ATTI ACCADEMIA NAZIONALE LINCEI CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI LINCEI MATEMATICA E APPLICAZIONI

Edoardo Vesentini

Rigidity of holomorphic isometries

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Serie 9, Vol. 5 (1994), n.1, p. 55–62.

Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLIN_1994_9_5_1_55_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Accademia Nazionale dei Lincei, 1994.

Geometria. — *Rigidity of holomorphic isometries.* Nota(*) del Socio Edoardo Vesentini.

ABSTRACT. — A rigidity theorem for holomorphic families of holomorphic isometries acting on Cartan domains is proved.

KEY WORDS: Cartan factors; Carathéodory distance; Holomorphic isometry; Extreme point.

RIASSUNTO. — *Rigidità di isometrie olomorfe*. Si stabilisce un teorema di rigidità per famiglie di isometrie olomorfe in domini di Cartan.

1. Let *D* and *D'* be bounded domains in two complex Banach spaces \mathcal{E} and \mathcal{E}' , and let Iso (D, D') be the family of all holomorphic maps of *D* into *D'* which are isometries for the Carathéodory distances c_D and $c_{D'}$, in *D* and *D'*. Denoting by *A* a domain in \mathbb{C} , let *f* be a holomorphic map of $A \times D$ into *D'*. According to Lemma 2.3 of [6], if, for every pair points *x*, *y* in *D*, there is $\zeta \in A$ such that $c_{D'}(f(\zeta, x), f(\zeta, y)) = c_D(x, y)$, then $f(\zeta, \cdot) \in \text{Iso}(D, D')$ for all $\zeta \in A(1)$. As a consequence, the following proposition holds:

PROPOSITION 1. If there is a point $\zeta_0 \in A$ such that $f(\zeta_0, \cdot) \in \text{Iso}(D, D')$, then, $f(\zeta, \cdot) \in \text{Iso}(D, D')$ for all $\zeta \in A$.

Let D = D' (in which case Iso D will stand for Iso (D, D')) and let Aut $D \subset$ Iso D be the group of all holomorphic automorphisms of D. According to Proposition V.1.10 of [1], if $f(\zeta_0, \cdot) \in \text{Aut } D$ for some $\zeta_0 \in A$, then $f(\zeta, \cdot)$ is independent of $\zeta \in A$, *i.e.*

(1)

$$f(\zeta_0, \cdot) = f(\zeta, \cdot)$$
 for all $\zeta \in A$.

Under which conditions on D and D' does this latter conclusion hold when Aut D is replaced by Iso (D, D')?

It was shown in [9] that, if D is the open unit ball B of \mathcal{E} , and if \mathcal{E} is a complex Hilbert space, the fact that $f(\zeta_0, \cdot) \in \text{Iso } B$ for some $\zeta_0 \in A$ implies (1).

Let \mathcal{E} be the C^* algebra $\mathcal{E} = \mathcal{L}(\mathcal{H})$ of all bounded linear operators on a complex Hilbert space \mathcal{H} . Starting from any infinite dimensional \mathcal{H} , an example was constructed in [5] of a non-trivial holomorphic family of holomorphic isometries of the open unit ball B of \mathcal{E} , *i.e.* a holomorphic map $f: A \times B \to B$ such that $f(\zeta, \cdot) \in \text{Iso } B$ depends effectively on ζ .

The C^* algebra $\mathfrak{L}(\mathcal{H})$ belongs to the class of J^* -algebras: in L. A. Harris' termino-

(*) Pervenuta all'Accademia l'11 ottobre 1993.

(1) This lemma was established in [6] when D = D'. However, the proof carries over, with only minor formal changes, to the more general case considered here.

logy [2], it is a special kind of Cartan factor of type one. It was also shown in [5] that the same conclusion holds when ε is any infinite dimensional Cartan factor of type two or three.

The investigation will be pursued in this *Note* by considering all Cartan domains of type four and a class of Cartan domains of type one. It will be shown that – in contrast with the results established in [5] – no non-trivial holomorphic families of holomorphic isometries exist in these cases. More specifically, let *B* and *B'* be the open unit balls of $\boldsymbol{\varepsilon}$ and $\boldsymbol{\varepsilon}'$, and let $f \in \text{Hol}(A \times B, B')$ (the set of all holomorphic maps of $A \times B$ into B') be such that $f(\zeta_0, \cdot) \in \text{Iso}(B, B')$ for some $\zeta_0 \in A$. The purpose of this *Note* is that of proving the following.

THEOREM. If \mathcal{E} and \mathcal{E}' are both Cartan factors of type four, or if $\mathcal{E} = \mathcal{L}(\mathcal{H}, \mathcal{H}), \mathcal{E}' = \mathcal{L}(\mathcal{H}, \mathcal{H}')$, where \mathcal{H}, \mathcal{H} and \mathcal{H}' are complex Hilbert spaces and $\dim_{\mathbf{C}} \mathcal{H} < \infty$, then f is independent of $\zeta \in A$.

This theorem extends a similar result which was previously established by the author when $\mathcal{E} = \mathcal{E}'$ and $f(\zeta, \cdot)$ is a holomorphic isometry for all $\zeta \in A$. A similar question to the one posed at the beginning can be formulated in the case in which D and D' are hyperbolic domains and the Carathéodory distances are replaced by the Kobayashi distances. This question is obviously answered by the above theorem in the case when D = B, D' = B', because then Carathéodory's and Kobayashi's distances coincide. If \mathcal{E}' has finite dimension (and therefore $\dim_{\mathbb{C}} \mathcal{E} \leq \dim_{\mathbb{C}} \mathcal{E}'$) and if the domains D and D' are bounded, the same question can be posed in terms of the Bergman metrics on D and D'. This question seems to be open, also in the particular case in which D and D' are the euclidean open unit balls of \mathcal{E} and \mathcal{E}' .

2. This section will be devoted to some preliminaries. Let A be a connected open neighbourhood of 0 in \mathbb{C} . If $f \in \text{Hol}(A \times B, B')$, for $\zeta \in A, X \in B, d_1 f(\zeta, X) \in \mathcal{E}'$ and $d_2 f(\zeta, X) \in \mathcal{E}(\mathcal{E}, \mathcal{E}')$ will indicate the partial Fréchet differentials of f with respect to the first and the second variable, evaluated at the point (ζ, X) .

Suppose that:

(*i*) f(0, 0) = 0;

(*ii*) $d_2 f(0, 0) \in \mathcal{L}(\mathcal{E}, \mathcal{E}')$ is a linear isometry of \mathcal{E} onto a closed linear subspace \mathcal{F}' of \mathcal{E}' ;

(*iii*) there is a projector P' in \mathcal{E}' such that

$$(2) P'(B') = B' \cap \mathcal{F}'$$

Note that $||P'|| \leq 1$.

As a consequence of (*ii*), there is a map $L \in \mathcal{L}(\mathcal{F}', \mathcal{E})$ which is a linear isometry of \mathcal{F}' onto \mathcal{E} , for which $L \circ d_2 f(0, 0)$ is the identity on \mathcal{E} . Let $\tilde{P}' \in \mathcal{L}(\mathcal{E}', \mathcal{F}')$ be the map induced by P', and let $g \in \text{Hol}(A \times B, B)$ be the map defined by $g = L \circ \tilde{P}' \circ f$.

Then $d_2 g(\zeta, X) = L \circ \tilde{P}' \circ d_2 f(\zeta, X)$, and therefore $d_2 g(0, 0) = L \circ \tilde{P}' \circ d_2 f(0, 0) = I$ the identity on \mathfrak{E} . Thus, by H. Cartan's uniqueness theorem [1], g(0, X) = X for all $X \in B$, and, by Proposition V.1.10 of [1] $g(\zeta, X)$ is independent of $\zeta \in A$, *i.e.*

(3)
$$g(\zeta, X) = X$$
 for all $X \in B$ and all $\zeta \in A$.

Let $f(\zeta, X) = Q_0(\zeta) + Q_1(\zeta, X) + Q_2(\zeta, X) + \dots$, be the power series expansion of $f(\zeta, \cdot)$ in *B*, where $Q_{\nu}(\zeta, \cdot)$ is a continuous homogeneous polynomial $\mathcal{E} \to \mathcal{E}'$ of degree $\nu = 0, 1, \dots$, expressed, for $\zeta \in A, X \in B$, by the integral

(4)
$$Q_{\nu}(\zeta, X) = \frac{1}{2\pi} \int_{0}^{2\pi} \exp\left(-i\nu\theta\right) f(\zeta, X) d\theta,$$

and where $Q_1(\zeta, X) = d_2 f(\zeta, 0) X$.

Equation (3) implies that, for all $\zeta \in A$, $X \in B$,

(5)
$$L \circ \tilde{P}' \circ Q_1(\zeta, X) = X$$

(6)
$$\tilde{P}' \circ Q_{\nu}(\zeta, X) = 0$$
 for $\nu = 0, 2, 3, ...$

Since, by (4), $||Q_1(\zeta, \cdot)|| \leq 1$, (5) yields $||X|| = ||L \circ \tilde{P}' \circ Q_1(\zeta, X)|| \leq ||L|| ||P'|| ||Q_1(\zeta, X)|| \leq ||Q_1(\zeta, X)|| \leq ||X||$, whence $||Q_1(\zeta, X)|| = ||X||$ for all $X \in \mathcal{E}$. Thus, $Q_1(\zeta, \cdot)$ is a linear isometry of \mathcal{E} into \mathcal{E}' for all $\zeta \in A$.

Example (3.1) of p. 301 of [5] shows that $Q_1(\zeta, \cdot)$ can depend on $\zeta \in A$. However, the following result holds.

Let H and H' be the sets of all real extreme points of the closures \overline{B} and $\overline{B'}$ of B and B'.

LEMMA 2. If f satisfies conditions (i)-(iii), if

(7)
$$d_2 f(0, 0) H \subset H'$$

and if $\boldsymbol{\varepsilon}$ is reflexive, then

(8)
$$Q_1(\zeta, \cdot) = d_2 f(0, 0) \quad \text{for all } \zeta \in A.$$

PROOF. If $d_2 f(0, 0) Y$ is a complex extreme point of $\overline{B'}$, the strong maximum principle [1] yields $Q_1(\zeta, Y) = Q_1(0, Y) = d_2 f(0, 0) Y$ for all $\zeta \in A$. By (7), these equalities hold for all $Y \in H$. Let $X \in B$. For any continuous linear form λ' on \mathcal{E}' and for any $\varepsilon > 0$, there is a finite convex combination $\Sigma a^i X_i$ of points $X_i \in H$ such that $|\lambda' \circ Q_1(\zeta, X - \Sigma a^i X_i)| < \varepsilon/2$, $|\lambda' \circ d_2 f(0, 0)(X - \Sigma a^i X_i)| < \varepsilon/2$.

Since $Q_1(\zeta, X_i) = d_2 f(0, 0) X_i$, then $|\lambda' \circ (Q_1(\zeta, X) - d_2 f(0, 0) X)| < \varepsilon/2 + \varepsilon/2 = \varepsilon$.

The fact that λ' and ε are arbitrary, and the Hahn-Banach theorem, imply then that $Q_1(\zeta, X) = d_2 f(0, 0) X$ for all $\zeta \in A$ and all $X \in \mathfrak{E}$. Q.E.D.

3. If \mathfrak{X} and \mathfrak{H}' are two complex Hilbert spaces, the space $\mathfrak{L}(\mathfrak{X}, \mathfrak{H}')$ of all bounded linear maps from \mathfrak{X} to \mathfrak{H}' is a complex Banach space with respect to the uniform operator norm $\|\|\|$.

It will be assumed henceforth that $n = \dim_{\mathbf{C}} \mathcal{H} < \infty$.

If e_1, \ldots, e_n is an orthonormal basis of \mathcal{R} , for any $X' \in \mathfrak{L}(\mathfrak{R}, \mathfrak{K}')$ let $X_j' = X' e_j$. Then, for $x = \sum_{j=1}^n a^j e_j \in \mathcal{R}$ $(a^j \in \mathbb{C}), X' x = \sum_{j=1}^n a^j X_j'$, and, denoting by the same symbols (|) and $|| \quad ||$ inner products and norms in \mathcal{R} and $\mathfrak{I}C'$,

$$\|X'x\|^{2} = \sum_{j=1}^{n} |a^{j}|^{2} \|X_{j}'\|^{2} + 2 \operatorname{Re} \sum_{j
$$\leq n \sum_{j=1}^{n} |a^{j}|^{2} \|X_{j}'\|^{2} \leq n (\operatorname{Max} \{\|X_{j}'\|: j = 1, ..., n\})^{2} \sum_{j=1}^{n} |a^{j}|^{2} =$$

$$= n (\operatorname{Max} \{\|X_{j}'\|: j = 1, ..., n\})^{2} \|x\|^{2},$$$$

whence

(9)
$$|||X'||| \le \sqrt{n} \operatorname{Max} \{ ||X_j'||: j = 1, ..., n \}.$$

Let \widetilde{X}' be the vector (X'_1, \ldots, X'_n) in the Hilbert space direct sum $\bigoplus_{1}^{n} \mathcal{H}'$ of *n* copies of \mathcal{H}' . Then, by (9), the norm |||X'||| of X' is estimated by $|||X'|||^2 \le n ||\widetilde{X}'||^2$.

Hence, the bi-jective linear map $X' \to \tilde{X}'$ of $\mathfrak{L}(\mathfrak{K}, \mathfrak{K}')$ into $\bigoplus_{1}^{n} \mathfrak{K}'$ is bi-continuous. That shows that, if $\dim_{\mathbf{C}} \mathfrak{K} < \infty$, the Banach space $\mathfrak{L}(\mathfrak{K}, \mathfrak{K}')$ is reflexive.

Let $\{f'_{\mu} : \mu \in M\}$ be an orthonormal basis of \mathcal{H}' , indexed by a set M. Every $X' \in \mathcal{L}(\mathcal{R}, \mathcal{H}')$ is expressed by

$$X' = \sum_{\mu \in M} \left(\sum_{\nu=1}^{n} (X' e_{\nu} \mid f'_{\mu}) (f'_{\mu} \otimes e_{\nu}^{\star}) \right),$$

where the right-hand side (is summable and) converges to X' in the norm of $\mathcal{L}(\mathcal{X}, \mathcal{H}')$ [7, Lemma 5]. For $x \in \mathcal{X}$, $f'_{\mu} \otimes e_{\nu}^{*}(x) = (x|e_{\nu})f'_{\mu}$, and therefore

(10)
$$||X'x||^2 = \sum_{\mu \in M} \left| \sum_{\nu=1}^n (X'e_\nu | f'_\mu)(x|e_\nu) \right|^2.$$

Let M_0 be a non-empty subset of M and let P' be the projector acting on $\mathcal{L}(\mathcal{K}, \mathcal{K}')$,

defined on X' by
$$P'X' = \sum_{\mu \in M_0} \left(\sum_{\nu=1}^n (X'e_{\nu} | f'_{\mu})(f'_{\mu} \otimes e_{\nu}^*) \right).$$

Since, by (10), $||P'X'x|| \leq ||X'x||$ for all $x \in \mathcal{X}$, then $|||P'X'||| \leq |||X'|||$ for all $X' \in \mathcal{L}(\mathcal{X}, \mathcal{H}')$ and therefore the norm ||P'|| of P' is

$$\|P'\| \le 1.$$

Furthermore, I - P' = 0 if $M_0 = M$ while, if $M_0 \neq M$, then

$$(I-P')X' = \sum_{\mu \in M \setminus M_0} \left(\sum_{\nu=1}^n (X'e_\nu \mid f'_\mu)(f'_\mu \otimes e_\nu^*) \right),$$

and, by the same argument as before, $||I - P'|| \le 1$.

For all $x \in \mathcal{K}$

$$(P'X'x|(I-P')X'x) = \sum_{\mu_1 \in M_0} \sum_{\mu_2 \in M \setminus M_0} \sum_{\nu_1, \nu_2 = 1}^n (X'e_{\nu_1}|f'_{\mu_1}) \overline{(X'e_{\nu_2}|f'_{\mu_2})} \cdot (x|e_{\nu_1}) \overline{(x|e_{\nu_2})} (f'_{\mu_1}|f'_{\mu_2}) = 0$$

and therefore

(12)
$$||X'x||^2 = ||P'X'x||^2 + ||(I-P')X'x||^2.$$

Let \mathcal{X} be an another complex Hilbert space and let *B* and *B'* be the open unit balls of $\mathcal{E} = \mathcal{L}(\mathcal{X}, \mathcal{H})$ and of $\mathcal{E}' = \mathcal{L}(\mathcal{X}, \mathcal{H}')$. If $f \in \text{Hol}(A \times B, B')$ is such that $f(\zeta_0, \cdot) \in$ $\in \text{Iso}(B, B')$ for some $\zeta_0 \in A$, then $f(\zeta, \cdot) \in \text{Iso}(B, B')$ for all $\zeta \in A$, and, in particular, for $\zeta = 0 \in A$.

Since B' is homogeneous [2], there is no restriction in assuming f(0, 0) = 0. Since the Carathéodory differential metric is the derivative of the Carathéodory distance ([4]; cf. also, *e.g.* [9]), and since the Carathéodory differential metrics of B and B' at the center 0 coincide with the norms in $\boldsymbol{\varepsilon}$ and in $\boldsymbol{\varepsilon}'$, then $d_2 f(0, 0)$ is a linear isometry of $\boldsymbol{\varepsilon}$ into $\boldsymbol{\varepsilon}'$. According to Theorem I of [7], there exists a unitary operator V on $\boldsymbol{\mathcal{X}}$ and a linear isometry U of $\boldsymbol{\mathcal{H}}$ into $\boldsymbol{\mathcal{H}}'$ such that

(13)
$$d_2 f(0, 0) X = U \circ X \circ V \quad \text{for all } X \in \mathcal{L}(\mathcal{X}, \mathcal{H}).$$

REMARK. Theorem I was established in [7] when $\mathcal{H} = \mathcal{H}'$, but the proof holds, with only purely formal changes, in the more general context considered here.

Given an orthonormal basis in \mathcal{K} , its image by V is an orthonormal basis $\{e_1, \ldots, e_n\}$ in \mathcal{K} . On the other hand, the image by U of an orthonormal basis in \mathcal{H} is an orthonormal set in \mathcal{H}' , which, by a standard orthogonalization process, can be identified with a subset, $\{f'_{\mu}\}_{\mu \in M_0}$ of an orthonormal basis $\{f'_{\mu}\}_{\mu \in M}$ of $\mathcal{H}'(M_0 \subset M)$. Since the closed linear span of $\{f'_{\mu} \otimes e_v^* : v = 1, \ldots, n; \mu \in M_0\}$ is the space $\mathcal{H}' = d_2 f(0, 0) \mathcal{E}$, the above considerations show that there exists a projector P' in \mathcal{E}' with range \mathcal{H}' , satisfying (11) and therefore (2).

Hence, all the hypotheses of Lemma 2 are satisfied, and (8) holds. Since, by (6),

$$Q_0(X) + \sum_{\nu=2}^{+\infty} Q_{\nu}(\zeta, X) = (I - P') f(\zeta, X),$$

then (12) yields, for all $x \in \mathcal{K}$,

(14)
$$||x||^2 \ge ||f(\zeta, X)x||^2 = ||d_2 f(0, 0) Xx||^2 + \left| \left(Q_0(\zeta) + \sum_{\nu=2}^{+\infty} Q_\nu(\zeta, X) \right) x \right||^2$$

If $X: \mathcal{X} \to \mathcal{H}$ is a linear isometry, (13) implies that $d_2 f(0, 0) X: \mathcal{X} \to \mathcal{H}'$ is a linear isometry. For 0 < t < 1, $tX \in B$ and (14) yields

$$t^{2} \|x\|^{2} + \left\| \left(Q_{0}(\zeta) + \sum_{\nu=2}^{+\infty} Q_{\nu}(\zeta, tX) \right) x \right\|^{2} \le \|x\|^{2}$$

for all $x \in \mathcal{X}$, whence

(15)
$$\left\| Q_0(X) + \sum_{\nu=2}^{+\infty} Q_{\nu}(\zeta, tX) \right\| \le (1 - t^2)^{1/2},$$

for all linear isometries $X: \mathcal{R} \to \mathcal{H}$. Since 0 < t < 1, the function $Z \to Q_0(\zeta) + \sum_{\nu=2}^{+\infty} Q_{\nu}(\zeta, tZ)$ is holomorphic in a neighbourhood of \overline{B} . By Proposition 2 of [7] and Proposition 2 of [2], the set of all linear isometries $\mathcal{R} \to \mathcal{H}$ is stable. Thus, Harris' maximum principle [2, Theorem 9] entails that (15) holds for all $X \in \overline{B}$ and all $t \in (0, 1)$, implying that

(16)
$$Q_0(\zeta) + \sum_{\nu=2}^{+\infty} Q_{\nu}(\zeta, X) = 0,$$

and therefore

(17)
$$f(\zeta, X) = d_2 f(0, 0) X$$

for all $\zeta \in A$ and all $X \in B$.

That proves the part of the theorem stated in n. 1, concerning the Cartan factors of type one $\boldsymbol{\varepsilon} = \boldsymbol{\mathscr{L}}(\boldsymbol{\mathscr{K}}, \boldsymbol{\mathscr{K}})$ and $\boldsymbol{\varepsilon}' = \boldsymbol{\mathscr{L}}(\boldsymbol{\mathscr{K}}, \boldsymbol{\mathscr{K}}')$.

It is easily seen that the conclusion of the theorem does not always hold when $\boldsymbol{\varepsilon} = \mathcal{L}(\mathcal{H}', \mathcal{H})$ and $\boldsymbol{\varepsilon}' = \mathcal{L}(\mathcal{H}, \mathcal{H}')$, \mathcal{H}' being a finite dimensional Hilbert space with $\dim_{\mathbb{C}} \mathcal{H} \leq \dim_{\mathbb{C}} \mathcal{H}'$. A simple example is given by $\mathcal{H} = \mathcal{H} = \mathbb{C}$, $\mathcal{H}' = \mathbb{C}^2$ (endowed with the euclidean metric). Let X'_1 , X'_2 be two vectors in \mathcal{H}' , with $||X'_1|| = ||X'_2|| = 1$, $(X'_1 | X'_2) = 0$, and – choosing A to be the open unit disc Δ of \mathbb{C} – let $f \in \text{Hol}(\Delta \times \Delta, B')$ be the function whose value at $(\zeta, z) \in \Delta \times \Delta$ is the linear map $(x^1, x^2) \rightarrow z(x^1X'_1 + \zeta x^2X'_2)$ of \mathbb{C}^2 into \mathcal{H}' . For every $\zeta \in \Delta, f(\zeta, \cdot) \in \text{Hol}(\Delta, B')$ is a complex geodesic for $c_{B'}$, and therefore $f(\zeta, \cdot)$, which depends effectively on $\zeta \in \Delta$, is a holomorphic isometry of Δ into B'.

4. Given a complex Hilbert space \mathcal{H}' with $\dim_{\mathbb{C}} \mathcal{H}' > 1$, consider the complex Banach space $\mathcal{L}(\mathcal{H}')$ of all bounded linear operators on \mathcal{H}' , and let a closed linear subspace \mathcal{E}' of $\mathcal{L}(\mathcal{H}')$ be a Cartan factor of type four [2, 8]. Let B' be the open unit ball of \mathcal{E}' . This latter space is endowed with a Hilbert space structure defined by a positive-definite inner product (|) whose associated norm || || is equivalent to the uniform operator norm ||| |||. More specifically [2]

(18)
$$(1/2) |||X'|||^2 \le ||X'||^2 \le |||X'|||^2$$
 for all $X' \in \mathcal{E}'$.

A complete spin system $H' = \{U'_{\mu} : \mu \in M\}$ in \mathcal{E}' is an orthonormal basis of \mathcal{E}' , whose elements U'_{μ} are self-adjoint, unitary operators on \mathcal{H}' – called spin-operators on \mathcal{H}' – such that $U'_{\mu_1} \circ U'_{\mu_2} + U'_{\mu_2} \circ U'_{\mu_1} = 2\delta_{\mu_1\mu_2}I$ $(\mu_1, \mu_2 \in M)$.

Every $X' \in \mathcal{E}'$ is represented, in terms of H', by the Fourier series expansion

$$X' = \sum_{\mu \in M} (X' \,|\, U'_{\mu}) \,U'_{\mu} \,.$$

If $\emptyset \neq M_0 \subset M$, the map $P' \colon \mathcal{E}' \to \mathcal{E}'$ defined by

$$P'X' = \sum_{\mu \in M_0} (X' | U'_{\mu}) U'_{\mu}$$

is an orthogonal projector on the Hilbert space \mathcal{E}' .

The set H' is the family of all real (= complex) extreme points of B'. Since \mathcal{E}' is reflexive, the norm of P' as a linear operator in the Banach space (\mathcal{E}' , $\|\| \|\|$), satisfies (11).

Let \mathcal{H} be a complex Hilbert space and let a closed linear subspace \mathcal{E} of $\mathcal{L}(\mathcal{H})$ be a Cartan factor of type four. Let B be the open unit ball of \mathcal{E} and let $f \in \text{Hol}(A \times B, B')$ be such that $f(\zeta_0, \cdot) \in \text{Iso}(B, B')$ at some $\zeta_0 \in A$ and therefore – by Proposition 1 – at all $\zeta \in A$. Since B' is homogeneous, there is no restriction in assuming f(0, 0) = 0. As before, that implies that $d_2 f(0, 0)$ is a linear isometry of \mathcal{E} into \mathcal{E}' for the norm $\|\|\|\|$. By theorem I and by the Remark in [8], there exists a constant $a \in \mathbb{C}$, with |a| = 1, such that $ad_2 f(0, 0)$ is a real linear isometry of the Hilbert space \mathcal{E} into the Hilbert space \mathcal{E}' . Thus, if $\{U_{\mu}: \mu \in M_0\}$ is a complete spin system in \mathcal{E} , then $\{ad_2 f(0, 0) U_{\mu}: \mu \in M\}$ is a spin system in \mathcal{E}' . Thus there is a complete spin system $\{U'_{\mu}: \mu \in M\}$ containing $\{ad_2 f(0, 0) U_{\mu}: \mu \in M_0\}$ as a subset. The closed linear span of this subset is the image $\mathcal{F}' = d_2 f(0, 0) \mathcal{E}$. Thus the above argument shows that there is a projector P' whose range is \mathcal{F}' and which satisfies (11) and therefore also (2). Hence all the hypotheses of Lemma 2 are fulfilled, and (8) holds.

Since the orthogonal projectors P' and I - P' are orthogonal to each other with respect to the Hilbert space structure of \mathcal{E}' , then (6) yields

(19)
$$(I - P')Q_{\nu}(\zeta, X) = Q_{\nu}(\zeta, X) \quad (\zeta \in A, X \in B, \nu = 0, 2, 3, ...).$$

By (18), $||f(\zeta, X)|| \leq 1$, and that is equivalent to

(20)
$$||d_2 f(0, 0)X||^2 + ||Q_0(\zeta) + \sum_{\nu=2}^{+\infty} Q_{\nu}(\zeta, X)||^2 \le 1$$
,

because, by (19), $d_2 f(0, 0) = P' d_2 f(0, 0)$ is orthogonal to $Q_{\nu}(\zeta, X)$ for $\nu = 0, 2, 3, \dots$. Since $||d_2 f(0, 0)X|| = ||X||$ for all $X \in \mathcal{E}$, (20) yields

$$\left\| Q_0(\zeta) + \sum_{\nu=2}^{+\infty} Q_{\nu}(\zeta, X) \right\|^2 \le 1 - \|X\|^2$$

for all $X \in B$ and all $\zeta \in A$. This latter inequality is satisfied when X = tZ, where 0 < t < 1 and Z is any spin-operator on $\boldsymbol{\varepsilon}$. Since the set of all spin-operators coincides with the set H of all real (= complex) extreme points of \overline{B} and the set H is stable, L. A. Harris' maximum principle implies, as at the end of n. 3, that (16) and (17) hold. That completes the proof of the theorem stated in n. 1.

References

- [1] T. FRANZONI E. VESENTINI, Holomorphic maps and invariant distances. North Holland, Amsterdam 1980.
- [2] L. A. HARRIS, Bounded symmetric domains in infinite dimensional spaces. Lecture notes in mathematics, n. 634. Springer-Verlag, Berlin 1974, 13-40.

- [3] M. JARNICKI P. PFLUG, Invariant distances and metrics in complex analysis. de Gruyter, Berlin 1993.
- [4] H. J. REIFFEN, Die Carathéodorische Distanz und ihre zugehörige Differentialmetrik. Math. Ann., 161, 1965, 315-324.
- [5] E. VESENTINI, Holomorphic isometries. Lecture notes in mathematics, n. 1277. Springer-Verlag, Berlin 1987, 290-302.
- [6] E. VESENTINI, Holomorphic semigroups of holomorphic isometries. Atti Acc. Lincei Rend fis., s. 8, 82, 1988, 203-217.
- [7] E. VESENTINI, Holomorphic isometries of Cartan domains of type one. Rend. Mat. Acc. Lincei, s. 9, 2, 1991, 65-72.
- [8] E. VESENTINI, Holomorphic isometries of Cartan domains of type four. Rend. Mat. Acc. Lincei, s. 9, 3, 1992, 287-294.
- [9] E. VESENTINI, Semigroups of holomorphic isometries. In: Complex potential theory. Kluwer Academic Publisher, Dordrecht, to appear.

Scuola Normale Superiore Piazza dei Cavalieri, 7 - 56126 PISA