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Meccanica dei solidi. — Kinematic criteria of dynamic shakedown extended to 

nonassociative constitutive laws with saturation nonlinear hardening. Nota di ALBERTO 

CoRiGLiANO, GIULIO MATER e SLAWOMIR PYCKO, presentata!*) dal Corrisp. G. 

Maier. 

ABSTRACT. — The class of elastic-plastic material models considered allows for nonassociativity, non­

linear hardening and saturation in the sense that the static internal variables are constrained by a bounding 

surface described through convex bounding functions. With reference to finite element, generalized vari­

ables discretization in space, two dynamic shakedown criteria are established by a kinematic approach in 

Koiter's sense, based on weak constitutive restrictions and centered on two suitable definitions of admissi­

ble yield cycles. 

KEY WORDS: Plasticity; Structural dynamics; Shakedown; Inadaptation. 

RIASSUNTO. — Teoremi cinematici di adattamento dinamico estesi a leggi costitutive nonassociate con incru­

dimento nonlineare a saturazione. La classe di materiali elastoplastici considerata tiene conto di nonassociati-
vità, incrudimento nonlineare e saturazione (nel senso che le variabili interne statiche sono soggette a vin­
coli convessi che definiscono una superfìcie di delimitazione). Con riferimento ad una discretizzazione spa­
ziale per elementi finiti in variabili generalizzate, si dimostrano due teoremi di adattamento («shakedown») 
dinamico in base ad un approccio cinematico nel senso di Koiter, fondato su ipotesi costitutive alquanto ge­
nerali e su opportune definizioni di cicli plastici ammissibili. 

1. INTRODUCTION 

Considerable attention has been given in the structural mechanics literature to the 

extension of shakedown or adaptation theory e.g. (Kònig [1]), in the direction of more 

and more realistic constitutive elastoplastic models. Such an extension is fostered by 

some important engineering situations. 

For instance, gravity offshore platforms under severe waves transfer variable re­

peated loads to the soil beneath their foundations: shakedown theory of traditional as­

sociative plasticity has been employed in order to assess safety against inadaptation, see 

e.g. [2], but the geomaterials concerned are known to exhibit more or less significant in­

ternal friction and, hence, nonassociativity, which invalidates the classical shakedown 

theory. As a second example from engineering practice, thin cylindrical shells in the 

core of nuclear reactors are prone to incremental collapse (ratchetting) due to fluctuat­

ing thermal loading; the inelastic behaviour of their material (stainless steel) is fairly ac­

curately described by constitutive laws such as Chaboche models (see e.g. [3]) endowed 

with nonlinear kinematic and isotropic hardening with saturation bounds, again outside 

the reach of the classical theory. 

Representative recent contributions to the shakedown theory in the above 

mentioned direction are quoted herein [4-10]. Numerous earlier references to other 

(*) Nella seduta del 16 giugno 1994. 
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key works to the same or related purposes are given in these citations, of which 
only the last two explicitly allowed for nonassociative flow rules. 

The systematic treatment [9] of criteria for dynamic shakedown and of bounds on 
post-adaptation quantities, covered a broad class of nonassociative nonlinear-hardening 
material models. However no allowance was made there for the important constitutive 
feature of hardening saturation, namely for the possible presence of a bounding surface 
in the stress space such that the current yield surface which changes at hardening can­
not pierce it, but can approach it from inside, possibly as some kinematic internal vari­
ables and plastic strains grow without limit (asymptotic saturation). 

In the parallel paper [10] saturation was envisaged and covered by both theoretical 
developments and numerical examples, but concerning only the further generalization 
oi static or safe criteria for shakedown (in the sense of Bleich-Melan, see e.g. [1]), and in 
the quasi-static regime alone (rather than as an extension of their dynamic counterparts 
established first by Ceradini (cp. [11,12]). 

The present paper is intended to provide the extension to saturation hardening in 
the dynamic regime of the kinematic or unsafe inadaptation criteria in the sense of Neal-
Symonds-Koiter (see e.g. [1], or [13]) on the basis of their earlier generalization to dy­
namics developed by Corradi and Maier [14-15] and, more recently, by Comi and 
Corigliano[7]. 

2. PROBLEM FORMULATION 

Reference is made in what follows to a structural model discretized in space by fi­
nite elements, so that its small-deformation dynamic evolution in time t under given ex­
ternal actions is governed by the following relation set: 

(1) Mu(t) + Vu(t) + CT (T{t) = P(t) ; 

(2) Cu(t) = e(t) = e(t)+p(t); 

(3) u{0) = u0, ù{0)=ù0; 

,4, .-£<.>-«.. Z-fE,.,,)-£,„; 
50>T . • 34>T 

(5) p= ~â7(<T'*U' n=-—(°>z)i>> ^ 0 ; 
(6) <p(<r,zK0, q?X = 0; 

(7) T{e, ri) = Ye(e) + Ys(ri), D s= <rTh - t = aTp - xTh & 0 . 

While discussion and comments on the above governing relationships can be found 
in [9] and [10] and will not be duplicated here, the meaning of the above employed 
symbols can be briefly specified as follows. Dots indicate time derivatives, T transposi­
tion. Vectors of n components, n being the number of (nodal) degrees of freedom: u = 
= displacements; P = equivalent loads as input data. Vectors of m components, m de­
noting the number of generalized variables governing, by means of suitable interpola­
tions, the strain and stress field: £, e and/? = total, elastic and plastic strains, respect-
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ively (according to the engineering definition)-, a — stresses. Vectors of y components, y 
being the number of yielding modes throughout the solid, resulting from the general­
ized variables semidiscretization: <f> = plastic potentials; <p = yield functions; k = plas­
tic multipliers. Vectors of / components, / being the number of generalized internal 
variables after modelling in space the relevant fields: r\ = kinematic internal variables; 
X — static internal variables. Matrices: M = inertia (assumed as positive definite and 
symmetric); V = viscous structural damping (symmetric positive semidefinite); C = 
= compatibility operator; E = element stiffnesses (block-diagonal symmetric, positive 
definite). 

Scalars: We = recoverable elastic energy; Ys = energy stored at the microscale due 
to inelastic rearrangements; Y = Helmholtz free energy; D = dissipated energy (total, 
i.e. cumulative in space and time). 

The discretization in space is meant to result from a multifield, variationally consist­
ent modelling, such that all time-dependent vectors concern the whole aggregate of 
finite elements and contain generalized variables in Prager sense, occurring in work-
conjugate pairs and preserving the dot product, (cf. e.g. [16-17]). 

As for the mechanical meaning of the preceding relations, eqs. (1), (2), and (3) ex­
press dynamic equilibrium, geometric compatibility and initial conditions, respectively; 
eqs. (4) introduce the two constitutive energy potentials; eqs. (5) describe evolution 
laws; eqs. (6) define the changeable elastic domains in the stress space a (or the fixed 
domain in the augmented space <r, x) a n d the plastic flow rule; inequality [lb) expresses 
the usual thermodynamic^ requirement in the form of positive mechanical dissipation. 

The constitutive setting materialized by eqs. (4) to (7) represents a broad class of 
constitutive laws which can be referred to, in the jargon of plasticity, as generalized non­
standard elastic-plastic material. 

An elastic-plastic dynamic system is said to shakedown under an assigned history of 
external actions if, and only if, a suitable overall cumulative measure of the yielding 
processes is bounded in time. In the present context shakedown can be characterized 
formally by the condition: 

(8) lim 
/-

D(t) = j(<rTp-xTh)d^< 
0 

The contrary event or inadaptation, to be avoided in most engineering situations, 
implies either unbounded ( lim ||«U)|| = °°) or bounded changes of configuration, 
namely: i.e. either incremental collapse (ratchetting) or alternating plasticity (low cycle 
fatigue), respectively. 

3. CONSTITUTIVE HYPOTHESES AND DEFINITIONS 

While only sake of brevity dictated to ignore imposed strains and displacements in 
the preceding formulation, the assumptions which follow are weak constitutive restric­
tions intended to make the derivation of shakedown criteria possible. 
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(a) All yield functions <p and plastic potentials <£> are convex and differentiable. 

(b) The locked-in strain energy Ys(t]) is convex. This hypothesis can be shown to 
entail non softening behaviour (i.e. either positive hardening or perfect plasticity), but not 
necessarily material stability in Drucker's sense. In fact, nonassociativity can still make the 
second-order work negative for some incremental path (see e.g. [18,19]). 

(c) Having set <ï>(0, 0) = <p(0, 0), without loss of generality since the plastic po­
tentials are defined to within additive constants, the following assumption is made [10]. 

For each a yield mode separately (a = 1, ..., na), the plastic potential <Pa over the 
a portion of the yield locus is bounded from below, i.e. there is a finite constant Ba 

such that: 

(9) Ba = min $ a , subject to : 

(10) 9a(°,z) = 0; Vp(<r,z)^0 V/3 * a ; GJ%) ^ 0. 

In the above eq. (10) Ga are bounding functions which will be defined below. 
As a geometrical interpretation of eqs. (9) and (10), vector B is such that the 

inequality 

(11) 4>((T,x)-B^0 

defines, in the augmented space (7, / , the domain Q (reduced domain) which is, loosely 
speaking, the «largest» among the convex domains represented by eq. (11) with vari­
able B and contained in the yield domain q> ^ 0. The concept of reduced domain Q, in­
troduced in [20] for nonassociative perfect plasticity, has recently been adopted 
in [9,10]. 

Finally, let us focus on the notion of saturation which is central to the present 
purposes. 

The hardening behaviour is governed by the internal variable potential Ys and plas­
tic potentials 0 through eqs. (4b) and (5b). Either as a consequence of this depen­
dence and of the properties of Ys and 0 or as an independent additional constitutive 
requirement, it is assumed henceforth that the static internal variables are constrained 
to belong to an admissible domain described by the inequality: 

(12) G(x) ^ 0 

where vector G collects the bounding functions Ga(oc = 1, ...,na) which are assumed to 
be convex and differentiable. Hardening saturation occurs when % approaches the 
boundary of the admissible domain (12) and is called asymptotic when, simultaneously, 
some kinematic internal variable tends to infinity. For instance, the saturation envis­
aged by Chaboche model adopted in [10] is asymptotic, the one in the overlay model 
proposed by Stein et al. [21] is not. 

The main objective pursued in what follows is to introduce the new constitutive fea­
ture represented by saturation with respect to the convex admissible domain (12), in an 
extended shakedown theory based on the notion of admissible cycles. To this aim, in 
view of subsequent developments (sections 4-5), two kinds of cycles are defined 
below. 
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(a) We will call admissible plastic cycle of kind 9, in symbols p9(t), i\9{t) a ficti­
tious yielding process in which the flow rule is associated to the yield functions <p (not to 
the plastic potentials 0 as in the case of real material), i.e.: 

(13) ^ = ^ X > * ? = ~ l k k ' ^ ° ' (P^°y (pT'k = 0 

and also the following relations are complied with over a time interval [^ ,t2\x denot­
ing a vector of time-independent static internal variables and A\i a vector of plastic mul­
tipliers concerning the internal variables: 

h. 
(14) %=^9(t)dt = CAu9; 

(15) Ar\9=yr\9(t)dt = dG1 

4P; 
X 

(16) An^O, G(x)^0, GT(x)Afi = 0. 

{b) Admissible plastic cycle of kind $, in symbols/>$ U), %> (/), will be the denomi­
nation of fictitious yielding processes characterized as in definition (a) but using sub­
script $ instead of 9 and replacing vector <p by O — B in eqs. (13)-(16). 

For both kinds {a) and (b) of admissible cycles, we define the fictitious dissipations 
(dissipated powers), respectively, by the relations: 

(17) D? = o7pP9-x£%, D*=alp$-X$m. 
In each of these fictitious yielding processes obeying Drucker's postulate, the dissi­

pation is uniquely defined by the rates of plastic strains and kinematic internal variables 
(even if stresses and static internal variables are not) by virtue of Hill's maximum 
principle. 

In sections 4 and 5 use will be made of the following quantities concerning the 
structural behaviour of the structure supposed to be incapable of any plastic 
yielding: 

- elasto-dynamic stress response 0E to the given external actions P(t) with ho­
mogeneous initial conditions; 

- free vibration stress response 3^ due to suitably chosen, generally fictitious 
(capped symbols) initial conditions in the absence of external loads; 

- self-equilibrated stresses p constant in time, which can be interpreted as the 
elastostatic self-stress response to a time-independent plastic strain distribution ps. 

4 . S U F F I C I E N T C O N D I T I O N F O R I N A D A P T A T I O N 

PROPOSITION A. Inadaptation will occur under the give loading history P{t) {i.e. the 
system will not shakedown), if there exists an admissible plastic cycle of kind 9, say 
(p?, rj9) starting at a time instant tx ^ t, such that for all t and fictitious initial condi-
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tions (and, hence, GF): 

(is) j(oB + sF)%dt> \i>9(p9,n9)dt + ïTAnv. 
h h 

PROOF. Suppose that shakedown occurs. The necessary condition for dynamic 
shakedown derived by a static approach in [9], after a straightforward generalization to 
the hardening saturation of concern here, requires that: 

(19) 9(0* {t) + dF(t) + p, x) ^ 0 V/ £ / , GCx) ^ 0 

for some instant t and fictitious initial conditions (i.e. for some cf ) and for some time-
independent vector of static internal variables x ana1 self-stresses p. 

The convexity of the yield functions q> and the associativity of the fictitious flow 
rules (13) imply that, for all admissible plastic cycles of kind 9: 

(20) (a9 - a)Tì9 - (X9 ~ X)T% > 0 , V(*, x): <p(v, x) ^ 0 . 

Because of (\9a), the circumstance expressed by eq. (20) still holds if we set in 
(20): 

(21) G=oE(t) + dF(t) + p=i(t)y x = X 

After this substitution, integrate eq. (20) over the time interval [t1,t2]: 

(22) \(à%-XT%)dt^ \ï>9Qi9,fi9}dt. 

h h 

Note that, in view of eqs. (14) and (15) and of the time independence of self-stress­
es p and static internal variables x: 

h 

(23) \p%dt = pTAp9 = pTCAu9 = 0 ; 
h 

ti 

(24) \xT%dt = xTà%-
h 

Making use of eqs. (23) and (24) in inequality (22) and adding xT A% to both sides of 
it, one obtains: 

h # t2 

(25) J V + d¥)%dt + (x ~ x)Tàn9 ^ JD9Qi9, %)dt + xTATj9 . 
h h 

Equations (15) and (16), by analogy to eqs. (13), can be interpreted as stating a fic­
titious associativity. This fact and the assumed convexity of the bounding functions G, 
imply that, in analogy to eq. (20): 

(26) (x-x) z^z^dtf àp=(x~ XV A% & 0 V*: G(x) ^ 0 . 
dX 

In view of inequality (26), inequality (25) still holds true when the second addend 
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on its l.h.s. is crossed out. Inequality (25) thus modified turns out to be in contradic­
tion with the hypothesis (18). Note that inequality (25) holds true for all admissible cy­
cles with ti^l and for the particular aF, t contemplated by the necessary shakedown 
condition. Therefore the above contradiction rules out shakedown, i.e. entails inadap­
tation (q.e.d.). 

5. SUFFICIENT CONDITION FOR SHAKEDOWN 

PROPOSITION B. Shakedown will occur under the given loading history P(t) if 
there exist fictitious initial conditions (and consequently a free vibration response 
<rF(t)), a time instant t and a scalar I > 1 such that: 

ti u h 

(27) f | ( ^ + aF)T^^^JD$(^,%)^ + F ^ 
h h 

for all admissible plastic cycles of kind $ starting at tx ^ t. 

PROOF. In order to prove the above criterion, we will follow the path of reasoning 
adopted in [7] and [9] and based on the sufficient shakedown criterion derived by a 
static (Melan's type) approach. This criterion in the presence of hardening saturation 
can be formulated as follows by a slight generalization of those established in [9] 
and [10]. 

Shakedown occurs for a load factor a (i.e. oc ^ <zs, as being the shakedown limit or 
safety factor), if exist a time instant t, fictitious initial conditions (i.e. a 5^), time-inde­
pendent vectors of static internal variables x and self-stresses p, a scalar f > 1, such 
that: 

(28) m*** + £ F + P), &) ^ B Vt^l, G ( # ) ^ 0 , CTp = 0 . 

Let us denote by y ~ the maximum of all factors a which comply with the conditions 
(28) for some fixed ? > 1 and GF and by a~ the same maximum with Ç > 1 and aF re­
garded as variables; thus we can write: 

(29) as^ a~ ^ y~ - max {a} subject to (28). 
a, P, X 

Consider the maximization problem (29) with ty a
F and f fixed to values Î, a? and Ç of 

the hypothesis of Proposition B. Defining for brevity <r = ^(acj^ + GF + p); x — %X>tne 

Lagrangian function of the constrained optimization problem (29) reads: 

t t t 

(30) L = - « + iyT[Oiff,x)-B + c]dr+ f vT[G(x) + dì dx + \œTCTpdr, 

t t t 

where 7, v, (o are vectors of Lagrange multipliers and c, d vectors of slack variables cf, 
dj2, with / = 1 ...yy j = 1 ...ny. The following Euler-Lagrange optimality conditions 
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flow from eq. (30): 

(3 1 a) 

(31b) 

30 
\Ç(FET —— (<r,z)ydT= 1; 

\ 

- d0T 

da 
dr = 0; 

30T ,~ 3GT ,~x ^ (*,#)r+ —zr (z)v dr = 0; (31c) 

Old) 

OlhjJ) 

Consider now the admissible cycle of kind <P specified as follows: 

(32) 

0(<T,X)^B, y^O, 0T(<r,X)y=O; 

G(x)^0, v^O, GT(x)v=0. 

#P = — r (<r,z)r, V0= -——(<r,x)r-
off dx 

In view of eqs. (31), it is easily realized that the relations listed below hold true and 
guarantee that the definition (b), section 3, of admissible cycle is fulfilled: 

(33*) 

03b) 

1
 % t t 

Ì \ 0E p$ dr = 1, \ p$ dr = C Au$ , Au$ = — — codr ; 

t î î 

t T t 

\n*dT=^r(x)Av, Av=ivdr; 
I dx L 

(33c) 0(â,x)^B, y^O, 0 r(ff,*)y=O; 

03d) G(x)^0, Av^O, GT(x)Av=0. 

Rewrite now the hypothesis inequality (27), which holds for all admissible plastic cycles 
of kind $, for the particular admissible plastic cycle of kind $ introduce by 
eqs. (32): 

(34) Ì J («r* + ffF)Thdz =S | J [(«^ + ? + pfj§ - xTmìdr + ÌX
T Aï* • 

t t 

By taking into account relations (33<z) and (33b), eq. (34) can be rewritten as 
follows: 

(35) l^oc 

which means that shakedown does occur, under the given loading history, when the hy­
pothesis specified in the Proposition B holds true (q.e.d.). 
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6. CONCLUSIONS 

The results achieved in what precedes can be elucidated as for their physical mean­
ing and computational consequences by the following remarks. 

(a) The nonlinear hardening saturation, contemplated by the constitutive laws 
assumed herein, is reflected by the new requirements (15), (16) in the definitions of ad­
missible plastic cycles, and by the consequent additional terms X kr\9 and % Ar\$ in the 
inequalities (18) and (27) in criteria A and B, respectively. The absence of saturation 
(i.e. of bounding surfaces in the space of static internal variables x) means that always 
G < 0 and, hence, through (15) and (16), that the above additional terms disappear, so 
that criteria A and B reduced to those established in [9]. 

(b) In both statements A and B fictitious initial conditions play the role of avail­
able parameters. The actual initial conditions have, as expected, no influence on the dy­
namic scenario asymptotically in time and, in particular, on the choice between shake­
down and inadaptation. In the special case of period external actions, i.e. when P(t) = 
= P(t + T),T being a fixed finite time interval, it might be shown, like in [5] and [22] for 
narrower contexts, that the set of all fictitious initial conditions can be replaced by 
those initial conditions which would remove the transient motion in the linear elastic re­
sponse; then the available time parameter can be fixed at the time origin by setting 

(c) In the context of piece-wise-linear plasticity (linear yield functions and plastic 
potentials, linear hardening; hence polyhedral elastic domains), the kinematic theorem 
by Neal-Symonds-Koiter had been shown to provide a basis for giving the determina­
tion of shakedown limits a linear programming formulation [20]. This linear program­
ming problem turned out to be the dual to the one achievable on the basis of Melan's 
static theorem [12,20], and this duality pattern of shakedown analysis, with its obvious 
computational benefits, was extended to dynamics under periodic external ac­
tions [12,14]. Under the same restriction of excitation periodicity and the consequent 
fixed choice of initial conditions, it is expected (and will be investigated elsewhere) that 
criteria A and B will lead to two minimization problems in convex nonlinear program­
ming apt to generate an upper and a lower bound, respectively, on the critical value 
(shakedown limit) of a load factor amplifying the external actions. 
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