a q-complete smooth foliation). Now let \tilde{X} be the complexification of X and let us consider the compact $\overline{X}_c = \{\Phi \le c\}$. In view of theorem 1, \overline{X}_c has in \tilde{X} a fundamental system of Stein neighbourhoods U. X is oriented around \overline{X}_c and consequently $U \setminus X$ has two connected components U_+ , U_- (U connected).

Denote by O_+ (resp. O_-) the sheaf of germs of holomorphic functions on U_+ (resp. U_-) that are smooth on $U_+ \cup (U_+ \cap X)$ (resp. $U_- \cup (U_- \cap X)$).

Then we have the exact sequence

$$(2) \qquad \qquad 0 \to O \to O_+ \oplus O_- \xrightarrow{\text{Ic}} O \to 0$$

[2]; (here O_+ (resp. O_-)) is a sheaf on \overline{U}_+ (resp. \overline{U}_-) extended by 0 on all U and re $(f \oplus g) = f_{|X} - g_{|X}$.

Since U is Stein we derive from (2) that

(3)
$$H^{j}(\overline{U}_{+}, O_{+}) \oplus H^{j}(\overline{U}_{-}, O_{-}) \xrightarrow{\sim} H^{j}(U \cap X, \mathcal{Q})$$

for $j \ge 1$ (and this holds true for $j \ge q$ whenever X is a q-complete real-analytic foliation of codimension 1).

Let ξ be a *j*-cocycle of \mathcal{O} on a neighbourhood of \overline{X}_c . In view of (2) we have $\xi = \xi_+ - \xi_-$ where ξ_+ and ξ_- are represented by two (0, j)-forms ω_+ , ω_- on U_+ , U_- respectively which are smooth up to X.

Moreover according to [6] it is possible to construct pseudoconvex domains U'_+ and U'_- satisfying the following conditions: $U'_+ \, \subset U_+, \ U'_- \, \subset U_-, \ \partial U'_+, \ \partial U'_-$ are smooth and $\partial U'_+ \cap X$, $\partial U'_- \cap X$ contain a neighbourhood of \overline{X}_c .

Then Kohn's theorem [10] implies that on U'_+ and U'_- respectively we have $\omega_+ = \overline{\partial} v_+$, $\omega_- = \partial v_-$ where $v_+ \in C^{\infty}(\overline{U}'_+)$, $v_- \in C^{\infty}(\overline{U}'_-)$. It follows that $H^j(\overline{X}_c, \mathcal{O}) = 0$ for $j \ge 1$ and from (1) we deduce that $H^j(X_c, \mathcal{O}) = 0$ for every $c \in \mathbb{R}$ and $j \ge 1$.

At this point, in order to conclude our proof we can repeat step by step the proof of the Andreotti-Grauert vanishing theorem for q-complete complex spaces [1].

If $k \ge 2$ the situation is much more involved. Using the Nirenberg Extension Lemma [10] it is possible to reduce the cohomology $H^*(X, \mathcal{Q})$ to the $\overline{\partial}$ -cohomology of \tilde{X} with respect to the differential forms on \tilde{X} which are flat on X and to conclude invoking a theorem of existence proved by J. Chaumant and A. M. Chollet [3].

Assume that X is a real analytic and let O' be the sheaf of germs of real analytic CR-functions. Then an analogous statement for O' is not true. Andreotti and Nacinovich [2] showed that $H^1(X, O')$ is never zero. However by virtue of Th. 1 we have for arbitrary k, $H^j(\overline{X}_c, O') = 0$ for j > 0 whenever X is q-complete.

2. Using the same method of proof, under the hypothesis of Theorem 6, we have the following

THEOREM 7. Let $A = \{x_v\}$ be a discrete subset of X and let $\{c_v\}$ be a sequence of complex numbers. Then there exists $f \in \mathcal{O}(X)$ such that $f(x_v) = c_v$, v = 1, 2, ... In particular X is \mathcal{O} -convex and $\mathcal{O}(X)$ separates points of X.

4. The Kobayashi metric

1. Let X be a foliation with complex leaves, of codimension k and let $T(X) \xrightarrow{\pi} X$ be the tangent bundle of X. The collection of all tangent spaces to the leaves of X forms a complex subbundle $T_H(X)$ of T(X). Let D be the unit disc in C and let us denote by CR(D, X) the set of all CR-maps $D \to X$.

Given $\zeta \in T_H(X)$ with $x = \pi(\zeta)$ we define the function $F = F_X$ on $X \times T_H(X)$ by $F(x, \zeta) = \inf \{s \in \mathbf{R} : s \ge 0, s\varphi'(0) = \zeta\}$ where $\varphi \in CR(D, X)$ and $\varphi(0) = x$.

When k = 0, F reduces to the Kobayashi «infinitesimal metric» of the complex manifold X[8]. In particular if $X = C^n \times \mathbb{R}^k$, then F = 0.

If X' is another foliation as above and $\phi: X \to X'$ is a CR-map then $d\phi: T_H(X) \to T_H(X')$ and

$$F_{X'}(\phi(x), d\phi\zeta) \leq F_X(x, \zeta)$$

THEOREM 7. F_X is upper semicontinuous.

According to the complex case [8], X is said to be hyperbolic if $F(x, \zeta) > 0$ for every $x \in X$ and $\zeta \in T_H(X)$, $\zeta \neq 0$.

REMARKS 1). The fact that all the leaves are hyperbolic does not imply that X itself is hyperbolic;

2) every bounded domain in $C^n \times R^k$ is hyperbolic;

3) following [12] it can be proved that if X admits a continuous bounded function u, p.s.h. along the leaves and strictly p.s.h. in a neighbourhood of x, then X is hyperbolic at x.

2. Now consider a riemannian metric on X and let V be a smooth distribution of transversal tangent k-spaces. Then every $\zeta \in T(X)$ splits into $\zeta_0 + \zeta_c$ where $\zeta_0 \in V$, $\zeta_c \in C_H(X)$ and we denote by $\tau(\zeta_0)$ the length of ζ_0 .

Let F be the infinitesimal Kobayashi metric on X and for $\zeta \in T_x(X)$ set $g(x, \zeta) = F(x, \zeta_c) + \tau(x, \zeta_0)$.

Then g is an upper semicontinuous pseudometric.

If $\gamma = \gamma(s)$, $0 \le s \le 1$ is a smooth curve joining $x, y \in X$, the *pseudo length* of γ with respect to g is

$$L(\gamma) = \int_{0}^{1} g(\gamma(s), \dot{\gamma}) \, ds$$

and the *pseudo-distance* between x, y is

$$d(x, y) = \inf L(\gamma).$$

d is a real distance on X inducing the topology of X if X is hyperbolic.

X is said to be *complete* if a field V can be chosen making X complete with respect to d.

For example the unit ball in $C \times R$ is complete for the choice

$$V = \lambda(t)(x \partial/\partial x + y \partial/\partial y) + (1 + t^2)^{-1} \partial/\partial t$$

where $\lambda(t) = 2 \arctan t [(1 + t^2)^{-1} (1 - \arctan^2 t)^{-3/2}].$

The interest of this construction is due to the following

THEOREM 8. Let $\Omega \subset C^n \times \mathbb{R}^k$ be with the riemannian structure induced by $C^n \times \mathbb{R}^k$. If Ω is hyperbolic and complete then Ω is Ω -convex.

References

- A. ANDREOTTI H. GRAUERT, Théorèmes de finitude pour la cohomologie des espaces complexes. Bull. Soc. Math. France, 90, 1962, 193-259.
- [2] A. ANDREOTTI M. NACINOVICH, Analytic Convexity. Ann. Scuola Norm. Sup. Pisa, 7, 1980, 287-372.
- [3] J. CHAUMAT A. M. CHOLLET, Noyaux pour résoudre l'équation $\overline{\partial}$ dans des classes ultradifférentiables sur des compacts irréguliers de Cⁿ. Preprint.
- [4] M. FREEMAN, Local complex foliations of real submanifolds. Math. Ann., 209, 1970, 1-30.
- [5] M. FREEMAN, Tangential Cauchy-Riemann equations and uniform approximation. Pacific J. Math., 33, N. 1, 1970, 101-108.
- [6] R. GAY A. SEBBAR, Division et extension dans l'algèbre A[∞] (Ω) d'un ouvert pseudo-convex à bord lisse de Cⁿ. Math. Z., 189, 1985, 421-447.
- [7] L. HÖRMANDER, An Introduction to Complex Analysis in Several Variables. North-Holland 1973.
- [8] S. KOBAYASHI, Intrinsic distances, measures and geometric function theory. Bull. Am. Math. Soc., 82, 1976, 357-416.
- [9] J. J. KOHN, Global regularity for ∂ on weakly pseudoconvex manifolds. Trans. Amer. Math. Soc., 181, 1973, 273- 292.
- [10] L. NIRENBERG, A Proof of the Malgrange Preparation Theorem. Proceedings of Liverpool Singularities, I. Lecture notes in mathematics, 192, Springer-Verlag, New York 1971, 97-105.
- [11] C. REA, Levi flat submanifolds and bibolomorphic extension of foliations. Ann. Scuola Norm. Sup. Pisa, 26, 1972, 664-681.
- [12] N. SIBONY, A class of hyperbolic manifolds. Recent developments in several complex variables. Ann. of Math. Stud., Princeton Univ. Press, N. 100, 1981.
- [13] F. SOMMER, Komplexe analytische Blätterung reeler Mannigfaltigkeiten in Cⁿ. Math. Ann., 136, 1958, 111-133.
- [14] G. TOMASSINI, Extension d'objects CR. Math. Z., 194, 1987, 471-486.

 G. Gigante: Dipartimento di Matematica Università degli Studi di Parma Via dell'Università, 12 - 43100 PARMA

G. Tomassini: Scuola Normale Superiore Piazza dei Cavalieri, 7 - 56126 PISA