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Anal is i matemat ica . — Some perturbation results for non-linear problems. N o t a di 

C A R L O C A R M I N A T I , p resen ta ta (*) dal Corr isp . A. Ambrose t t i . 

ABSTRACT. — We discuss the existence of closed geodesic on a Riemannian manifold and the existence 

of periodic solution of second order Hamiltonian systems. 

KEY WORDS: Critical point theory; Closed geodesies; Second order Hamiltonian systems. 

RIASSUNTO. — Alcuni risultati di perturbazione per problemi non-lineari. Viene discussa l'esistenza di geo

detiche chiuse su una varietà Riemanniana compatta e l'esistenza di moti periodici per sistemi Hamiltoniani 

del second'ordine. 

1. INTRODUCTION 

In this paper we prove two multiplicity results for two classical nonlinear problems: 
the existence of closed geodesies on a Riemannian manifold and the existence of perio
dic solutions of second-order Hamiltonian systems. 

About the former we show: 

THEOREM 1. Let We C2(Rn + x; £s(R
n + *; Rn + *)) and consider the space Rn + 1 

endowed with the scalar product: 

(1) [v\w)x = vw + eW(x)vw . 

Let Sn = {x e Rn + l : \x\ = 1} and Ns = (Sn, (• | •)) unit sphere endowed with the Rie
mannian structure inherited from the scalar product (1). There exist n + 1 geometrically di
stinct closed geodesies on the Riemannian manifold NE, provided that s > 0 is small 
enough. 

As far as we know, this theorem is not contained in the classical results about closed 
geodesies, see for example [7]. 

The second theorem deals with brake orbits of prescribed energy for second-order 
systems 

(2) q + V'(q) = Qy q(t) e Rn . 

A brake orbit for (2) is a solution of (2) such that, for some T > 0, 

(3) q(0)=q(T) = 0. 

Let us remark that if q is a brake orbit then q{t) := q{\t\) is a periodic solution 
of (2). 

THEOREM 2. Let V£(x) = (l/2)Ax*x + eR(x), where A is a symmetric n X n matrix 
{that, with no loss of generality, can be supposed diagonal) such that det A ^ 0, and 
ReC2(Rn;R). Let 0 < coj < ... < co2^ be the positive eigenvalues of A and 

(*) Nella seduta del 24 aprile 1993. 
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Xj = ker (A — co2 1), j = 1,... ,m, be the corresponding eigenspaces of dimension 
respectively a l,..., am . 

Moreover let the following non-resonance condition hold: 

(4) (cOi/coJtZ, \fi*j. 

For every E > 0 the equation q + Vt(q) — 0 has at least a = X«y brake orbits of en
ergy 1/2 \q\2 + Ve(q) = E, provided that £ > 0 is small 

The existence of multiple periodic solutions of Hamiltonian systems (even more ge
neral than (2)) has been studied in [6, 10], see also [3]. For instance the result of Eke-
land and Lasry[6], in the case of second-order systems like (2), claims the following. 
Let H(p,q) = (1/2) \p\2 + V(q) and SE : = {(p,q)eR2n:H(p,q)=E} and assume: 

/) EE = dQ, and Q is a convex open set containing 0, and H'(x)'X > 0, 
Vx e UE. 

ii)R2<2r2, where r2 := min{ \p\2 + \q\2 : (p, q) G dQ} and R2 : = 
= max{|/>|2+ |^ | 2 : (p,^) G 513}. 

Then (2) has at least n distinct periodic solutions of energy E > 0. 
One the one hand this result is more general than ours because the potential is not 

necessarily of the type V(x) = (l/2)Ax'x + sR(x). 
On the other hand: 

1) If we perturb a quadratic potential Q(x) = (l/2)Ax*x, where A is a matrix 
with some negative eigenvalue, the energy surface ZE of the perturbed problem will 
not, in general, be the boundary of a convex open set (in fact, it will not even be 
bounded). 

2) If V(x) = (l/2)Axmx where A is a positive defined matrix, the condition 
R2 < 2r2 implies that r2 ^ col ̂  co2

n ^ R2 < 2r2. 

This condition is obviously stronger than (4). 
Essentially the same remarks can be made comparing Theorem 2 to the result about 

brake orbits obtained by Szulkin in [10]. 
The common feature of the two problems we will discuss is that they are perturba

tion problems variational in nature, namely their solution can be found looking for the 
critical points of some suitable functionals. As a matter of fact, they are both obtained 
exploiting an abstract critical point theory theorem contained in [4]. 

2. PRELIMINARIES AND NOTATIONS 

Let X be a topological space. Let us denote by cat(X) the Ljusternik-
Schnirelman category of X with respect to itself, namely the least integer k such that 
X c Q U ... U Q , where every Q is a closed subset of X and is contractible to a point 
in X. (For an exposition of the Ljusternik-Schnirelman theory see for example [9]). We 
recall the following classical result: 
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THEOREM 3. Let Z be a compact manifold and f^Cl(Z\R). Then f has at 

least cat(Z) critical points on Z 
The following definition and theorem are taken from [4]. 

DEFINITION 4. Let M he a Hilbert manifold, Z cM a compact connected submanifold 

of class C2 and let / E C 2 (M, R). 

Z is a non-degenerate critical manifold for f if 

1) All the points of Z are critical points of f 

2) ke r / " (z ) = TZZ. (Where TZZ denotes the tangent space to Z in z). 

3) f"{z) is a Fredholm operator of index zero. 

Let f<EC2(RxM,R) and let f(x) :=f(s,x). Moreover, let f(x)=f(0,x). 

THEOREM 5. Let Z be a non-degenerate critical manifold for f — / ( 0 , •), then there 
exists some 1 > 0 such that for every e: \e\ < I f has cat(Z) critical points near Z. 

REMARKS. 1) Actually [4] deals with the case where M = H is a Hilbert space. It is 

easy to check that the results hold true in the above more general formulation as 

well. 

2) Let be given on M the action of a compact group G and let / ( s , •) be G-inva-
riant. Then Z is invariant as well, and we can define the G-category of Z as the mini

mum number of closed G-contrac tibie (l) sets covering Z. In this case, using the same 

techniques, we obtain that f has G-cat (Z) critical points which are distinct modulo G. 

Remark that G-cat (Z) ^ cat ( Z / G ) . 

Similarly, if instead of the G-category we consider iG an index for G we obtain that 

f has iG critical points which are distinct modulo G. For the index theory we again re

fer to [9, p. 91 and ff]. 

3. CLOSED GEODESICS ON A SPHERE WITH A PERTURBED METRIC 

Let S be a Riemannian manifold endowed with the scalar product ( | ). A closed geo

desic is a critical point of the functional 

j(r\r)2dt on HHs\s). 
o 

Let H:={reH1([0,27i];R" + ly.r(0) = y(27z)}, and M = { r eH: y(t) e S" 

V / e [0 , 2TT]}. Consider f€eC2(H;R) defined by: 

r^ J \y\2dt + e \ (W(r)r-r)dt. 

0) A set C is G-contractible in Z if there exists an homotopy h eC([0, 1] X C; Z) such that h{t, •) is 
G-equivariant and h(l,C) is the G-orbit of one single point. 
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Theorem 1 will be proved by an application of Theorem 5. First we study the critical 
points of the unperturbed functional / . 

LEMMA 6. For all m G Z the sets Zm defined by 

Zm = {z E M\z(t) = xcos mt + y sinmt: x,y G Rn + l : |x| 

are non-degenerate critical manifolds for f 

1, x-y = 0} 

PROOF. It is easy to see that Zm is a smooth compact manifold and / | M M — 0, 
Vz G Zm. 

If z is a geodesic, then 
2x 

f\M(z)[h,k]= Uh-k- \z\2h-k]dt, Vh,keTzM. 
o 

Moreover, the fact that f"(z) is a Fredholm operator of index zero can be easily 
verified. 

Now we claim that: TzZm — ker/['M. 
Let us recall that h G ker/('M(z) if and only if 

2n 2TZ 

(5) ïh-kdt= f \z\2h-kdt, VkeTzM. 
o o 

Let S = (z( 0); z( 0)) be the span of the two vectors z( 0), z( 0) and let {^,..., en} be an 
orthonormal base for S L . For every z G Zm let us take a base {tf/ U)}/ = i,...,» of the tan
gent space \o Sn in z(t) defined by: 

z(t)/m , / = 1, 

et- , / ^ 1 . 

Then, if A, k G TZM, one has 

/ = 1 j = 1 

where A/(f) = (A(/)-^-(/)) and &,•(*) = (&(/)-éyU)). From (5) it follows that 

2K 

I 
0 

Therefore 
2 

E ( ^ + h lèi) 
i= 1 / = 1 

E kjej 
7 = 1 

>dt = 0. 

J E hiki + w2Mi - /̂ 2 2 hik\dt = J | S M,- - ^2 S A/̂ -U = o. 

By regularity h G C 2 ( [ 0 , 2K]; Rn) and is a solution of 

Ui = o, 
\hj + m2hj = 0, j = 2,...,n. 



SOME PERTURBATION RESULTS FOR NON-LINEAR PROBLEMS 2 4 7 

Then, since in addition h(0) = h{2n)i one finds 

hx{t) =Ai , 

hj(t) = Ay cos mt + [Xj sinmt, j = 2,... ,n . 

And thus, 

À * 

£(/) = — iU) + 2 (Ay cos /fttf + //y sin mt) <?y . 

As h(t)9z(t) = 0 V/ G [0, 27r], it is immediate to see that h sTzZm. Since obviously 
TzZm cker/[ 'M , the lemma follows. 

PROOF OF THEOREM 1. Let us point out that the functional / ( s , •) is invariant under 
the 0(2)-action: 

{±1}XS1XH^H, ( ± l , 0 , r ) i - » r ( ± / + 0). 

And hence M and Zm are invariant as well. Lemma 6 allows us to apply Theorem 5 and 
for all m G N there are at least 0(2)-cat (Zm) critical points (which are distinct modulo 
0(2)) near the critical manifold Zm. They correspond to geometrically distinct closed 
geodesies. It is known (see [8]) that 

0(2)-cat(ZJ ^ cat(Zw /0(2)) £ cuplength (Z^/0(2)) + 1. 

Moreover, Zw is diffeomorphic to the unit tangent bundle 

TlS
n:={{x,y)eRn + l X R n + l: \x\2 = \y \2 = 1, (x-y) = 0} , 

and hence, using a result of [1, p. 151], cuplength (Zm/0(2)) = cuplength 
(T1S

n/0(2))^n. Hence 0(2)-cat ( Z J ^ * + 1 . This ends the proof of Theo
rem 1. 

4. EXISTENCE OF BRAKE ORBITS 

Given E > 0, let H = H 1 ([0, 1]; R") and consider the functional 
/ . e C2(H, JO, 

/ . ( « ) = 1 / l«|2<& M [ Ê - V e ( « ) ] ^ • 

It is well known (see for instance [5]) that, if u G H is a critical point for the functional 
/e and f£(u) > 0 then 

U + r 2 y » = o, 
[A( l ) -« (1) -A(0) -«(1) = 0, 

where 

T2 = U J|^|2^\lh[E-Vt(u)ldt , 

and #(/) = u(t/T) is a brake orbit of (2). 
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The originai problem is again reduced to the study of the critical points of the fun
ctional / e . Here the unperturbed functional is 

/ (« )= i f \û\2dt M \E- ±Au-u\dt \. 

Let us consider the following critical manifolds 

Zj = {zeH\z = tie1* + r " w ) / 2 : ^ I ; , |? |2 = 2E/co2} . 

We claim that 

LEMMA 7. Zj are non-degenerate critical manifolds if and only if (DJMJ £ Z V? ^j. 

PROOF. There results 

(7) f"(z)[h,k] = jh>kdt\ \ \ \ E - jAz-z\dt\ - jz-hdt\ JAz' kdt\-

-[\i4dt\uAz'hdt\- U\z\2dtÌ^Ak-hdt\. 

If ze.Zj then Az = ojj z, z = — n2z, and therefore 

fz-*<fc][ \Az-hdt\ = n2cujUz-kdt\i \z-hdt\, 

\z-hdt\l JAz-kdt\ = n2oA jz-kdAi jz-bdt\ 

Moreover 

j f a - f H * - ! ' ïJl'12*" 
o "- J 0 

Substituting in (7) we obtain that, if h e ker/"(z), then 

(8) f"(z)[h,k]=^ lh4dt-27z2«>jnz-kdt\Uz-hdt -

n2E 

2<*2 

-TV2- \Ah.-k = 0, V £ e H . 

This implies that h satisfies weakly (and, by regularity, strongly) the equation 

/ l 

(9) jh + 2K2nz-hdt\z+ IL-jM = 0. 

Moreover, integrating by parts (8) and taking in account (9), we find that 



SOME PERTURBATION RESULTS FOR NON-LINEAR PROBLEMS 2 4 9 

h(l)'Hl) -h(0)-k(0) = 0, VkeH, and hence 

(10) h(0)=h(D = 0. 

Let er be a vector of the canonical base of Rn such that er £ Xj. Then the component 

hr : = h - er of h satisfies 

[ hr + 7z2ajj-2Ahr = 0 , 

[hr(0)=hr(l) = 0. 

If er is an eigenvector corresponding to a negative eigenvalue, it is obvious that the 
system will not admit nontrivial solutions. If er is an eigenvector corresponding to a po
sitive eigenvalue co2, then we find hr(t) —a cos (71 co rt/COJ) + b sin (7zcort/ ojj), and (10) 
implies a = 0 e è = 0<^cor/ojj^X. Therefore tor/ tOj• £ Z \/j^ r is a necessary condi
tion for Zj to be non-degenerate. Let us prove that this condition is sufficient as well. A 
simple calculation shows that, extending z and h to even functions defined on 
[ - 1 , 1], they still satisfy to equation (9) on the interval [ —1, 1]. 

Let us set: 

h(t) = +£cne*"*, cn = 7_n{2). 
— 00 

Since the support of h is contained in Xj, then cn = a„ + ibn where a„y bn eXj,Vn e Z. 
Therefore, substituting in (9), 

z - °° z Z - °° 

Whence 

# S a - w W ^ + Hd + É i K ^ r — =0, 
Z - 00 Z 

and then c„ = 0 Vn ^ ± 1 , cx= a -V ib, a, b sXj, a •% = 0. 
Moreover (10) implies that b = 0, and finally one has h{t) = a{eint + e~i7Zt)/2, 

a GXJ, a-Ç = 0. 
It is now evident that h eTz Zj. 

PROOF OF THEOREM 2. Let us consider 

«(/) -»«(1 - / ) . 

It is clear that .cr is an isometry and a2 = id. Now, let G = {id, cr} be the group genera
ted by cr. Let us set: FixG = {u e H: u(t) = u( 1 - /) V / e [ 0 , 1]}; fl={icH; 

A closed, <r(A) =A}; T= {h eC(H;H): bo<j = dob}. 
Define the index iG : <3L-» N U { + 00 } by setting: iG (A) = min{B<£: A —» 

— > J R " \ { 0 } , (̂ ocr = — <p}, and /G = + 0° if such an « does not exist. 

(2) c denotes the complex coniugate of c. 
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It is easy to check that iG is an index (see [10]). Moreover since az = —zVzeZj, 
one has that iG coincides with the Krasnoselskii genus y on Zj (see [9] for a definition). 
Therefore ÌQ{ZJ) — y{Zj). From the fact that Zj is diffeomorphic to the unit sphere in 
Ra\ it follows that y(Zj) = ay (see [2, p. 19]). 

Since fe is G-invariant Vs, applying Theorem 5 we obtain that for all fixed E > 0, 
provided a is small, there exist a = S«y geometrically distinct critical points that give 
rise to a distinct brake orbits for the potential Ve. 

Partially supported by M.U.R.S.T. 
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