Rendiconti Lincei Matematica e Applicazioni

Emmanuele DiBenedetto, Vincenzo Vespri
 Continuity for bounded solutions of multiphase Stefan problem

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Serie 9, Vol. 5 (1994), n.4, p. 297-302.

Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLIN_1994_9_5_4_297_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> http://www.bdim.eu/

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Accademia Nazionale dei Lincei, 1994.

Equazioni a derivate parziali. - Continuity for bounded solutions of multiphase Stefan problem. Nota di Emmanuele DiBenedetto e Vincenzo Vespri, presentata (*) dal Socio E. Magenes.

ABSTRACT. - We establish the continuity of bounded local solutions of the equation $\beta(u)_{t}=\Delta u$. Here β is any coercive maximal monotone graph in $\mathbb{R} \times \mathbb{R}$, bounded for bounded values of its argument. The multiphase Stefan problem and the Buckley-Leverett model of two immiscible fluids in a porous medium give rise to such singular equations.

Key words: Singular parabolic equations; Regularity; Stefan problem; Maximal monotone graphs.
Rassunto. - Continuità per soluzioni limitate del problema di Stefan multifase. In questa Nota si dimostra la continuità delle soluzioni locali limitate dell'equazione $\beta(u)_{t}=\Delta u$, dove β è un qualsiasi grafo massimale monotono e coercivo in $\mathbb{R} \times \mathbb{R}$, che si mantiene limitato per valori limitati del suo argomento. A questo contesto appartengono sia il problema di Stefan multifase che il modello di Buckley-Leverett di due fluidi immiscibili in un mezzo poroso.

1. Introduction

Consider the singular parabolic equation

$$
\begin{equation*}
\beta(u)_{t}-\Delta u=0 \quad \text { in } \mathscr{O}^{\prime}\left(\Omega_{T}\right) ; \quad u \in L_{\text {loc }}^{2}\left(0, T ; W_{\text {loc }}^{1,2}(\Omega)\right) . \tag{1}
\end{equation*}
$$

Here Ω is a domain in \boldsymbol{R}^{N} and $\Omega_{T} \equiv \Omega \times(0, T), T>0$. In (1), β is any coercive maximal monotone graph in $\mathbb{R} \times \mathbb{R}$ which remains bounded if its argument remains bounded. A typical example is

$$
\beta(s) \equiv \begin{cases}2+s & \text { if } s>1 \tag{2}\\ {[1,2]} & \text { if } s=1 \\ 1+s & \text { if } s>0, \\ {[0,1]} & \text { if } s=0 \\ s & \text { if } s<0\end{cases}
$$

The equation (1), with such a choice of $\beta(\cdot)$ is taken as a model for multiple transitions of phases. More generally $\beta(\cdot)$ might exhibit several jumps (even infinitely many) or, might become «vertical» several times at any rate. We only require that β satisfies

$$
w_{1}-w_{2} \geqslant \gamma_{0}\left(u_{1}-u_{2}\right), \quad \forall w_{i} \in \beta\left(u_{i}\right), \quad i=1,2,
$$

for some positive constant γ_{0}. We say that $\beta(\cdot)$ is singular whenever it has a vertical tangent.

In the early ' 80 s several authors investigated the local behaviour of solutions of (1) in the case when $\beta(\cdot)$ exhibits only one «transition of phase» (see for example $[2,4,11,12]$). A summary of these contributions is that weak solutions are continuous, and a modulus of continuity can be computed quantitatively. In
(*) Nella seduta del 16 giugno 1994.
these investigations it is essential that $\beta(\cdot)$ be singular at only one value of its argument.

On the other hand graphs $\beta(\cdot)$ that are singular at multiple points, besides their intrinsic mathematical interest, arise naturally in phenomena of muyltiple transitions of phase. They also arise in the Buckley-Leverett model of two immiscible fluids in a porous medium (see $[1,3,5,8]$). In such a case $\beta(u)$ is a function of the saturation and exhibits two singularities, say at $u=0$ and $u=1$. Near these points, $\beta(\cdot)$ could become vertical exponentially fast or could even exhibit a jump (connate water). For singular equations modelling immiscible fluids, some partial results appear in [5]. It is shown that the saturation is continuous provided that at least one of the two singularities is power-like.

The p.d.e. in (1) is meant weakly, and in the sense of inclusion of graphs.
The main result of this Note is that locally bounded weak solutions of (1) are locally continuous in Ω_{T} and that, in addition, their modulus of continuity can be estimated quantitatively. In what follows we refer to the set of numbers $\left(\gamma_{0}, M, N\right)$ as the data, and for a constant C or γ, or a function $\omega(\cdot)$, we say

$$
C \equiv C(\text { data }), \quad \gamma \equiv \gamma(\text { data }), \quad \omega(\cdot) \equiv \omega_{\mathrm{data}}(\cdot)
$$

if they can be determined a priori only in terms on the indicated quantities.
We assume in addition, that u can be constructed as the limit, in the weak topology of $L_{\text {loc }}^{2}\left(0, T ; W_{\text {loc }}^{1,2}(\Omega)\right)$ of a sequence of local smooth solutions to (1), for smooth $\beta(\cdot)$. This assumption in not restrictive, in view of the available existence theory (see for example $[7,9,10]$) and it is formulated only to justify some of the calculations. We stress however that our estimates, and the modulus of continuity of u depend only upon the data.

Theorem. Let u be a locally bounded weak solution of (1). Then u is continuous in Ω_{T}. Moreover, for every compact subset $\mathcal{K} \subset \subset \Omega_{T}$, there exists a continuous, non negative, increasing function

$$
s \rightarrow \omega_{\text {data }, \mathcal{K}}(s), \quad \omega_{\text {data }, \mathcal{K}}(0)=0,
$$

that can be determined a priori only in terms of the data and the distance from \mathcal{X} to the parabolic boundary of Ω_{T}, such that $\left|u\left(x_{1}, t_{1}\right)-u\left(x_{2}, t_{2}\right)\right| \leqslant \omega_{\text {data, }}\left(\left|x_{1}-x_{2}\right|+\mid t_{1}-\right.$ $\left.-\left.t_{2}\right|^{1 / 2}\right)$, for every pair of points $\left(x_{i}, t_{i}\right) \in \mathcal{K}, i=1,2$.

2. Sketch of the Proof

We will present the main points of the proof of the Theorem referring to [6] for detailed arguments. Let $P \in \Omega_{T}$ be fixed and assume, without loss of generality, that it coincides with the origin. For a positive number ρ, let K_{ρ} denote a cube of wedge 2ρ about the origin of \boldsymbol{R}^{N} and denote by $Q_{\rho} \equiv K_{\rho} \times\left(-\rho^{2}, 0\right)$ the cylinder of «vertex» at the origin, height ρ^{2}, and cross section K_{ρ}. Assume that $Q_{\rho} \subset \Omega_{T}$ and set

$$
\sup _{Q_{p}} u=\mu^{+}, \quad \inf _{Q_{p}} u=\mu^{-}, \quad \omega=\mu^{+}-\mu^{-}=\underset{Q_{p}}{\operatorname{osc}} u
$$

Defining

$$
\omega_{\infty}(P)=\limsup _{\rho \searrow 0}\left(\sup _{Q_{p}} u-\inf _{Q_{p}} u\right)
$$

the solution u of (1) is continuous in P if $\omega_{\infty}=0$. Let $\delta \in(0,1 / 4)$ be a positive parameter, and assume that there exist a time level $\tilde{t} \in\left(-\rho^{2},-\delta^{2} \rho^{2}\right)$, such that

$$
\begin{equation*}
u(x, \tilde{t})<\mu^{+}-(1 / 4) \omega, \quad \forall x \in K_{2 \delta_{p}} . \tag{3}
\end{equation*}
$$

Then there exists a number $\xi \in(0,1)$ such that

$$
\sup _{0} u(x, t)<\mu^{+}-\xi \omega, \quad \text { where } \quad Q_{i \rho} \equiv K_{i \rho} \times\left(-\delta^{2} \rho^{2}, 0\right) .
$$

Adding $\inf _{Q_{i_{p}}} u$ to the left hand side and $-\mu^{-}$to the right hand side of this inequality, gives

$$
\begin{equation*}
\underset{Q_{z_{\rho}}}{\operatorname{osc}} u \leqslant(1-\xi) \underset{Q_{\rho}}{\operatorname{osc}} u \tag{4}
\end{equation*}
$$

Thus, going down from Q_{p} to the smaller cylinder $Q_{\partial_{\rho}}$, the oscillation of u decreases by a factor $(1-\xi)$. Analogously, if for some time level $\tilde{t} \in\left(-\rho^{2},-\delta^{2} \rho^{2}\right)$ there holds
(3) ${ }^{-}$

$$
u(x, \tilde{t})>\mu^{-}+(1 / 4) \omega, \quad \forall x \in K_{2 \delta_{\rho}} .
$$

Then there exists a number $\xi \in(0,1)$ such that $u(x, t)>\mu^{-}+\xi \omega, \forall(x, t) \in Q_{\partial \rho}$. This implies again (4) by a similar calculation. A key feature is that the number ξ depends upon δ but is independent of ω and ρ. Thus, due to the <initial conditions» (3) ${ }^{ \pm}$, solutions of (1) behave like solutions of the heat equation. Roughly speaking, the information (3) ${ }^{ \pm}$on the status of the system at some given time suffices to control the singularity for all later times. To achieve such information we consider cylinders, coaxial with Q_{ρ}, «vertex» at $(0, \widetilde{t})$, and congruent to $Q_{4 \delta \rho}$, i.e., $\left[(0, \widetilde{t})+Q_{4 \dot{\sigma}_{\rho}}\right] \equiv$ $\equiv K_{4 \delta \rho} \times\left(\tilde{t}-16 \delta^{2} \rho^{2}, \tilde{t}\right)$. As the time level \tilde{t} ranges over

$$
\begin{equation*}
\left[-\left(1-16 \delta^{2}\right) \rho^{2},-16 \delta^{2} \rho^{2}\right] \tag{5}
\end{equation*}
$$

the cylinders $\left[(0, \tilde{t})+Q_{4 \dot{\rho}_{\rho}}\right]$ move inside Q_{p} remaining coaxial with it. Suppose that for some \tilde{t} in the range (7), the subset of $\left[(0, \tilde{t})+Q_{4 \delta_{\rho}}\right]$ where u is close to μ^{+}is small, i.e.
$(6)^{+} \quad \operatorname{meas}\left\{(x, t) \in\left[(0, \tilde{t})+Q_{4 i \rho}\right] \mid u(x, t)>\mu^{+}-(1 / 2) \omega\right\} \leqslant \nu\left|Q_{4 \delta \rho}\right|$.
Then $u(x, t)<\mu^{+}-(1 / 4) \omega, \forall(x, t) \in\left[(0, \tilde{t})+Q_{2 \delta_{\rho} \rho}\right]$. Thus, in particular (3) ${ }^{+}$holds. Likewise, if the subset of $\left[(0, \widetilde{t})+Q_{4 \stackrel{\rho}{p}}\right]$ where u is close to μ^{-}is small, i.e.,

$$
\begin{equation*}
\text { meas }\left\{(x, t) \in\left[(0, \tilde{t})+Q_{4 \delta_{\rho} \rho}\right] \mid u(x, t)<\mu^{-}+(1 / 2) \omega\right\}<\nu\left|Q_{4 i \rho}\right| \tag{6}
\end{equation*}
$$

then $u(x, t)>\mu^{-}+(1 / 4) \omega, \forall(x, t) \in\left[(0, \tilde{t})+Q_{2 \delta_{p}}\right]$. Thus, in particular (3)- holds. The number ν can be determined a priori only in terms of the data and ω. The dependence of ν upon ω is due to the singularity of $\beta(\cdot)$.

The unfavorable case is when (6) ${ }^{ \pm}$are both violated for every \tilde{t} in the range (5). Consider any one of such cylinders and keep in mind that the parameter δ is to be chosen. The key observation here is that if $(6)^{ \pm}$are both violated for arbitrarily small δ,
then near the axis of Q_{ρ}, at the time level \tilde{t} there is a relatively large set where u is close to μ^{+}and another relatively large set where the solution is close to μ^{-}. Since δ can be taken to be arbitrarily small, these two sets are arbitrarily close to each other. Therefore the space gradient $D u$ must be large on a relatively large set. Since however $|D u| \in L^{2}\left(Q_{p}\right)$, this creates a contradiction. The technical implementation of this idea is in two stages. First we establish that there exist two cylinders $Q_{\delta^{2} \rho}^{i}, i=1,2$ contained in $\left[(0, \widetilde{t})+Q_{4 \delta_{\rho}}\right]$, such that within $Q_{\delta^{2} \rho}^{1}$ the solution u is above $(1 / 4) \mu^{+}$, and u is below ($1 / 4$) μ^{-}within $Q_{\delta^{2} \rho}^{2}$. Therefore for every pair of points $\left(x_{i}, t_{i}\right) \in Q_{\delta^{2} \rho}^{i}, i=1,2$, $(1 / 4) \omega \leqslant u\left(x_{1}, t_{1}\right)-u\left(x_{2}, t_{2}\right)$. Next, it is possible to locate the two cylinders $Q_{\delta^{2} \rho}^{i}$, $i=1,2$ near the lateral boundary of $\left[(0, \widetilde{t})+Q_{\dot{\delta} \rho}\right]$ and by means of a contour integration we prove that

$$
\begin{equation*}
\delta^{N} \rho^{N} \omega \leqslant \gamma(\omega) \int_{\tilde{t}-\delta^{2} \rho^{2}}^{\tilde{t}} \int_{K_{\delta \rho} \mid K_{\delta^{2}}{ }_{\rho}}|D u|^{2} d x d \tau \tag{7}
\end{equation*}
$$

We observe that the number of disjoint cylinders of the type $\left[(0, \tilde{t})+Q_{\delta_{\rho}}\right]$ is of the order of δ^{-2}. Therefore adding (7) over such boxes, yields

$$
\begin{equation*}
\delta^{N-2} \rho^{N} \omega \leqslant \gamma(\omega) \int_{-\rho^{2}}^{0} \int_{\delta^{2} \rho<\|x\|<\delta \rho}|D u|^{2} d x d \tau \tag{8}
\end{equation*}
$$

Since $\delta \in(0,1)$ can be chosen to arbitrarily small, we conclude from this, that for all $n=1,2, \ldots$,

$$
\begin{equation*}
\delta^{n(N-2)} \rho^{N} \omega \leqslant \gamma(\omega) \int_{-\rho^{2}}^{0} \int_{\delta^{n+1} \rho<\|x\|<\delta^{n} \rho}|D u|^{2} d x d \tau \tag{8}
\end{equation*}
$$

We also observe that for all $N \geqslant 1$,

$$
\begin{equation*}
\iint_{Q_{\rho}}|D u|^{2} d x d \tau \leqslant \operatorname{const} \rho^{N} . \tag{9}
\end{equation*}
$$

3. The case $N=2$

If $N=2$, we add $(8)_{n}$ for $n=1,2, \ldots, n_{0}$. Taking into account (9), we obtain $n_{0} \leqslant$ \leqslant const (ω). It follows that at least one of (3) ${ }^{ \pm}$must hold with δ replaced with $\delta^{n_{0}}$. This implies the continuity Theorem for $N=2$. As a consequence of the proof in the 2-dimensional case, the continuity remains valid for bounded solutions of general quasilinear versions of (1). Specifically, consider weak solutions of $\beta(u)_{t}-\operatorname{div} \boldsymbol{a}(x, t, u, D u)=$ $=b(x, t, u, D u)$, in Ω_{T}, where $\boldsymbol{a}: \Omega_{T} \times \boldsymbol{R}^{3} \rightarrow \boldsymbol{R}^{N}$ and $b: \Omega_{T} \times \boldsymbol{R}^{3} \rightarrow \boldsymbol{R}$ are only assumed to be measurable and satisfying the structure conditions

$$
\left\{\begin{array}{l}
a(x, t, u, D u) \cdot D u \geqslant C_{0}|D u|^{2}-\varphi_{0}(x, t) \tag{10}\\
|a(x, t, u, D u)| \leqslant C_{1}|D u|^{2}+\varphi_{1}(x, t) \\
|b(x, t, u, D u)| \leqslant C_{2}|D u|^{2}+\varphi_{2}(x, t)
\end{array}\right.
$$

for a.e. $(x, t) \in \Omega_{T}$. Here $C_{i}, i=0,1,2$ are given positive constants and $\varphi_{i}, i=$ $=0,1,2$, are given non negative functions defined in Ω_{T} and subject to the conditions

$$
\begin{equation*}
\varphi_{0}, \quad \varphi_{1}^{2}, \quad \varphi_{2} \in L^{q}\left(\Omega_{T}\right), \quad q \in(1, \infty] \tag{11}
\end{equation*}
$$

The same result holds whenever one has information that essentially reduce the number N of dimensions to 1 or 2 . For example the continuity theorem remains valid for radial solutions of (1).

4. The case $N \geqslant 3$

Without loss of generality we may assume that (4 $\left.\delta^{\circ}\right)^{-1}$ is an integer m. We partition the original cube K_{ρ}, up to a set of measure zero, into m^{N} pairwise disjoint subcubes of wedge $8 \delta^{\circ} \rho$ and denote by x_{l} their centres. Then we partition Q_{p}, up to a set of measure zero, into $m^{N} m^{2}$ pairwise disjoint cylinders. If we denote their «vertices» by (x_{l}, t_{b}), these boxes have the form

$$
\begin{equation*}
\left[\left(x_{l}, t_{b}\right)+Q_{4 \delta_{\rho}}\right], \quad l=1,2, \ldots, m^{N}, \quad b=1,2, \ldots, m^{2} . \tag{12}
\end{equation*}
$$

Moreover

$$
\bar{Q}_{p}=\bigcup_{b=1}^{(48)^{-2}} \bigcup_{l=1}^{(40)^{-N}}\left[\left(x_{l}, t_{b}\right)+\bar{Q}_{4 i p}\right]
$$

If neither of $(6)^{ \pm}$holds for any of the boxes $\left[\left(x_{l}, t_{b}\right)+Q_{4 \delta \rho}\right]$ then the analog of (7) must hold for each of them, i.e.,

$$
\delta^{N} \rho^{N} \omega \leqslant \gamma(\omega) \int_{t_{b}-\delta^{2} \rho^{2} \delta^{2} \rho<\left\|x-x_{l}\right\|<\delta_{\rho}}^{t_{b}}|D u|^{2} d x d \tau .
$$

We add these over $l=1,2, \ldots,(4)^{-N}$ and $b=1,2, \ldots,\left(4 \delta^{-2}\right.$ and take into account (9). This gives $\delta^{-2} \leqslant$ const (ω). This is a contradiction for sufficiently small δ, depending upon ω. Thus at least one of $(6)^{ \pm}$must be verified for at least one of the boxes in (12). Assume that (6) holds. Then

$$
\begin{equation*}
u(x, t) \geqslant \mu^{-}+(1 / 4) \omega, \quad \forall(x, t) \in\left[\left(x_{l}, t_{b}\right)+Q_{2 \delta_{\rho}}\right] . \tag{13}
\end{equation*}
$$

If such a box were coaxial with Q_{p}, i.e., if $x_{l} \equiv 0$ then the proof could be concluded as before. The main difficulty is in showing that an estimate similar to (13) actually holds in a box coaxial with the original starting cylinder Q_{p}. This technical fact which we call «sidewise expansion of positivity», is established by introducing a comparison function v. The function v satisfies a suitably rescaled version of (1) in a cylindrical domain with annular cross section $\left\{\partial \rho<\left\|x-x_{l}\right\|<4 \rho\right\} \times\left\{t_{b}, t_{b}+k \delta^{2} \rho^{2}\right\}$ for a sufficienty large k. The function v is prescribed to be μ^{-}on the parabolic boundary of such a domain except for $\left\|x-x_{l}\right\|=\delta \rho$, where we impose

$$
\begin{equation*}
v(x, t)=\mu^{-}+(1 / 4) \omega, \quad \text { for }\left\|x-x_{l}\right\|=\delta \rho \tag{14}
\end{equation*}
$$

The «annular simmetry» of v roughly speaking corresponds to a lowering of the space dimensions as indicated above. This permits us to establish that indeed v is continuous
and bounded below in a sizeable part of its domain of definition. We then establish that $u \geqslant v$ thereby concluding the proof. Such an expansion of positivity is reminiscent of a Harnack-type estimate.

References

[1] H. W. Alt - E. DiBenedetto, Non steady flow of water and oil through inhomogeneous porous media. Ann. Sc. Norm. Sup. Pisa, s. IV, vol. XII, 3, 1985, 335-392.
[2] L. Caffarelli - L. C. Evans, Continuity of the temperature in the two phase Stefan problem. Arch. Rat. Mech. Anal., 81, 1983, 199-220.
[3] G. Chavent - J. Jaffrè, Mathematical Models and Finite Elements Methods for Reservoir Simulation. North-Holland 1986.
[4] E. DiBenedetto, Continuity of weak solutions to certain singular parabolic equations. Ann. Mat. Pura Appl., (4), CXXI, 1982, 131-176.
[5] E. DiBenedetto, The flow of two immiscible fluids through a porous medium: Regularity of the saturation. In: J. L. Ericksen - D. Kinderlherer (eds.), Theory and Applications of Liquid Crystals. IMA, vol. 5, Springer-Verlag, New York 1987, 123-141.
[6] E. DiBenedetto - V. Vespri, On the singular equation $\beta(u)_{t}=\Delta u$. To appear.
[7] A. Friedman, Variational Principles and Free Boundary Problems. Wiley-Interscience, New York 1982.
[8] S. N. Kruzkov - S. M. Sukorjanski, Boundary value problems for systems of equations of two phase porous flow type: statement of the problems, questions of solvability, justification of approximate methods. Mat. Sbornik, 44, 1977, 62-80.
[9] O. A. Ladyzhenskaja - V. A. Solonnikov - N. N. Ural'tzeva, Linear and Quasilinear Equations of Parabolic Type. AMS Transl. Math. Mono, 23, Providence RI 1968.
[10] J. L. Lions, Quelques méthodes de résolutions des problèmes aux limites non linéaires. Dunod GauthiersVillars, Paris 1969.
[11] P. SAchs, The initial and boundary value problem for a class of degenerate parabolic equations. Comm. Part. Diff. Equ., 8, 1983, 693-734.
[12] W. P. Ziemer, Interior and boundary continuity of weak solutions of degenerate parabolic equations. Trans. Amer. Math. Soc., 271 (2), 1982, 733-748.
E. DiBenedetto: Department of Mathematics

Northwestern University Evanston, IL 60208 (U.S.A.)
V. Vespri: Dipartimento di Matematica

Università degli Studi di Pavia
Via Abbiategrasso, 209-27100 PAVIA

