Rendiconti Lincei Matematica E Applicazioni

Edoardo Vesentini

Rigidity of holomorphic isometries

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Serie 9, Vol. 5 (1994), n.1, p. 55-62.

Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLIN_1994_9_5_1_55_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma
bdim (Biblioteca Digitale Italiana di Matematica)
SIMAI \& UMI
http://www.bdim.eu/

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Accademia Nazionale dei Lincei, 1994.

Geometria. - Rigidity of bolomorphic isometries. Nota (*) del Socio Edoardo Vesentini.

Abstract. - A rigidity theorem for holomorphic families of holomorphic isometries acting on Cartan domains is proved.

Key words: Cartan factors; Carathéodory distance; Holomorphic isometry; Extreme point.
Riassunto. - Rigidità di isometrie olomorfe. Si stabilisce un teorema di rigidità per famiglie di isometrie olomorfe in domini di Cartan.

1. Let D and D^{\prime} be bounded domains in two complex Banach spaces $\boldsymbol{\varepsilon}$ and $\boldsymbol{\varepsilon}^{\prime}$, and let Iso (D, D^{\prime}) be the family of all holomorphic maps of D into D^{\prime} which are isometries for the Carathéodory distances c_{D} and $c_{D^{\prime}}$, in D and D^{\prime}. Denoting by A a domain in \mathbb{C}, let f be a holomorphic map of $A \times D$ into D^{\prime}. According to Lemma 2.3 of [6], if, for every pair points x, y in D, there is $\zeta \in A$ such that $c_{D^{\prime}}(f(\zeta, x), f(\zeta, y))=c_{D}(x, y)$, then $f(\zeta, \cdot) \in \operatorname{Iso}\left(D, D^{\prime}\right)$ for all $\zeta \in A\left({ }^{1}\right)$. As a consequence, the following proposition holds:

Proposition 1. If there is a point $\zeta_{0} \in A$ such that $f\left(\zeta_{0}, \cdot\right) \in \operatorname{Iso}\left(D, D^{\prime}\right)$, then, $f(\zeta, \cdot) \in \operatorname{Iso}\left(D, D^{\prime}\right)$ for all $\zeta \in A$.

Let $D=D^{\prime}$ (in which case Iso D will stand for Iso $\left(D, D^{\prime}\right)$) and let Aut $D \subset$ Iso D be the group of all holomorphic automorphisms of D. According to Proposition V.1.10 of [1], if $f\left(\zeta_{0}, \cdot\right) \in$ Aut D for some $\zeta_{0} \in A$, then $f(\zeta, \cdot)$ is independent of $\zeta \in A$, i.e.

$$
\begin{equation*}
f\left(\zeta_{0}, \cdot\right)=f(\zeta, \cdot) \quad \text { for all } \zeta \in A \tag{1}
\end{equation*}
$$

Under which conditions on D and D^{\prime} does this latter conclusion hold when Aut D is replaced by Iso (D, D^{\prime}) ?

It was shown in [9] that, if D is the open unit ball B of $\boldsymbol{\varepsilon}$, and if $\boldsymbol{\varepsilon}$ is a complex Hilbert space, the fact that $f\left(\zeta_{0}, \cdot\right) \in$ Iso B for some $\zeta_{0} \in A$ implies (1).

Let \mathcal{E} be the C^{*} algebra $\mathcal{E}=\mathscr{L}(\mathscr{H})$ of all bounded linear operators on a complex Hilbert space \mathcal{H}. Starting from any infinite dimensional \mathcal{H}, an example was constructed in [5] of a non-trivial holomorphic family of holomorphic isometries of the open unit ball B of $\boldsymbol{\varepsilon}$, i.e. a holomorphic map $f: A \times B \rightarrow B$ such that $f(\zeta, \cdot) \in$ Iso B depends effectively on ζ.

The C^{*} algebra $\mathscr{L}(\mathscr{C})$ belongs to the class of J^{*}-algebras: in L. A. Harris' termino-
(*) Pervenuta all'Accademia l'11 ottobre 1993.
${ }^{(1)}$ This lemma was established in [6] when $D=D^{\prime}$. However, the proof carries over, with only minor formal changes, to the more general case considered here.
logy [2], it is a special kind of Cartan factor of type one. It was also shown in [5] that the same conclusion holds when \mathcal{E} is any infinite dimensional Cartan factor of type two or three.

The investigation will be pursued in this Note by considering all Cartan domains of type four and a class of Cartan domains of type one. It will be shown that - in contrast with the results established in [5] - no non-trivial holomorphic families of holomorphic isometries exist in these cases. More specifically, let B and B^{\prime} be the open unit balls of ε and ε^{\prime}, and let $f \in \operatorname{Hol}\left(A \times B, B^{\prime}\right)$ (the set of all holomorphic maps of $A \times B$ into $\left.B^{\prime}\right)$ be such that $f\left(\zeta_{0}, \cdot\right) \in \operatorname{Iso}\left(B, B^{\prime}\right)$ for some $\zeta_{0} \in A$. The purpose of this Note is that of proving the following.

Theorem. If $\boldsymbol{\varepsilon}$ and $\boldsymbol{\varepsilon}^{\prime}$ are both Cartan factors of type four, or if $\boldsymbol{\varepsilon}=\mathcal{L}(\mathcal{K}, \mathcal{H}), \boldsymbol{\varepsilon}^{\prime}=$ $=\mathfrak{L}\left(\mathcal{X}, \mathcal{X}^{\prime}\right)$, where \mathcal{K}, \mathcal{H} and \mathcal{C}^{\prime} are complex Hilbert spaces and $\operatorname{dim}_{C} \mathcal{K}<\infty$, then f is independent of $\zeta \in \mathrm{A}$.

This theorem extends a similar result which was previously established by the author when $\varepsilon=\varepsilon^{\prime}$ and $f(\zeta, \cdot)$ is a holomorphic isometry for all $\zeta \in A$. A similar question to the one posed at the beginning can be formulated in the case in which D and D^{\prime} are hyperbolic domains and the Carathéodory distances are replaced by the Kobayashi distances. This question is obviously answered by the above theorem in the case when $D=B, D^{\prime}=B^{\prime}$, because then Carathéodory's and Kobayashi's distances coincide. If ε^{\prime} has finite dimension (and therefore $\operatorname{dim}_{\mathbb{C}} \varepsilon \leqslant \operatorname{dim}_{\mathbb{C}} \varepsilon^{\prime}$) and if the domains D and D^{\prime} are bounded, the same question can be posed in terms of the Bergman metrics on D and D^{\prime}. This question seems to be open, also in the particular case in which D and D^{\prime} are the euclidean open unit balls of $\boldsymbol{\varepsilon}$ and $\boldsymbol{\varepsilon}^{\prime}$.
2. This section will be devoted to some preliminaries. Let A be a connected open neighbourhood of 0 in \mathbb{C}. If $f \in \operatorname{Hol}\left(A \times B, B^{\prime}\right)$, for $\zeta \in A, X \in B, d_{1} f(\zeta, X) \in \boldsymbol{\varepsilon}^{\prime}$ and $d_{2} f(\zeta, X) \in \mathscr{L}\left(\boldsymbol{\varepsilon}, \boldsymbol{\varepsilon}^{\prime}\right)$ will indicate the partial Fréchet differentials of f with respect to the first and the second variable, evaluated at the point (ζ, X).

Suppose that:
(i) $f(0,0)=0$;
(ii) $d_{2} f(0,0) \in \mathscr{L}\left(\varepsilon, \varepsilon^{\prime}\right)$ is a linear isometry of $\boldsymbol{\varepsilon}$ onto a closed linear subspace \mathscr{F}^{\prime} of $\boldsymbol{\varepsilon}^{\prime}$;
(iii) there is a projector P^{\prime} in ε^{\prime} such that

$$
\begin{equation*}
P^{\prime}\left(B^{\prime}\right)=B^{\prime} \cap \mathscr{F}^{\prime} . \tag{2}
\end{equation*}
$$

Note that $\left\|P^{\prime}\right\| \leqslant 1$.
As a consequence of $(i i)$, there is a map $L \in \mathscr{L}(\mathscr{F}, \boldsymbol{\varepsilon})$ which is a linear isometry of \mathfrak{F}^{\prime} onto \mathcal{E}, for which $L \circ d_{2} f(0,0)$ is the identity on \mathcal{E}. Let $\widetilde{P}^{\prime} \in \mathscr{L}\left(\mathcal{E}^{\prime}, \mathscr{F}^{\prime}\right)$ be the map induced by P^{\prime}, and let $g \in \operatorname{Hol}(A \times B, B)$ be the map defined by $g=L \circ \widetilde{P}^{\prime} \circ f$.

Then $d_{2} g(\zeta, X)=L \circ \widetilde{P}^{\prime} \circ d_{2} f(\zeta, X)$, and therefore $d_{2} g(0,0)=L \circ \widetilde{P}^{\prime} \circ d_{2} f(0,0)=$ $=I$ the identity on ε. Thus, by H. Cartan's uniqueness theorem $[1], g(0, X)=X$ for all $X \in B$, and, by Proposition V.1.10 of $[1] g(\zeta, X)$ is independent of $\zeta \in A$, i.e.

$$
\begin{equation*}
g(\zeta, X)=X \quad \text { for all } X \in B \text { and all } \zeta \in A . \tag{3}
\end{equation*}
$$

Let $f(\zeta, X)=Q_{0}(\zeta)+Q_{1}(\zeta, X)+Q_{2}(\zeta, X)+\ldots$, be the power series expansion of $f(\zeta, \cdot)$ in B, where $Q_{\nu}(\zeta, \cdot)$ is a continuous homogeneous polynomial $\boldsymbol{\varepsilon} \rightarrow \boldsymbol{\varepsilon}^{\prime}$ of degree $\nu=0,1, \ldots$, expressed, for $\zeta \in A, X \in B$, by the integral

$$
\begin{equation*}
Q_{\nu}(\zeta, X)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \exp (-i v \theta) f(\zeta, X) d \theta \tag{4}
\end{equation*}
$$

and where $Q_{1}(\zeta, X)=d_{2} f(\zeta, 0) X$.
Equation (3) implies that, for all $\zeta \in A, X \in B$,

$$
\begin{equation*}
L \circ \tilde{P}^{\prime} \circ Q_{1}(\zeta, X)=X, \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
\tilde{P}^{\prime} \circ Q_{\nu}(\zeta, X)=0 \quad \text { for } \quad \nu=0,2,3, \ldots . \tag{6}
\end{equation*}
$$

Since, by (4), $\left\|Q_{1}(\zeta, \cdot)\right\| \leqslant 1$, (5) yields $\|X\|=\left\|L \circ \widetilde{P}^{\prime} \circ Q_{1}(\zeta, X)\right\| \leqslant$ $\leqslant\|L\|\left\|P^{\prime}\right\|\left\|Q_{1}(\zeta, X)\right\| \leqslant\left\|Q_{1}(\zeta, X)\right\| \leqslant\|X\|$, whence $\left\|Q_{1}(\zeta, X)\right\|=\|X\|$ for all $X \in \mathcal{E}$.

Thus, $Q_{1}(\zeta, \cdot)$ is a linear isometry of $\boldsymbol{\varepsilon}$ into $\boldsymbol{\varepsilon}^{\prime}$ for all $\zeta \in A$.
Example (3.1) of p. 301 of [5] shows that $Q_{1}(\zeta, \cdot)$ can depend on $\zeta \in A$. However, the following result holds.

Let H and H^{\prime} be the sets of all real extreme points of the closures \bar{B} and $\overline{B^{\prime}}$ of B and B^{\prime}.

Lemma 2. If f satisfies conditions (i)-(iii), if

$$
\begin{equation*}
d_{2} f(0,0) H \subset H^{\prime}, \tag{7}
\end{equation*}
$$

and if $\boldsymbol{\mathcal { E }}$ is reflexive, then

$$
\begin{equation*}
Q_{1}(\zeta, \cdot)=d_{2} f(0,0) \quad \text { for all } \zeta \in A \text {. } \tag{8}
\end{equation*}
$$

Proof. If $d_{2} f(0,0) Y$ is a complex extreme point of $\overline{B^{\prime}}$, the strong maximum principle [1] yields $Q_{1}(\zeta, Y)=Q_{1}(0, Y)=d_{2} f(0,0) Y$ for all $\zeta \in A$. By (7), these equalities hold for all $Y \in H$. Let $X \in B$. For any continuous linear form λ^{\prime} on ε^{\prime} and for any $\varepsilon>0$, there is a finite convex combination $\Sigma a^{i} X_{i}$ of points $X_{i} \in H$ such that $\left|\lambda^{\prime} \circ Q_{1}\left(\zeta, X-\Sigma a^{i} X_{i}\right)\right|<\varepsilon / 2,\left|\lambda^{\prime} \circ d_{2} f(0,0)\left(X-\Sigma a^{i} X_{i}\right)\right|<\varepsilon / 2$.

Since $Q_{1}\left(\zeta, X_{i}\right)=d_{2} f(0,0) X_{i}$, then $\left|\lambda^{\prime} \circ\left(Q_{1}(\zeta, X)-d_{2} f(0,0) X\right)\right|<\varepsilon / 2+$ $+\varepsilon / 2=\varepsilon$.

The fact that λ^{\prime} and ε are arbitrary, and the Hahn-Banach theorem, imply then that $Q_{1}(\zeta, X)=d_{2} f(0,0) X$ for all $\zeta \in A$ and all $X \in \boldsymbol{\varepsilon}$. Q.E.D.
3. If \mathscr{X} and \mathscr{K}^{\prime} are two complex Hilbert spaces, the space $\mathfrak{L}\left(\mathscr{X}, \mathcal{K}^{\prime}\right)$ of all bounded linear maps from \mathcal{H} to \mathscr{H}^{\prime} is a complex Banach space with respect to the uniform operator norm ||| |||.

It will be assumed henceforth that $n=\operatorname{dim}_{C} \mathcal{K}<\infty$.
If e_{1}, \ldots, e_{n} is an orthonormal basis of \mathcal{K}, for any $X^{\prime} \in \mathscr{L}\left(\mathcal{X}, \mathcal{X}^{\prime}\right)$ let $X_{j}^{\prime}=X^{\prime} e_{j}$. Then, for $x=\sum_{j=1}^{n} a^{j} e_{j} \in \mathcal{K}\left(a^{j} \in \mathbb{C}\right), X^{\prime} x=\sum_{j=1}^{n} a^{j} X_{j}^{\prime}$, and, denoting by the same symbols (|) and || || inner products and norms in \mathcal{X} and \mathcal{X}^{\prime},

$$
\begin{gathered}
\left\|X^{\prime} x\right\|^{2}=\sum_{j=1}^{n}\left|a^{j}\right|^{2}\left\|X_{j}^{\prime}\right\|^{2}+2 \operatorname{Re} \sum_{j<k}^{1 \ldots n} a^{j} \overline{a^{k}}\left(X_{j}^{\prime} \mid X_{k}^{\prime}\right) \leqslant \\
\leqslant n \sum_{j=1}^{n}\left|a^{j}\right|^{2}\left\|X_{j}^{\prime}\right\|^{2} \leqslant n\left(\operatorname{Max}\left\{\left\|X_{j}^{\prime}\right\|: j=1, \ldots, n\right\}\right)^{2} \sum_{j=1}^{n}\left|a^{j}\right|^{2}= \\
=n\left(\operatorname{Max}\left\{\left\|X_{j}^{\prime}\right\|: j=1, \ldots, n\right\}\right)^{2}\|x\|^{2},
\end{gathered}
$$

whence

$$
\begin{equation*}
\left\|X^{\prime}\right\| \leqslant \sqrt{n} \operatorname{Max}\left\{\left\|X_{j}^{\prime}\right\|: j=1, \ldots, n\right\} . \tag{9}
\end{equation*}
$$

Let \tilde{X}^{\prime} be the vector $\left(X_{1}^{\prime}, \ldots, X_{n}^{\prime}\right)$ in the Hilbert space direct sum $\oplus_{1}^{n} \mathcal{C}^{\prime}$ of n copies of \mathcal{C}^{\prime}. Then, by (9), the norm $\left\|\left\|X^{\prime}\right\|\right.$ of X^{\prime} is estimated by $\| X^{\prime}\left\|^{2} \leqslant n\right\| \widetilde{X}^{\prime} \|^{2}$.

Hence, the bi-jective linear map $X^{\prime} \rightarrow \tilde{X}^{\prime}$ of $\mathfrak{L}\left(\mathscr{X}, \mathcal{H}^{\prime}\right)$ into $\oplus_{1}^{n} \mathcal{X}^{\prime}$ is bi-continuous. That shows that, if $\operatorname{dim}_{C} \mathcal{X}<\infty$, the Banach space $\mathscr{L}\left(\mathscr{X}, \mathcal{C}^{\prime}\right)$ is reflexive.

Let $\left\{f_{\mu}^{\prime}: \mu \in M\right\}$ be an orthonormal basis of \mathcal{H}^{\prime}, indexed by a set M. Every $X^{\prime} \in \mathscr{L}\left(\mathscr{K}, \mathscr{H}^{\prime}\right)$ is expressed by

$$
X^{\prime}=\sum_{\mu \in M}\left(\sum_{\nu=1}^{n}\left(X^{\prime} e_{\nu} \mid f_{\mu}^{\prime}\right)\left(f_{\mu}^{\prime} \otimes e_{\nu}^{*}\right)\right)
$$

where the right-hand side (is summable and) converges to X^{\prime} in the norm of $\mathfrak{L}\left(\mathcal{X}, \mathcal{C}^{\prime}\right)\left[7\right.$, Lemma 5]. For $x \in \mathcal{K}, f_{\mu}^{\prime} \otimes e_{\nu}^{*}(x)=\left(x \mid e_{\nu}\right) f_{\mu}^{\prime}$, and therefore

$$
\begin{equation*}
\left\|X^{\prime} x\right\|^{2}=\sum_{\mu \in M}\left|\sum_{\nu=1}^{n}\left(X^{\prime} e_{\nu} \mid f_{\mu}^{\prime}\right)\left(x \mid e_{\nu}\right)\right|^{2} . \tag{10}
\end{equation*}
$$

Let M_{0} be a non-empty subset of M and let P^{\prime} be the projector acting on $\mathcal{L}\left(\mathscr{K}, \mathcal{H}^{\prime}\right)$, defined on X^{\prime} by $P^{\prime} X^{\prime}=\sum_{\mu \in M_{0}}\left(\sum_{\nu=1}^{n}\left(X^{\prime} e_{\nu} \mid f_{\mu}^{\prime}\right)\left(f_{\mu}^{\prime} \otimes e_{\nu}^{*}\right)\right)$.

Since, by (10), $\left\|P^{\prime} X^{\prime} x\right\| \leqslant\left\|X^{\prime} x\right\|$ for all $x \in \mathcal{K}$, then $\left\|P^{\prime} X^{\prime}\right\|\|\leqslant\| X^{\prime} \|$ for all $X^{\prime} \in \mathscr{L}\left(\mathscr{X}, \mathcal{H}^{\prime}\right)$ and therefore the norm $\left\|P^{\prime}\right\|$ of P^{\prime} is

$$
\begin{equation*}
\left\|P^{\prime}\right\| \leqslant 1 \tag{11}
\end{equation*}
$$

Furthermore, $I-P^{\prime}=0$ if $M_{0}=M$ while, if $M_{0} \neq M$, then

$$
\left(I-P^{\prime}\right) X^{\prime}=\sum_{\mu \in M \backslash M_{0}}\left(\sum_{\nu=1}^{n}\left(X^{\prime} e_{\nu} \mid f_{\mu}^{\prime}\right)\left(f_{\mu}^{\prime} \otimes e_{\nu}^{*}\right)\right),
$$

and, by the same argument as before, $\left\|I-P^{\prime}\right\| \leqslant 1$.

For all $x \in \mathcal{X}$

$$
\begin{aligned}
\left(P^{\prime} X^{\prime} x \mid\left(I-P^{\prime}\right) X^{\prime} x\right)= & \sum_{\mu_{1} \in M_{0}} \sum_{\mu_{2} \in M \backslash M_{0}} \sum_{\nu_{1}, v_{2}=1}^{n}\left(X^{\prime} e_{\nu_{1}} \mid f_{\mu_{1}}^{\prime}\right) \overline{\left(X^{\prime} e_{\nu_{2}} \mid f_{\mu_{2}}^{\prime}\right)} \\
& \cdot\left(x \mid e_{\nu_{1}}\right) \overline{\left(x \mid e_{\nu_{2}}\right)}\left(f_{\mu_{1}}^{\prime} \mid f_{\mu_{2}}^{\prime}\right)=0
\end{aligned}
$$

and therefore

$$
\begin{equation*}
\left\|X^{\prime} x\right\|^{2}=\left\|P^{\prime} X^{\prime} x\right\|^{2}+\left\|\left(I-P^{\prime}\right) X^{\prime} x\right\|^{2} . \tag{12}
\end{equation*}
$$

Let \mathscr{C} be an another complex Hilbert space and let B and B^{\prime} be the open unit balls of $\boldsymbol{\varepsilon}=\mathfrak{L}(\mathcal{K}, \mathscr{H})$ and of $\boldsymbol{\varepsilon}^{\prime}=\mathfrak{L}\left(\mathcal{X}, \mathcal{K}^{\prime}\right)$. If $f \in \operatorname{Hol}\left(A \times B, B^{\prime}\right)$ is such that $f\left(\zeta_{0}, \cdot\right) \in$ $\in \operatorname{Iso}\left(B, B^{\prime}\right)$ for some $\zeta_{0} \in A$, then $f(\zeta, \cdot) \in \operatorname{Iso}\left(B, B^{\prime}\right)$ for all $\zeta \in A$, and, in particular, for $\zeta=0 \in A$.

Since B^{\prime} is homogeneous [2], there is no restriction in assuming $f(0,0)=0$. Since the Carathéodory differential metric is the derivative of the Carathéodory distance ([4]; cf. also, e.g. [9]), and since the Carathéodory differential metrics of B and B^{\prime} at the center 0 coincide with the norms in $\boldsymbol{\varepsilon}$ and in $\boldsymbol{\varepsilon}^{\prime}$, then $d_{2} f(0,0)$ is a linear isometry of $\boldsymbol{\varepsilon}$ into $\boldsymbol{\varepsilon}^{\prime}$. According to Theorem I of [7], there exists a unitary operator V on \mathcal{K} and a linear isometry U of \mathcal{H} into \mathcal{X}^{\prime} such that

$$
\begin{equation*}
d_{2} f(0,0) X=U \circ X \circ V \quad \text { for all } X \in \mathscr{L}(\mathscr{K}, \mathscr{C}) \tag{13}
\end{equation*}
$$

Remark. Theorem I was established in [7] when $\mathscr{\mathcal { C }}=\mathcal{X}^{\prime}$, but the proof holds, with only purely formal changes, in the more general context considered here.

Given an orthonormal basis in \mathcal{K}, its image by V is an orthonormal basis $\left\{e_{1}, \ldots, e_{n}\right\}$ in \mathcal{X}. On the other hand, the image by U of an orthonormal basis in \mathcal{H} is an orthonormal set in \mathcal{C}^{\prime}, which, by a standard orthogonalization process, can be identified with a subset, $\left\{f_{\mu}^{\prime}\right\}_{\mu \in M_{0}}$ of an orthonormal basis $\left\{f_{\mu}^{\prime}\right\}_{\mu \in M}$ of $\mathcal{C}^{\prime}\left(M_{0} \subset M\right)$. Since the closed linear span of $\left\{f_{\mu}^{\prime} \otimes e_{\nu}{ }^{*}: \nu=1, \ldots, n ; \mu \in M_{0}\right\}$ is the space $\mathscr{F}^{\prime}=$ $=d_{2} f(0,0) \boldsymbol{\varepsilon}$, the above considerations show that there exists a projector P^{\prime} in \mathcal{E}^{\prime} with range \mathfrak{F}^{\prime}, satisfying (11) and therefore (2).

Hence, all the hypotheses of Lemma 2 are satisfied, and (8) holds.
Since, by (6),

$$
Q_{0}(X)+\sum_{\nu=2}^{+\infty} Q_{\nu}(\zeta, X)=\left(I-P^{\prime}\right) f(\zeta, X)
$$

then (12) yields, for all $x \in \mathcal{K}$,

$$
\begin{equation*}
\|x\|^{2} \geqslant\|f(\zeta, X) x\|^{2}=\left\|d_{2} f(0,0) X x\right\|^{2}+\left\|\left(Q_{0}(\zeta)+\sum_{\nu=2}^{+\infty} Q_{\nu}(\zeta, X)\right) x\right\|^{2} \tag{14}
\end{equation*}
$$

If $X: \mathscr{X} \rightarrow \mathscr{H}$ is a linear isometry, (13) implies that $d_{2} f(0,0) X: \mathcal{X} \rightarrow \mathcal{C}^{\prime}$ is a linear isometry. For $0<t<1, t X \in B$ and (14) yields

$$
t^{2}\|x\|^{2}+\left\|\left(Q_{0}(\zeta)+\sum_{\nu=2}^{+\infty} Q_{\nu}(\zeta, t X)\right) x\right\|^{2} \leqslant\|x\|^{2}
$$

for all $x \in \mathcal{X}$, whence

$$
\begin{equation*}
\left\|\left\|Q_{0}(X)+\sum_{\nu=2}^{+\infty} Q_{\nu}(\zeta, t X) \mid\right\| \leqslant\left(1-t^{2}\right)^{1 / 2},\right. \tag{15}
\end{equation*}
$$

for all linear isometries $X: \mathcal{K} \rightarrow \mathcal{H}$. Since $0<t<1$, the function $Z \rightarrow Q_{0}(\zeta)+$ $+\sum_{\nu=2}^{+\infty} Q_{\nu}(\zeta, t Z)$ is holomorphic in a neighbourhood of \bar{B}. By Proposition 2 of [7] and Proposition 2 of [2], the set of all linear isometries $\mathcal{K} \rightarrow \mathcal{H}$ is stable. Thus, Harris' maximum principle [2, Theorem 9] entails that (15) holds for all $X \in \bar{B}$ and all $t \in(0,1)$, implying that

$$
\begin{equation*}
Q_{0}(\zeta)+\sum_{\nu=2}^{+\infty} Q_{\nu}(\zeta, X)=0 \tag{16}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
f(\zeta, X)=d_{2} f(0,0) X \tag{17}
\end{equation*}
$$

for all $\zeta \in A$ and all $X \in B$.
That proves the part of the theorem stated in n . 1, concerning the Cartan factors of type one $\varepsilon=\mathfrak{L}(\mathscr{K}, \mathcal{K})$ and $\varepsilon^{\prime}=\mathfrak{L}\left(\mathscr{K}, \mathcal{C}^{\prime}\right)$.

It is easily seen that the conclusion of the theorem does not always hold when $\mathcal{E}=$ $=\mathscr{L}\left(\mathscr{K}^{\prime}, \mathscr{H}\right)$ and $\varepsilon^{\prime}=\mathfrak{L}\left(\mathscr{X}, \mathcal{C}^{\prime}\right), \mathcal{K}^{\prime}$ being a finite dimensional Hilbert space with $\operatorname{dim}_{\mathbb{C}} \mathcal{X} \leqslant \operatorname{dim}_{\mathbb{C}} \mathcal{K}^{\prime}$. A simple example is given by $\mathcal{K}=\mathcal{C}=\mathbb{C}, \mathcal{K}^{\prime}=\mathbb{C}^{2}$ (endowed with the euclidean metric). Let $X_{1}^{\prime}, X_{2}^{\prime}$ be two vectors in \mathcal{C}^{\prime}, with $\left\|X_{1}^{\prime}\right\|=\left\|X_{2}^{\prime}\right\|=1$, $\left(X_{1}^{\prime} \mid X_{2}^{\prime}\right)=0$, and - choosing A to be the open unit disc Δ of $\mathbb{C}-$ let $f \in \operatorname{Hol}\left(\Delta \times \Delta, B^{\prime}\right)$ be the function whose value at $(\zeta, z) \in \Delta \times \Delta$ is the linear map $\left(x^{1}, x^{2}\right) \rightarrow z\left(x^{1} X_{1}^{\prime}+\right.$ $\left.+\zeta x^{2} X_{2}^{\prime}\right)$ of \mathbb{C}^{2} into \mathscr{X}^{\prime}. For every $\zeta \in \Delta, f(\zeta, \cdot) \in \operatorname{Hol}\left(\Delta, B^{\prime}\right)$ is a complex geodesic for $c_{B^{\prime}}$, and therefore $f(\zeta, \cdot)$, which depends effectively on $\zeta \in \Delta$, is a holomorphic isometry of Δ into B^{\prime}.
4. Given a complex Hilbert space \mathcal{X}^{\prime} with $\operatorname{dim}_{\mathbb{C}} \mathcal{X}^{\prime}>1$, consider the complex Ba nach space $\mathscr{L}\left(\mathcal{C}^{\prime}\right)$ of all bounded linear operators on \mathcal{C}^{\prime}, and let a closed linear subspace ε^{\prime} of $\mathfrak{L}\left(\mathcal{H}^{\prime}\right)$ be a Cartan factor of type four [2,8]. Let B^{\prime} be the open unit ball of $\boldsymbol{\varepsilon}^{\prime}$. This latter space is endowed with a Hilbert space structure defined by a positive-definite inner product (\mid) whose associated norm $\|\|$ is equivalent to the uniform operator norm ||| |||. More specifically [2]

$$
\begin{equation*}
(1 / 2)\left\|X^{\prime}\right\|^{2} \leqslant\left\|X^{\prime}\right\|^{2} \leqslant\left\|X^{\prime}\right\|^{2} \quad \text { for all } X^{\prime} \in \varepsilon^{\prime} \tag{18}
\end{equation*}
$$

A complete spin system $H^{\prime}=\left\{U_{\mu}^{\prime}: \mu \in M\right\}$ in ε^{\prime} is an orthonormal basis of ε^{\prime}, whose elements U_{μ}^{\prime} are self-adjoint, unitary operators on \mathcal{H}^{\prime} - called spin-operators on \mathcal{C}^{\prime} - such that $U_{\mu_{1}}^{\prime} \circ U_{\mu_{2}}^{\prime}+U_{\mu_{2}}^{\prime} \circ U_{\mu_{1}}^{\prime}=2 \delta_{\mu_{1} \mu_{2}} I \quad\left(\mu_{1}, \mu_{2} \in M\right)$.

Every $X^{\prime} \in \mathcal{E}^{\prime}$ is represented, in terms of H^{\prime}, by the Fourier series expansion

$$
X^{\prime}=\sum_{\mu \in M}\left(X^{\prime} \mid U_{\mu}^{\prime}\right) U_{\mu}^{\prime}
$$

If $\emptyset \neq M_{0} \subset M$, the map $P^{\prime}: \boldsymbol{\varepsilon}^{\prime} \rightarrow \boldsymbol{\varepsilon}^{\prime}$ defined by

$$
P^{\prime} X^{\prime}=\sum_{\mu \in M_{0}}\left(X^{\prime} \mid U_{\mu}^{\prime}\right) U_{\mu}^{\prime}
$$

is an orthogonal projector on the Hilbert space $\boldsymbol{\varepsilon}^{\prime}$.
The set H^{\prime} is the family of all real (= complex) extreme points of $\overline{B^{\prime}}$. Since ε^{\prime} is reflexive, the norm of P^{\prime} as a linear operator in the Banach space $\left(\varepsilon^{\prime}, \|||| |)\right.$, satisfies (11).

Let \mathscr{H} be a complex Hilbert space and let a closed linear subspace ε of $\mathcal{L}(\mathscr{C})$ be a Cartan factor of type four. Let B be the open unit ball of $\boldsymbol{\varepsilon}$ and let $f \in \operatorname{Hol}\left(A \times B, B^{\prime}\right)$ be such that $f\left(\zeta_{0}, \cdot\right) \in \operatorname{Iso}\left(B, B^{\prime}\right)$ at some $\zeta_{0} \in A$ and therefore - by Proposition 1 - at all $\zeta \in A$. Since B^{\prime} is homogeneous, there is no restriction in assuming $f(0,0)=0$. As before, that implies that $d_{2} f(0,0)$ is a linear isometry of $\boldsymbol{\varepsilon}$ into ε^{\prime} for the norm $\||| |$. By theorem I and by the Remark in [8], there exists a constant $a \in \mathbb{C}$, with $|a|=1$, such that $a d_{2} f(0,0)$ is a real linear isometry of the Hilbert space ε into the Hilbert space ε^{\prime}. Thus, if $\left\{U_{\mu}: \mu \in M_{0}\right.$) is a complete spin system in ε, then $\left\{a d_{2} f(0,0) U_{\mu}: \mu \in M\right\}$ is a spin system in ε^{\prime}. Thus there is a complete spin system $\left\{U_{\mu}^{\prime}: \mu \in M\right\}$ containing $\left\{a_{2} f(0,0) U_{\mu}: \mu \in M_{0}\right\}$ as a subset. The closed linear span of this subset is the image $\mathscr{F}^{\prime}=d_{2} f(0,0) \varepsilon$. Thus the above argument shows that there is a projector P^{\prime} whose range is \mathscr{F}^{\prime} and which satisfies (11) and therefore also (2). Hence all the hypotheses of Lemma 2 are fulfilled, and (8) holds.

Since the orthogonal projectors P^{\prime} and $I-P^{\prime}$ are orthogonal to each other with respect to the Hilbert space structure of ε^{\prime}, then (6) yields

$$
\begin{equation*}
\left(I-P^{\prime}\right) Q_{\nu}(\zeta, X)=Q_{\nu}(\zeta, X) \quad(\zeta \in A, \quad X \in B, \quad \nu=0,2,3, \ldots) \tag{19}
\end{equation*}
$$

By (18), $\|f(\zeta, X)\| \leqslant 1$, and that is equivalent to

$$
\begin{equation*}
\left\|d_{2} f(0,0) X\right\|^{2}+\left\|Q_{0}(\zeta)+\sum_{\nu=2}^{+\infty} Q_{\nu}(\zeta, X)\right\|^{2} \leqslant 1 \tag{20}
\end{equation*}
$$

because, by (19), $d_{2} f(0,0)=P^{\prime} d_{2} f(0,0)$ is orthogonal to $Q_{\nu}(\zeta, X)$ for $\nu=$ $=0,2,3, \ldots$. Since $\left\|d_{2} f(0,0) X\right\|=\|X\|$ for all $X \in \mathcal{E}$, (20) yields

$$
\left\|Q_{0}(\zeta)+\sum_{\nu=2}^{+\infty} Q_{\nu}(\zeta, X)\right\|^{2} \leqslant 1-\|X\|^{2}
$$

for all $X \in B$ and all $\zeta \in A$. This latter inequality is satisfied when $X=t Z$, where $0<t<1$ and Z is any spin-operator on \mathcal{E}. Since the set of all spin-operators coincides with the set H of all real (= complex) extreme points of \bar{B} and the set H is stable, L. A. Harris' maximum principle implies, as at the end of n. 3, that (16) and (17) hold. That completes the proof of the theorem stated in n .1 .

References

[1] T. Franzoni - E. Vesentini, Holomorphic maps and invariant distances. North Holland, Amsterdam 1980.
[2] L. A. Harris, Bounded symmetric domains in infinite dimensional spaces. Lecture notes in mathematics, n. 634. Springer-Verlag, Berlin 1974, 13-40.
[3] M. Jarnicki - P. Pflug, Invariant distances and metrics in complex analysis. de Gruyter, Berlin 1993.
[4] H. J. Reiffen, Die Carathéodorische Distanz und ibre zugebörige Differentialmetrik. Math. Ann., 161, 1965, 315-324.
[5] E. Vesentini, Holomorphic isometries. Lecture notes in mathematics, n. 1277. Springer-Verlag, Berlin 1987, 290-302.
[6] E. Vesentini, Holomorphic semigroups of holomorphic isometries. Atti Acc. Lincei Rend fis., s. 8, 82, 1988, 203-217.
[7] E. Vesentini, Holomorphic isometries of Cartan domains of type one. Rend. Mat. Acc. Lincei, s. 9, 2, 1991, 65-72.
[8] E. Vesentini, Holomorphic isometries of Cartan domains of type four. Rend. Mat. Acc. Lincei, s. 9, 3, 1992, 287-294.
[9] E. Vesentini, Semigroups of holomorphic isometries. In: Complex potential theory. Kluwer Academic Publisher, Dordrecht, to appear.

Scuola Normale Superiore
Piazza dei Cavalieri, 7-56126 PISA

