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Fisica matematica. — Remarks on balance laws in electromagnetism. Nota di 
ANGELO MORRò, presentata (*) dal Corrisp. C. Cercignani. 

ABSTRACT. — Two aspects of balance equations in electromagnetism are considered. First, concerning 
Faraday's law and Ampere's law it is emphasized that appropriate treatment of the time derivative of an integral 
over a time-dependent surface eliminates ambiguities occurring in various presentations of the subject. Second, 
standard forms of energy balance are shown not to be equivalent in the case of materials with memory. 

KEY WORDS: Faraday's law; Time-dependent surface; Energy balance. 

RIASSUNTO. — Osservazioni sulle leggi di bilancio in elettromagnetismo. Si considerano due aspetti delle 
equazioni di bilancio in elettromagnetismo. Primo, in connessione con le leggi di Faraday e di Ampère si 
sottolinea come un uso appropriato della derivata temporale di un integrale su una superfìcie dipendente 
dal tempo eviti le ambiguità di molte trattazioni dell'argomento. Secondo, si mostra la non equivalenza di 
forme del bilancio dell'energia quando sono presenti effetti di memoria. 

1. INTRODUCTION 

It is a customary procedure, in continuum physics, to derive local balance equations 
through global balance equations or to establish a precise correspondence between global 
and local balance equations. Roughly, in continuum mechanics the usual content of a bal
ance law is expressed by the time derivative of a volume integral, over a three-dimensional 
region, being given by a volume integral and a surface integral. In electromagnetism, bal
ance laws occur where the time derivative is associated with surface integrals. In particular 
such is the case for Faraday's law of induction and Ampere's law. 

Time dependent volumes, surfaces and curves are extensively treated in continuum 
mechanics of electromagnetic solids (cf. [1, eh. 3]). Yet, according to the presentation 
of electromagnetism given in many textbooks, it looks as though appropriate use of 
time derivatives of surface integrals were deliberately ignored. The result is that very 
often presentations of Faraday's law and Ampere's law are given which, if not incor
rect, are obscure and turn out to be difficult to understand properly. 

The purpose of this Note is twofold. The first fold is to show that use of the appropriate 
mathematical setting makes the formulation of Faraday's and Ampere's laws precise and 
simple. Mathematically, the problem consists in the evaluation of the time-derivative of a 
flux through a time-dependent surface. In this regard the next section exhibits a short proof 
of Nanson's formula for the surface element and then, as an application, the derivation of 
the time derivative of an integral over a time-dependent surface. The second fold is to ex
amine the seeming discrepancy between two standard forms of balance of energy. 

2 . TlME-DERTVATTVE OF THE FLUX THROUGH A TIME DEPENDENT SURFACE 

Let X = X(a,/3), which maps an open region CIcR2 into the three-dimensional 
Euclidean space 8, be the representation of an open surface S0. Let %\ S X R —» g and 

(*) Nella seduta del 13 marzo 1993. 
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assume that #(•,/) is bijective for each t e R. Both X(a,/3) and / (X, / ) are of class C1 in 
the pertinent domains. Consider the map 

x = z(X{a,p),t). 
As (a,/3) E Cl, we can view this map as defining a surface S, image of S0 under / , parame
terized by the time t. We denote by v the time-derivative of X, namely the velocity of 
the points of S. 

Describe the position vector x by a triple of coordinates x1,x2,x3 and X by 
X * ,X 2 ,X 3 . We define F as the Jacobian matrix, Fjj = ^?H , a semi-colon denoting co-
variant differentiation. Moreover we let / = det F; since % is bijective we have / & 0 
and we let/ > 0. Under #(•,/), a surface element N<i4 of 50 is mapped into a surface el
ement nda oiS. Nanson's formula relates NdA to nda; the following proof simplifies 
that given in [2, §20]. 

PROPOSITION. The surface elements NdA and nda are related by 

nkda=J(F-1)%NHdA. 

PROOF. We represent the surface element of S0 and S as 

NdA = X a X X ; i3 da-dpy nda = # a X x^ dadfi, 

a comma denoting partial differentiation. In coordinate form, 

(* „ X xjk = Skp,F^XH
a Xf dad?. 

Because 

then 

Substitution yields the result. • 

Let L be the velocity gradient matrix which is related to F by the identity 
Lk =Fii{F~l)1k , a superposed dot denoting time differentiation with X fixed. 

PROPOSITION. For any C1 vector function w(xyt) 

d (1) jr I w-nda = \{wknk + w^v^k - LÌÌnj}da . 
s s 

PROOF. Observe that by the definition of / and the relation (F_ 1)f f | = $K 

we have 

dF$ 

j-t{F-^=-{F-^nt. 
Now, by the change of variables x1 ,x2 ,x3 —^X^X^X3 and Nanson's formula 
we have 

| \^nkda=j-t j^J(F^NHdA = ld[wkJ{p"] NHdA. 
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Substitution, rearrangement, and the reverse change X1 ,X2 ,X3 —>x1,x2,x3 yields 

the desired result. • 

For both formal simplicity and immediate comparison with the standard form of 

Maxwell equations, henceforth we use Cartesian coordinates and represent vectors and 

tensors in the compact notation. Accordingly the result (1) takes the form 

— \tvnda=\tvnda 
s s 

where w = w — (tv V) v + w(V -v) is the convective derivative. In view of the identity 
V X (w X v) = w(V *v) + (vV)w — v(V*w) — (ivV)v, application of Stokes' theo
rem yields 

(2) — tvnda = ——h v(V'w) ynda + \(w X v 
s s "• * dS 

t being the unit tangent vector of dS. 

As we show in a moment, eq. (2) is the basic tool for a precise statement of global 

laws in electromagnetism. 

3 . F A R A D A Y S L A W 

The electric field E, the magnetic induction B, as well as the velocity v are C 1 func

tions on S X R. Start from the Maxwell equation 

(3) V X £ = - | . 

Irrespective of the dependence of S on the time t, integration of (3) on S and Stokes' 

theorem give 

(4) JE-tdl= - J tj-'tzda. 
dS s 

Apply (2) to w = B. Since V*B = 0, by use of Stokes' theorem we have 

(5) l(E+vXB)-tdl= ~ jr {B-nda, 

as s 

whereby the line integral of E + v X B along dS is equal and opposite to the time deriva

tive of the flux of B through S. The field E + v X B is the effective electric field, at the lo

cal co-moving frame of the element of dS [3, §6.1]. Equivalently, one may start from (5) 

as the axiom for Faraday's law and then obtain (3) by means of (2). 

It is of interest to give some examples of how Faraday's law is introduced in known 

books. First, review the presentation in [4, p. 8]. Integration of (3) over S yields (4). 

Then, if the contour is fixed, the operator d/dt may be brought out from under the sign 

of integration and then 

(6) ÏE-tdl= - J - ÏB-nda. 
as s 

The experiments of Faraday indicated that the relation (6) holds whatever the cause of 

the flux (of B) variation. To take this into account the Faraday law is written generally 



2 3 4 A. MORRÒ 

in the form 

(7) ÏE-tdl= -j- ÏB-nda. 
dS S 

The same procedure is followed in [5, §1.1]. 
Sommerfeld [6, p. 13] starts from (7) as an axiom. Then, on the assumption that the 

surface is fixed, the local form (3) is derived. This presentation is common to a great 
many books; cf., e.g. [7, p. 22; 8, p. 266; 9, p. 87; 10, p. 230]. 

Feynman et al. [11, p. 1.5] start from the «flux rule» whereby the circulation of E 
around a contour C is equal to the rate of change of the flux of B through any surface 
whose edge is C. Then [11, § 17.1], they take (3) as Faraday's law, integrate on an open, 
fixed in space, surface S and, via Stokes' theorem, obtain the flux rule in the form (6). 
They say also that if the contour dS moves then, by regarding E + v X B as the force 
per unit charge, we get the flux rule once again. Interestingly, they say that «the two 
possibilities - circuit moves or field changes - are not distinguished in the statement of 
the flux rule. Yet ... we have used two completely distinct laws for the two cases -vX 
X B for circuit moves and V X E = - dB/ dt for field changes. We know of no other place 
in physics where such a simple principle requires ... two different phenomena». 

Halliday and Resnick[12, ch. 35] state Faraday's law as the flux rule 

Then $B through S is written as 

$B = B'nda. 
s 

Next, in the Appendix II, proof is given that, for a fixed surface, the flux rule leads to (3). 
In all these formulations it is not clear at all that the field E in (3) and (4) is the elec

tric field in a single frame (laboratory) while E in (7), cf. (6), should be in fact E + v X 
X B, namely the electric field in the local co-moving frame. Furthermore, apart from the 
apparent inconsistency of (6) and (7), a natural question arises as to which other equa
tion should follow, in place of (3), from the flux rule if the surface S is allowed to de
pend on time. Restricting attention to fixed surfaces is somewhat contradictory in that 
almost every book on electromagnetism considers the application of Faraday's law to a 
loop, in a constant induction field, that has a fixed U-shaped part and a movable cross
bar that can slide along the two legs of the U. 

4. AMPERE'S LAW 

On way of stating Amphère's law, in the general form improved by Maxwell, is to 
say that the line integral of the magnetic field H along dS is equal to the current Is 
through S plus the flux of the displacement current dD/dt, viz. 

(8) [ H - M = I 5+ f QJ^-nda. 
dS s 

For simplicity assume that the current Is is expressed as the flux of a current density 
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vector / , 

L = j'tida. *s = \j' 
s 

Now apply (2) to w — D. Because of the Gauss law V*D = p, p being the free charge 
density, we obtain 

(9) \(H + D Xv)-tdl = Uj-pv)-nda + j - ÏD-nda. 
as S S 

In view of (9), the line integral of H + D X v along the contour dS is equal to the flux 
of j — pv plus the time derivative of the flux of D. This shows that the effective current 
density is j — pv, namely the current density relative to the local co-moving frame. Per
haps to avoid the use of the relation (2), common books on electromagnetism exhibit 
(8) as the global form of Ampere's law. 

5. BALANCE OF ENERGY 

Also in the simple case of electromagnetism in undeformable matter, there are vari
ous forms of the balance of energy which generally are not equivalent. Here we con
trast two of them and clarify the discrepancy. 

One form is based on the observation that the Lorentz force F, on a charge q with a 
velocity v, is F = q(E + vXB) and then the power is U = qv • E. The result is extended to a 
continuous distribution of charge by saying that the power on a current density is j-E. 

For simplicity, consider a body at rest. If, in addition to electric conduction, heat 
conduction occurs then the observation that j'E is the power on/ results in the balance 
of energy 

(10) % = -V-q + r+j-E 
at 

where e is the internal energy (per unit volume), q is the heat flux and r is the heat 
supply. 

Another form is based on Poynting's theorem whereby 

(11) E ~ + H ~ + V - ( £ X H ) = - / • £ . 
at at 

If D = eE, B = (J.H, for constant e and [x, then, letting u = (eE2 + (JLH2)/2 we can write 
( 11 ) in the form du/ dt = -V *(E X H) -j-E, which can be phrased by saying that the 
energy density u of the electromagnetic field changes by the net input of the Poynting 
vector E X H and the power expended on the charges that provide the current density 
/ If we consider the physical system of matter and electromagnetic field then the over
all effect oij'E is zero. Then, still for matter at rest, letting w be the energy density of 
the system we write dw/dt = —V-(q + ExH)+r or, by (11), 

The balance (12) is equal, or equivalent, to that given in [13]. 
The expressions (12) and (10) are not equivalent whenever E-dD/dt + H-dB/dt 

cannot be written as the time derivative of an energy function u. A significant case when 
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u does not exist occurs when D and B are given by memory functionals of E and H. 
Memory effects are physically well grounded and the model 

00 . . 

(13) D W = / 0 B W + | / ( f ) B ( / - f ) ^ 
o 

for dielectrics is customarily used - cf. [14, §58]. Indeed, by (12), letting w = e + u, 
where u is the electromagnetic energy now undetermined, we have 

de ri 3D . rr dB du . .•• E rr . 
— = E- — h H- — — +j'E -\-q + r. 
dt dt dt dt J * 

This suggests that we regard (10) as incomplete in that it does not contain the «dissipa-
tive» power E • dD/dt + H • dB/dt — du/dt of electromagnetic field in matter. For in
stance, with reference to (13), if we let E{t) = E0 sin coty co > 0, then the integral of 
du/dt over the period [0, T], T = 2n/co, vanishes while 

T 

0 

where 
fs(co) = jmsmcoïdt;. 

o 
If memory effects do not occur then the laws (12) and (10) are equivalent 
(cf. [15, §9.5]). 
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