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Anal is i matemat ica . — Evolution Problems and Minimizing Movements. N o t a d i 

U G O G I A N A Z Z A , M A S S I M O G O B B I N O e G I U S E P P E S A V A R è , p r e s e n t a t a ! * ) da l Socio 

E. De Giorgi. 

ABSTRACT. — We recall the definition of Minimizing Movements, suggested by E. De Giorgi, and we 
consider some applications to evolution problems. With regards to ordinary differential equations, we 
prove in particular a generalization of maximal slope curves theory to arbitrary metric spaces. On the other 
hand we present a unifying framework in which some recent conjectures about partial differential equations 
can be treated and solved. At the end we consider some open problems. 

KEY WORDS: Minimizing Movements; Variational evolution problems; Gradient flow; Maximal slope. 

RIASSUNTO. — Problemi di Evoluzione e Movimenti Minimizzanti. Richiamiamo la definizione di Movi
menti Minimizzanti, proposta da E. De Giorgi, e consideriamo alcune applicazioni a problemi d'evoluzione. 
Nel caso delle equazioni differenziali ordinarie si dimostra, in particolare, una generalizzazione a spazi me
trici arbitrari della teoria delle linee di massima pendenza. Per le equazioni a derivate parziali è presentato 
un quadro teorico astratto in cui considerare e risolvere alcune congetture recentemente suggerite. Infine 
esaminiamo alcuni problemi aperti. 

1. INTRODUCTION 

When one considers the usual evolution equation of variational type 

(1.1) «'(*) + V/[«(f)] = 0*; «(0) = u0 

where/is a regular function defined, for example, on a Hilbert space H, a possible ap
proach to approximate the solution to (1.1) is to choose a time parameter À > 0 and 
find a sequence {uk}keN which is recursively defined as follows 

(1.2) I *° = U° ; 

[ Uk + i realizes the minimum of fx(v) = (X/2)\\v - ul ||# +f(v). 

The values ul are strictly related to the time discretization of (1.1) by a backward Euler 
scheme of step 1/À; as À —> + <*> one must study the convergence in H of the piece-
wise constant functions ux{t)=u^ which assume the value ul on the interval 
[*/*,(*+ 1)/À[. 

This kind of procedure is considered, for example, in [1] for maximal monotone op
erators relative to Hilbert spaces and has then been extended by Crandall and others to 
accretive ones in Banach spaces (see [2,3]) and in [7-9,12] to arbitrary metric 
spaces. 

As a wide generalization of these methods and other similar ones, De Giorgi [5,6] 
recently suggested the notion of minimizing movement, which applies to many problems 
in the calculus of variations, differential equations, geometric measure theory, etc. 

In a word the minimizing movement is defined as the set of pointwise limits of se-

(*) Nella seduta del 16 giugno 1994. 
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quences of minimizers to an iterated variational problem for a proper functional. As 
typical examples the steepest descent method, the approximation of parabolic equa
tions and the flow by mean curvature find here a natural framework in which they can 
be treated under a unifying point of view. 

Needless to say, the link with P-convergence and penalization methods is clearly ev
ident and can be traced back, for example, to [3,4]. What is interesting is that the mini
mizing movement, if it exists, solves a «differential equation» in a sense that has to be 
specified each time and this equation is unique. 

Let us finally give the exact definition. In the following R will be the extended real 
line (R = RU { — °°, + oo }) and S a topological space. 

DEFINITION 1.1. Let F: ] 1, + °°[XZ X S X S —> R and u: R-^S;we say that u is a 
minimizing movement associated to F and S and we write u e MM(F, S) if there exists 
w:]l, + oo [ x Z - » £ such that for any t eR 

(1.3) lim w(X,[Xt]) =u(t) 

and for any A e ] 1, + °o [, k e.Z 

(1.4) F(A, k, w(X, k + 1), w(X, k)) = min F(X, kys, w{X, k)). 
s eS 

Some examples considered in [6] suggest the possibility that MM(F, S) = 0 and 
motivate the following generalization. 

DEFINITION 1.2. We say that a function u: R—>S is a generalized minimizing move
ment associated to F and S and we write u G GMM(F, S) if there exists a sequence 
{^tiieN such that lim Xt• = + o° and a sequence {w;},- 6 N of functions w^: Z —> 5 such 
that 

(1.5) 3/'o > 1 : F(\i,ky W;(k+ 1), Wj{k)) = min F(X;,k,s, w{{k)) Vk G Z , V / > / 0 , 
s eS 

(1.6) lim Wi{lXif])=u(t) . VteR. 
/—>•+• 00 • 

In the following we consider some problems proposed in [6] relative to evolutions 
problems in Rn and in infinite dimensional spaces. The proofs will be given in forthcom
ing papers [11, and M. Gobbino, work in preparation]. (To see a slightly different set
ting where minimizing movements also find a natural application, consider [10] where 
differential inclusions are studied). 

2. MINIMIZING MOVEMENTS AND ORDINARY DIFFERENTIAL EQUATIONS 

Let S = Rn, let x0 G Rn and let f:Rn^R be a function. Let us consider the 
functional: 

f l x -Xo l 2 i f £ < 0 , 

[f(x) + X\x-y\2 if k^O. 

T£feIAp(RH)nC1'1(R?), then: 
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- MM(F, Rn ) = GMM(F, Rn ) * 0; 

- u e MM(F, Rn ) if and only if u is the unique solution of the following 
problem: 

fu(t)=x0 \ f r ^ 0 , 
( 2 ' 2 ) { 2<&/<& = - V/(«(/)) V* > 0 . 

For gradient flow type equations in 1?" De Giorgi (see [6]) pointed out that if we 
only assume/G C1(Rn ), then in general not all the solutions of (2.2) are elements of 
GMM(F, Rn ). Neverthless every solution of (2.2) is a minimizing movement relative to 
a functional F, obtained adding a suitable small perturbation to the original functional 
F. To be precise, let us give the following. 

DEFINITION 2.1. Let S and F be as in Definition 1.1. We say that the functional 
F:] l , + o o [ x Z x S x S — > 2 ? is a perturbation of Y, and we write F G &{F\ if 

(2.3) lim A-sup \F{Xyk>x,y) - F(X,k,x,y)\ = 0 . 
A ^ ° ° x,y,k 

If F is the functional defined in (2.1), we will denote by #b (F) the set of functionals 
F G ^ ( F ) such that F(X,k,x,y) = \x - x0\

2 for k < 0. 

THEOREM 2.2. L^ F be the functional defined in (2.1) with f e. C1 (Rn). Let us consid
er the following sets: 

A:={ue C°(R, Rn): u is a solution of(2.2)} , J3 := U{GMM(F, R*): F G &0(F)}. 

ThenA=B. 

REMARK 2.3. Theorem 2.2 is true even if we replace GMM by MM in the defini
tion of the set JB. It is also possible to find F^e^oiF) such that A=B = 
= GMM(F*,IT). 

Let us now collect our results about minimizing movements in Rn. All the examples 
presented in the first section of [6], and inclusion A çB of Theorem 2.2, are particular 
cases of the following theorems. 

THEOREM 2.4. Let (X, d) be a locally compact metric space, and let x0 e X. Let F be a 
functional as in Definition 1A such that F(X,k,x,y) = d(x,x0)fork < 0. Let M eRbe a 
costant such that for each J G X , A G ] 1 , +<X>[? k ^ 0, there exists x G X such that: 

d(x,y) ^ M/A, F(X,k,x,y) = min F(X,k,s,y). 
s eX 

Then: 

GMM(F,X)*0; 

there exists u G GMM(F, X) such that u G Lip (R, X) and \ip(u) ^ M. 

THEOREM 2.5. Let X = Rn, x0 s X, and let F be a functional as in Definition 1.1 such 
that F(A, k,x,y) = d(x, x0 ) for k < 0. Let us assume that there exist a constant M eR, a 
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continuous function $: Rn X Rn -> Rn and a function p: Rn X Rn X ]1, + oo [_> Rn such 
that: 

17/, 7 N . DM 7 X f ^ - y = $ ( ^ y ) A + P ( ^ ' y » ^ ) > 
F(A,£,x,r) = minF(A,£,.y,;y)=^ 

-* jlx-^M/A; 
for each compact set KcRn X Rn lim A* sup \p(x,y, A)| = 0. 

Then: * ^ °° ^ e K 

GMM(F,Jr )*0; 

z/ G GMM(F, Rn)=$>u is a solution of the following problem: 

(u{t) = x0 V/ ^ 0 , 

[du/dt = <P(u(t), u(t)) Vt > 0 . 

THEOREM 2.6. fo /fe ^^6" hypotheses of Theorem 2.5, let us assume that the function 
y^>$(y,y) is locally lipschitz continuous. Then: 

MM(F, Rn ) = GMM(F, Rn)*0; 

u e MM(F, Rn)<f>u is the unique solution of problem (2.4). 

REMARK 2.7. With only slight modifications, it is possible to include nonautono-
mous equations in the preceding theorems. 

THEOREM 2.8. Let (X,d) be a metric space, x 0 e X , f.X^R. Consider the 
functional 

\d2{x,x0) i£k<0, 
F(X.kyx.y) = I 

\f{x) + \d2{x,y) if k&O. 

Let us assume that: 

f is lower semicontinuous; 

f(*o)zR; 

for each y e X, and for any R> 0,c eR, the set B(y, R) D {x e X:f(x) ^ c} is rel
atively compact in X; 

there exists y0 G X such that: inf > — 00 . 
* 6* l+d2{xyyQ) 

Then: 

(/) G M M ( F , X ) * 0 ; 

(/'/) u G GMM(F, X)=>& is locally l/2-Hòlder continuous. 

The preceding theorem provides a generalization of gradient flow type equations 
to arbitrary metric spaces. Similar techniques were introduced in [7] in order 
to prove the existence of «maximal slope curves» for ^-convex functions defined 
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in Hilbert spaces. For the theory of «maximal slope curves» and other definitions 
of «evolution curves of variational type» the reader is referred to [7] and [12]. 

In the hypotheses of Theorem 2.8, it is in general not true that elements of 
GMM(F, X) are maximal slope curves in the sense of [7] (see also the discussion at the 
end of section 4). Furthermore examples can be provided, in which the following two 
properties, trivial for maximal slope curves, do not hold: 

PL if u E GMM(F, X), then the function fou is non-increasing; 

P2. «semigroup property»: combining a flow from t = 0 to t = 7\ with one from 
t = 7\ to t = T2 yields a flow from t = 0 to t = T2. 

3. MINIMIZING MOVEMENTS AND PARTIAL DIFFERENTIAL EQUATIONS 

In order to give a unifying setting to some conjectures about parabolic equations 
and minimizing movements suggested in [6], we introduce the following abstract 
framework (more details and the proofs will be given in [11]). 

Precisely we consider 

(3.1) 

(3.2) 

(3.3) 

V Hilbert space with norm || • ||, 

V its dual, (•, •) the duality pairing, 

<p: V-^R U { + 0 0} proper, lower semicontinuous, convex, 

D(<f>) its domain, d$ its subdifferential, <p* its conjugate. 

a(*, •)> b(% *): V X 1/—>R continuous bilinear forms 

to which the linear continuous operators A,B: V^V are associated. 

Moreover, a(', •) is symmetric and the associated quadratic form is positive: a(u,v) = 
= a(v, u); a{u, u) ^ 0 V&, v G V. We can then think to the following problem. 

PROBLEM P. Let u0eV be given and consider 

||p — u01| if k ^ 0 , 
(3.4) F(\yk,vyw) = . . 

Ul/2)a(v,v) + b(v, w) + (l/X)<f>[X(v— w)] otherwise . 

We want to find conditions on a, b, $, u0 such that there exists u: R —> V with u G 
G MM(F, V) and 

(3.5) 

ueC°(R,V)r)ACloc(10, + » [ ; y ) , 

u(t) =uQ V/ ^ 0 , 

0ei4*+JB« + a # « ' ) a.e. in ]0, +oo[. 

The first two results concern the symmetric case, i.e. b = 0; when #(*,•) is coercive 
on V we can apply the theory developped in [1] to our problem via a duality argument 
and we can prove the following 
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THEOREM 3.1. If #(••,•) is coercive on V and —Au0 e D(<p* ) Problem P admits a 
unique solution u that satisfies (3.5) and u e Wfcc

 + °° (]0, + oo [; F). Moreover, if we define 
v 

$ <w the function v*-^<p(—v), u is the solution to 
f «(0) =«o > 

(3.6) 
[u' + df* (Au) 90 a.e. i n ] 0 , +oo[ 

##J belongs to MM(F*, V), w^ére 

NI*-«o i l i f * ^ o , 
(3.7) F*(À,£,z; ,^) = v, 

y(\/2)a(v — wyv — w) '• + <£,f C/4#) otherwise . 
When #(•, •) is not coercive (which is the specific case involved by the conjectures 

we considered) we suppose that a uniformly convex Banach space W is given, which is 
compatible with V in the sense that 

V and W are both continuously embedded in a Hausdorff topological space «̂  

V PI W is dense in V and in W. 

ya(uyu) + \\u\\w must be an equivalent norm for VHW, i.e. 

(3.8) 3/ , a/ > 0: V*(*> «) + / | | * L ^ a / I N v > Va e V H W 

and $(«) is of the form \\u\\^w + <p(u), ueVHW with 

(3.9) /3 e ] l , + oo [, ^ : V n W ^ R U { + oo } proper, cwwoc, /J.<\ 

THEOREM 3.2. If (3.8), (3.9) hold true, then V#0 e V Problem P Zw # unique solution 
u. Moreover, VT > 0 {if 0 e 3^(0) we az# c^oare T = + oo ), 

j « e ^ / ( ] 0 , + œ [ ; y ) , * ' e I / ( 0 , . T ; W ) , 

tf«J « satisfies (3.6) too. 

Finally we consider the non symmetric case: 

THEOREM 3.3. Ifb^O, referring to the hypotheses of Theorem 3.2, we suppose that W 
is a Hilbert space which contains V, b can be extended to a continuous bilinear form on 
V X W^> R and fi = 2. Then Problem P admits a unique solution u, which belongs also to 

H 1 (0 ,T;W r ) v r > o . 

With regards to De Giorgia conjectures, the first one can be obtained choosing 
b = 0, V = H1 (Rn ), W = L^(Rn ) with/3 e ] l , 2] and 0 = 0; Theorem 3.2 ensures that 
u satisfies, in the sense specified above, 

¥r =Au in JT x]0, + » [ , 
ot 

on RnX {0} 

and - z k E l / ( l T x ] 0 , + oo [), du/dteL? (Rn X]0, + oo [). 

2 

u = 

du 
dt 

--u0 
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A further application of the same theorem to the case b = 0, V = H1 (Rn), W = 
= L2 (Rn ),<p = IK with K = {u ^ 0}, gives a positive answer to the third conjecture; for 
a.e. t > 0, Au will be a Radon measure with positive part in L2{Rn) and u solves 

du/dt=[Au]+ , t>0, 

u(0) = u0. 

Finally, if 0 = 0, V = H1(Rn), W = L2{Rn) and 

du 
biu.v)— 2 \aj — vdx 

with at e L °° ( JT ) we have 

at i=\ ox; 

u(0)=u0. 

Maximal monotone operators and convexity theory associated to the ideas of 
abstract numerical analysis are basic tools of the proofs, which are not completely stan
dard due to the lack of coerciveness for a(', •) and to the strong nonlinearity for (p. 

4. OPEN PROBLEMS 

A number of open problems can be formulated. As to problems discussed in sec
tion 3 an interesting point is to determine the highest possible regularity of the solution 
u G MM(F, V). 

Another direction could consists in unifying the differential approaches used in 
sect. 2 and 3. Just to give an example, let us consider the functional 

(4.1) F(X,k,v,w) 

\v — «o||, k •̂ 0 , 

l[\Vxv\2 + X\v-w\2-\smv\3/2e-ìxì2]dx otherwise; 

Rn 

an open problem is the study of the perturbations that must be added to it in order to 
recover all the solutions of the Cauchy problem (but nothing more). 

Moreover a functional like (4.1) could be further complicated in order to consider 
the associated variational inequality of evolution on a proper convex set K. 

Unless special regularity is asked on the functional, the GMM(F; V) doesn't satisfy 
any kind of semigroup property (see sect. 2); how little regularity has to be asked, isn't 
precisely known and only few special counterexamples have been shown by now. 

Finally, it would be interesting to see if all the machinery developped so far can be 
applied to geometric measure theory problems and deduce, for example, some results 
about mean curvature flow in low dimensions spaces. 
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