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Meccanica dei fluidi. — Linear response of the gate system for protection of the Venice 
Lagoon. Note I: Transverse free modes. Nota di PAOLO BLONDEAUX, GIOVANNI SEMINARA 

e GIOVANNA VITTORI, presentata (*) dal Socio E. Marchi. 

ABSTRACT. — The free oscillations of the gate system proposed [1,2] to defend the Venice Lagoon 
from the phenomenon of high water are analyzed. Free transverse modes of oscillations exist which may be 
either subharmonic or synchronous with respect to typical waves in the Adriatic sea. This result points out 
the need to examine whether such modes may be excited as a result of a Mathieu type resonance occurring 
when the gate system is forced by incident waves. The latter investigation is performed in part 2 of the 
present paper. 

KEY WORDS: Gates; Waves; Free oscillations. 

RIASSUNTO. — Risposta lineare della schiera di ventole per la protezione della Laguna Veneta. Nota I: Modi 
trasversali liberi. Si analizzano le oscillazioni libere della schiera di ventole oscillanti proposte [1,2] per la di­
fesa della Laguna di Venezia dalle acque alte. Si evidenzia l'esistenza di possibili modi liberi trasversali sia 
subarmonici che sincroni rispetto alle tipiche onde incidenti del mare Adriatico. Il risultato pone l'esigenza 
di verificare se tali modi possono essere eccitati come conseguenza di una risonanza alla Mathieu quando la 
schiera di ventole è forzata da onde incidenti normalmente alle ventole. Questo studio è effettuato nella se­
conda parte del presente lavoro. 

1. INTRODUCTION 

The protection system designed [1,2] to defend Venice from the increasingly 
recurrent phenomenon of high water essentially consists of gate systems able to 
stop tidal currents from flowing through each of the three inlets of Venice Lagoon 
(Bocca di Lido, Bocca di Malamocco and Bocca di Chioggia). Gates which are nor­
mally submerged and lie horizontally on the bottom are lifted up during flood 
events and are allowed to oscillate around their equilibrium positions under the ac­
tion of incoming waves. If the responses of the gates are spatially in phase, the 
presence of the gates makes the Lagoon practically unaffected by tidal oscillations 
in the Adriatic sea. However experiments performed at the Delft Hydraulics Labo­
ratory [3] have shown that a variety of responses of the gate system is possible even 
when the incoming wave is purely monochromatic with propagation velocity per­
fectly orthogonal to the gates. Some of these responses were characterized by a 
frequency different from that of the incoming waves or by oscillations of the gates 
which were not in phase. 

In the present contribution we investigate the mechanism controlling the various 
types of responses which may arise as the frequency and amplitude of the incoming 
wave vary for given values of the flow depth and channel width. 

(*) Nella seduta del 18 giugno 1993. 
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Since our aim is to disclose the basic mechanism, we will introduce some simplifica­
tions into the problem such to make the latter more easily amenable to analytical treat­
ment while not affecting the qualitative behaviour of the response. The main simplify­
ing assumptions will be: 

i) waves are assumed to be inviscid and to propagate on shallow water; 

//) the gates are modeled as plane vertical walls allowed to slide along the bot­
tom in the direction parallel to the channel axis, while the recoil effect associated with 
Archimede's force acting on the actual gates is modelled by introducing springs with 
constant stiffness k* ; 

///) the number of gates is assumed to be sufficiently large for any transverse 
mode of oscillations to be allowed. 

Assumption /) is not wholly justified as waves in the Adriatic sea have typical wave­
lengths ranging about 100 m while the mean flow depth in the inlet channels varies be­
tween 10 and 15 m. However 3-D effects are fairly small and quite unlikely may change 
the qualitative pattern of the response, while complicating the analysis consider­
ably. 

Assumption ii) makes the motion of the gates compatible with the 2-D representa­
tion of water waves. In the actual configuration the recoil force is nonlinearly related to 
the angular displacement of the gate from the equilibrium position. Again this appears 
to be a minor effect which could be modelled by allowing the stiffness k* to depend on 
the horizontal displacement of the vertical gates. 

The procedure employed in the rest of the paper is as follows. In the next section 
we present the mathematical formulation of the problem. In section 3 we derive the ba­
sic solution corresponding to a purely monochromatic incoming wave generating an in-
phase response of the gate system. Section 4 is devoted to a linear stability analysis of 
the equilibrium configuration against free transverse perturbations both of the flow 
field and of gate response. Some results and discussion follow in section 5. 

Part 2 of the present paper tackles the relevant problem of determining the mech­
anism whereby the forcing effect of the incoming wave assumed to propagate in the di­
rection orthogonal to the gate system may lead to excitation of the free modes analyzed 
in part 1. 

2. MATHEMATICAL FORMULATION OF THE PROBLEM 

Let us consider a straight infinitely long channel of width Bk (a star denotes dimen­
sional quantities) and introduce longitudinal and transverse coordinates, x* and y* re­
spectively, as depicted in fig. 1. 

At x* = XQQ an infinite sequence of vertical gates characterized by infinitesimally 
small width is in equilibrium in the undisturbed configuration with XQ0 vanishing if the 
water surface elevations on the two sides of the gate system are equal. As discussed in 
the introduction, each gate is allowed to slide horizontally along the bottom and is sub­
ject to a recoil force due to the action of a spring with constant stiffness k*. 
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GO 

Fig. 1. - Sketch of the model. 

We investigate the flow pattern and the related motion of the gates subject to the 
action of a purely monochromatic wave with angular frequency co* and amplitude a* 
propagating from x*—» o° in the direction orthogonal to the gates. 

Let us introduce dimensionless quantities as follows 

(la) 

(lb) 

(x,y) = {x*,f)/(WÏ?/a>*): t — CO t 

Y] = r)*/a* (u,v) = (t?>t?)/{WÏf(àk/H?)), 
where H* denotes the constant average flow depth in the «sea» region (x > XQ), rj* is 
the local water surface elevation relative to the undisturbed value, uk, v* are depth av­
eraged velocity components in the longitudinal and transverse direction respectively. 
The suffix L will denote quantities related to the «lagoon» region (x < XQ) while the 
suffix S will refer to the «sea» region. 

Neglecting viscous dissipation, the flow field is then readily shown to be governed 
by the following differential problem 

Lagoon 

(2) 

(3) 

(4) 

(5) 

(6) 

(hL +ar)L)tt + a[(hL + ay]L)uL']>x + a[(hL + arjL)vL\y = 0 , 

«L,/ + auLuL>x + avLuL>y = - riUx , 

Vh,t + auLvUx + avLvLyy = - ^L>y , 

uL + vLxGiy -xGyta
 1{x=xG;0 1/3), 

where a, fi and hL are the following dimensionless parameters 

(7) a=a*/Hf, p = B*/(y/gHf/<o*), h = H£/Hi 

and xG denotes the dimensionless value of the longitudinal coordinate at which 
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the gate is instantaneously located. We point out that xG is in general a function 

of y and t. 

Sea 

In the sea region the governing system is identical with (2)-(6) except for the suffix 

S replacing L and 1 replacing hi. 

Gate motion 

Finally the flow fields in the L-and 5-regions must be coupled through the equation 

of motion of the gate system which can be written in the following dimensionless 

form 

(8) w x G f # = -kxG + (l/2){(hL + ar)L)2 - (1 + ar)S)
2}x=XG 

where m and k are the following dimensionless parameters 

(9) m = m* or/ipHÌ y/tfî?), k = k*/(co*PHf yfëH?) 

rn* being the gate mass per unit width. 

3. BASIC SYNCHRONOUS RESPONSE OF THE GATE SYSTEM 

TO A MONOCHROMATIC EXCITATION 

Let us now expand the solution of the problem formulated in the previous section in 

the form 

(10*) . («L,*>L> rjL) = (uL0, 0, Y]L0) + 0(a), 

(10£) (us,vs,*)s) = (uso, 0frjS0) + 0(a), 

(10c) xG = xG0 + axGl + 0(a2), 

where all the functions on the right hand side of (10a, b} c) are assumed to be indepen­

dent oly. This corresponds to assuming the gates to undergo oscillations which are in 

phase in the transverse direction. 

Substituting from (10) into the governing equations and equating likewise powers 

of a, at leading order we find: 

ilia) 

{lib) 

(lie) 

(lid) 

(lie) 

(11/) 

(ili) 
where 

(12) 

mxGh 

>?L0,# ~ ^L^L0,xx - 0> 

uL0,t ~ ~~ ^L0,x > 

tïsojt ~ tlso,™ - 0> 
uS0,t — ~ ^S0,x > 

UL0 \x=xG0 ~ XG\,t > 

USQ \X=XGO ~ XG\,t > 

tt + kxGl = +hLY)L0 \XG0 — Y]SQ \XG0 , 

xG0 = (hi-l)/2k. 
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At this stage it is convenient to set 

(13) X = x-xG0 

so that the solution of (ila) reads 

(14a) Y)LO= AL exp i(XX + t) -\-c.c. , 

(14£) uL0 = -XYJLO , 

(14c) rjso = exp i(X + t) + Bs exp i(X — t) +c.c., 

(lAd) uSo = - exp i(X + /) + Bs exp i(X - t) +c.c., 

with 

(15) l = \l/hL 

and having set equal to 1 the dimensionless amplitude of the incident wave. 
The values of AL and Bs are readily determined by setting 

(16) xGi = CI exp (it) +C.C. 

Substituting (16) into (lie, fig) we find 

(17) a = 2/(m-k-z(l+hl/2)), 

(18) -XAL = ia, 

(19) -1+Bs = ia. 

The relationships (14)-(19) completely determine the basic solution. In the above for­
mulas c.c. as well as an overbar denote the complex conjugate of a complex 
number. 

4. FREE TRANSVERSE MODES 

We now examine the stability of the basic solution derived in section 3 against linear 
perturbations, both of the flow field and of gate alignement. Such perturbations are as­
sumed to be periodic in the transverse direction. We then set 

(20a) (uL,vL,r)L) = (uL0,O,Y]LQ) + e(fL,gLyeL) + 0(a, s2), 

(20b) (us,vs,Y)S) = (uso,0,r)so) + e(fSygs,es) + 0(aye
2), 

(20c) xG -xG0 = a[xG1 + s£+ 0(ay e2)] , 

with e infinitesimal amplitude. 
Substituting from (20a)b)c)i into the governing differential systems and performing 

linearization in e we find the following problems. 

Lagoon 

(21a) eL>t + hLfL>x + hLgL,y= -al(r)uo fL),x+ ^LuL0)>x + (qLo&),yL 

(21b) fL,t + eL}X= - * [ « L O / L , X + /L«LO,XL 

(21c) gL,t + eL,y= -a[uL0gL}Xl> 

(21d) fL = <;,t(X = axG1 + 0(a2)). 
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Sea 

A problem identical to (20) is found but for hL replaced by 1 and the suffix S replac­
ing L. 

Gate motion 

(22) mZ,tt + ££ =ihLeL - es + a(1710*1 ~ ^so^s + h^xxGi ~ es,x*Gi)h = o-

The structure of the above problem suggests the opportunity to expand the solution for 
the vector V= (eL, fL, gL>es, fs> gs, 0 in the form 

(23) V = V0 + aVx + 0(a2). 

Substituting from (23) into (20-22) at order a° we find a differential problem governing 
the free response of the gate system to transverse oscillations. 

The 0(ea°) problem is readily reduced to the following form 

(24a) eLOjt - hL (eL0}XX + eLOtyy) = 0 , 

(24b) /LOJ= ~eLo,x> 

(24c) gLo,t= -euo'.y > 

(24d) eso> tt ~ eSOy xx ~ eso, yy = ° > 

(24e) f S O t t = -eso,x, 

(24/) gS0)t= -eso>y , 

(24g) : mZ0>ti +:kÇ0 = hLeL0 - eso . 

Recalling the boundary conditions we set 

(25) (eL0, /L0 , £LO) = lieu» /LO) cos (nrcy/p);gL0 sin (nny/p)] expi(ocLX + <rf) 

with a similar expression for (ey0, /so? gso)- T h e latter satisfy (24a, f) provided the fol­
lowing dispersion relationships be satisfied: 

(26) oc2
L = <j2/hL-n2x2/p2

y 

(27) *2
s = a2-n27v2/p2. 

We then assume 

(28) Ç0 = Co exp (tat) cos(n7ry/p). 

Imposing (24g) along with (24a) and the boundary conditions for fL0 and / j 0 we end up 
with the following eigenrelationship for a 

(29) -m + k/a2 = hj^n2*2/?2 - a2/hL + l/^n2*2/?2 - a2 

having assumed n to be large enough for OL\ and a2 to be negative and having chosen 
the solution which decays as X —*> — oo in the L-region and as X —» oo in the 
^-region. 
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Furthermore the constants eL0, fL0, gL0, eSo, fso, gso a r e aU expressed in terms of 
Co as follows: 

(30) (eL0, /L0 , ÌLO , <^o, /so > gso) = 

= ( -i(<J2/ocL),icr, -(nx/p)((j/oLL), -2{<j2/as), i<J, ~ (**:/&)(*/<xs))Z0 , 

5. RESULTS 

For given values of the dimensionless parameters m,k,hL and ^ any given mode « is 
characterized by a «natural» frequency a given by the solution of (29). We point out 
that the frequency co* of the incoming wave can be removed from (29) which can be 
written as a relationship between (/ita), (m/fi) and (/2k), which are dimensionless quanti­
ties independent of co*. 

It is then convenient to write {lb) and {9a, b) in the form 

(31) m = 3fil/T, k=KT, P = b/T 

where T is a dimensionless wave period defined as 

(32) T = ( 2 7 r / û > * ) V Î W -

Using (31) the dispersion relationship (29) gives a as a function of T for each mode n 
and given values of the parameters 911, K, b and hL. 

1.5 

1.0 

0.5 -

10 

Fig. 2. - The frequency crw of the free modes n versus T for 3ÌI =2.0, K =0.3, £ = 160, hL = 1 and 

various n s. 
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A very rough calculation of the actual values of 9Z, K, b for the case of Malamocco 
inlet suggests the following estimate in the case hL = 1 

(33) DHL =2.0, K = 0 . 3 , £ = 160. 

Figure 2 shows the function an (T) for a few modes with the choice of 3ÌL and K suggest­
ed by (33). Since typical values of T for large amplitude waves in the Adriatic sea close 
to the lagoon inlets range between 5 and 10 it appears that both subharmonic and syn­
chronous responses are possible, the former occurring for relatively low values of both 
T and n while the latter may occur in the whole range of the feasible values of T for dif­
ferent values of n. In part 2 we investigate the conditions for the above subharmonic 
free modes to be excited by the incoming wave leaving the synchronous case for a fu­
ture investigation. 
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