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Calcolo delle variazioni. — On a variational theory of light rays on Lorentzian mani­
folds. Nota di FABIO GIANNONI e ANTONIO MASIELLO, presentata (*) dal Corrisp. 
A. Ambrosetti. 

ABSTRACT. — In this Note, by using a generalization of the classical Fermât principle, we prove the 
existence and multiplicity of lightlike geodesies joining a point with a timelike curve on a class of Lorentzian 
manifolds, satisfying a suitable compactness assumption, which is weaker than the globally hyperbolicity. 
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RIASSUNTO. — Su una teoria variazionale dei raggi di luce su una varietà Lorentziana. In questa Nota, 
usando una generalizzazione del principio di Fermât, si studia l'esistenza e la molteplicità di geodetiche di 
tipo luce congiungenti un punto con una curva di tipo tempo su una classe di varietà Lorentziane, soddisfa­
cente una condizione di compattezza più debole della globale iperbolicità. 

A Lorentzian manifold is a couple (9ÌI, g), where 3ÎI is a smooth connected finite 
dimensional manifold, and g is a Lorentzian metric on 3TI, that is a metric tensor of in­
dex 1. In General Relativity, space-times are represented by 4-dimensional Lorentzian 
manifolds (for details see [1,13]). 

We study existence and multiplicity of lightlike geodesies joining a given point of 
the manifold with a timelike curve, and the relations between such geodesies and the 
topology of 3\l, under nondegeneration assumptions. Let y: R —» 3?£ be a C1 timelike 
curve, (i.e. g(y(s))[y(s), y (s)] < 0 for any s G JR), and a point p G 3ÎL Suppose DZ to be 
time oriented (cf. [13]). We consider the set £ptY of the future pointing lightlike un-
parametrized curves joining p with y, that is 

(1) £piY = {z: [0, 1] ->3R:|z is smooth, g(zOO)k'M,iM] = 0, for any s G [0, 1], 

z(0) =p, z(l) is in the future of p, there exists t(z) e R , such that z(l) = y(t(z))}. 

The number t(z) above is called arrival time of the curve z at y. We want to study 
the set §p> y of the geodesies (i.e. smooth curves z such that Dsz = 0, where Ds denotes 
the covariant derivative induced by the Levi-Civita connection) contained in «Ĵ , y . 

The first results for these problems were obtained by [16], for a class of globally hy­
perbolic Lorentzian manifolds, and by [6] for a class of conformally stationary 
Lorentzian manifolds with boundary, with applications to classical space-times of Gen­
eral Relativity, as Schwarzschild, Reissner-Nordstròm and Kerr space-times (see [10]). 
In the results above, the problem was reduced (by suitable variational principles) 

(*) Nella seduta del 10 dicembre 1994. 



156 F. GIANNONI - A. MASIELLO 

to the search of critical points of a functional defined on an infinite dimensional 
manifold. 

In the paper [15], a very general variational principle is proved. Indeed, the author 
showed that in an arbitrary Lorentzian manifold, the lightlike geodesies joining p with y 
are the critical points of the arrival time functional, defined above. 

However, such a functional is not easy to handle (in particular it presents the same 
problems that the length functional for a Riemannian manifold). Moreover, the set £ptY 

could be empty, as proved by the following example. 

EXAMPLE 1. Consider the manifold R X JR, equipped with the Lorentzian metric 
ds2 = (1 + t2 )2 dx2 — dt2. Then, simple calculations show the non existence of a lightlike 
curve joining the point p = (0, 0) with the timelike (vertical) line y(s) = (TI/2,S). 

We present now some results on lightlike geodesies, assuming a weaker condition 
than globally hyperbolicity, and based on a sort of compactness only of lightlike curves. 
We require that the sublevels of the arrival time functional are precompact for the 
compact-open topology of the set of the curves of the manifold. 

DEFINITION 2. A Lorentzian manifold (DH,g) is said globally lightlike complete, // 
for any p e 3ffc, for any timelike curve y: R -» 5ÎI, and for any c GR, the set Tp}7 = 
= {ze£ptY \t(z) ^ c} is precompact for the compact-open topology. 

We point out that the notion of global lightlike completeness is independent on 
isometries. 

REMARK 3. The notion of global lightlike completeness is weaker than global hyperbol­
icity. Indeed the Anti-de Sitter space-time ] — JT/2 , JI/2[XR with metric ds2 = (dx2 — 
— dt2 )/'cos2 x is globally lightlike complete, but not globally hyperbolic (see [14]). On the 
other hand, it is not difficult to see that every globally hyperbolic Lorentzian manifold is 
globally lightlike complete. 

DEFINITION 4. A Lorentzian manifold (91L,g) is said orthogonal splitting if 3il = 
= 3fc0 X R, and the metric g has the following form. For any z = (x, t) e 9JI and 
Ç = (t;,T)eTz31l = Tx3fK0xR, 

(2) g(zn,Ç] = (a(z)£,£)-l3(z)r2> 
where (•, •) is a Riemannian metric on 31l0y a(z) is a positive linear operator on TxDil0f 

smoothly depending on z, and ft (z) is a smooth positive scalar field on Dit. 

Let X be a topological space, and denote by cat X the Ljusternik-Schnirelmann cat­
egory of X, that is the minimal number of closed, contractible subsets in X, and cover­
ing X itself. The first result is the following 

THEOREM 5. Let (3il,g) be a Lorentzian manifold, p a point of 311 and y a timelike 
curve. Moreover, assume that: 
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Li ) (3&>g) is globally lightlike complete; 

L2) (9ÏI, g) is isometric to a splitting manifold (9Z0 X R,g0). 

Then, there exists at least cat £piY of future pointing lightlike geodesies joining p with y. 
Moreover, if cat £pfï

= + °°, the arrival time is unbounded on §p> y. 

REMARK 6. It can be proved that, using a result of Fadell-Husseini (see [5]), cat £ptY = 
— + °° > if 911 is noncontractible and the following growth condition holds. 

L3 ) For any curve x{s) e C1 ([0, 1], 3?£o ), such that x(0) = x0, x(l) = xx, there 
exists t(s) e (^([O, 1], R), satisfying the Cauchy problem 

( 3 ) \i(s) = y/(a(x,t)x>x)-9 

\t(0) = 0. 

REMARK 7. We recall that a deep result of Geroch (cf. [7]) shows that every globally hy­
perbolic Lorentzian manifold is isometric to an orthogonal splitting. We do not know if this 
is true also for globally lightlike complete manifolds. 

REMARK 8. Condition L3 ) is comparable with the «metric growth condition» of 116]. It 
is satisfied, for instance, if the metric is stationary. 

Under nondegenerate assumptions, we relate the set gp> y to the uniform topology 
of £pt y. Such relation is obtained by proving a Morse Theory for the lightlike geodesies 
of §P}y, in the spirit of the classical Morse Theory for Riemannian geodesies 
(see [4,11,12]). We refer also to [2] for a Morse Theory for geodesies on static 
Lorentzian manifolds, [8] for a Morse Theory for geodesies on stationary Lorentzian 
manifold with boundary, [16] for a Morse Theory for timelike and null geodesies on a 
globally hyperbolic Lorentzian manifold and[l] for a general Index Theorem for light 
rays. 

We first recall some definitions. Let z: [0, 1] ^ 3T£ be a geodesic on a Lorentzian 
manifold. A smooth vector field Ç along z is said Jacobi field, if it is a solution of the sys­
tem of differential equations 

(4) Ds
2Ç + R(ï,z)z = 0, 

where R denotes the curvature tensor of the metric. A point z(s0 ) is said conjugate to 
z(0) along z, if there exists a nonnull Jacobi field £ along z|[o,Jo], such that 

(5) £ ( 0 ) = £(J 0 ) = 0 . 

The multiplicity of z(s0 ) is the maximal number of linearly independent Jacobi fields 

satisfying (5). It is clearly a finite number. Finally, the geometric index (JL(Z) is the num­
ber of conjugate points to z(0) along z, counted with their multiplicity. 

In general (JL(Z) can be equal to + o° (see [9] for an example). The classical Morse 
Index Theorem of Riemannian Geometry proves that it is finite for Riemannian 
geodesies. Moreover, (x(z) is finite for timelike and lightlike geodesies of any 
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Lorentzian manifold, see[1] (in particular [x(z) is finite for any geodesic in §PtY). In[3] 
it is proved that it is finite for any geodesic of a splitting orthogonal Lorentzian mani­
fold (iti particular for static and globally hyperbolic metrics), while in [8] it is proved 
that it is finite for any geodesic of a stationary metric. 

In the next theorem, we shall obtain the Morse Relations for the lightlike geodesies 
joining p and 7, under a nondegeneration assumption on p and 7. 

DEFINITION 9. The point p and the timelike curve 7 are said nonconjugate if for every 
geodesic z e §Pf Y, z( 1 ) is nonconjugate to p along z. 

THEOREM 10. Assume that Lx ) and L2 ) hold, and assume that p and 7 are nonconju­
gate. Then, for any field Di, there exists a formal series Q(A) with positive cardinal integer 
coefficients, such that 

(6) E X"M = 3>x(£PìY;X) + (l+X)QW, 

where 

tPx(£P}ï;Di)= E éâmHk(£PtY;9i)Xk 

1Y k = 0 y Y 

is the Poincaré polynomial of £p>y with coefficients in Di. 

REMARK 11. Whenever L3 ) holds, we can replace J^ y with the based loop space Q on 
Dil. In this case the lightlike geodesies joining p with 7 carry on all the topological informa­
tion of the path space of Dil. 

The Proofs of Theorems 5 and 10 rely on a variational principle, which is a 
Lorentzian version of the classical Fermât principle in optics and is also related to the 
Maupertuis principle for mechanical systems. Consider the functional 

1 

(7) F(z) = ^(a(x,t)x,x)ds, 
0 

defined on the set £Py y of the lightlike curves joining p and 7. It can be proved that un­
der assumptions L^Jl^) the set £ptY is an infinite dimensional Lipschitz manifold, 
when it is equipped with the Sobolev W1,2 topology. For this reason, it is not complete­
ly clear the meaning of critical point of F (which is a nonsmooth functional). Anyway, 
we can approximate respectively £Pi y with a family #e of smooth manifolds consisting of 
timelike curves with constant energy, and F by a family of functionals F£ defined on 3e. 
We get, by a priori estimates on the critical points of F£, that the limit (as e —> 0) of 
suitable families of critical points of Fe are lightlike geodesic joining p and 7. 

Then, using the a priori estimates quoted above and the Ljusternik-Schnirelmann 
category, the proof of Theorem 7 follows. 

Finally the Morse Relations are proved by studying the topology of the sublevels of 
the approximating functionals. A limit procedure to get the topology of the sublevels of 
F, and the study of the Hessian (defined in a subtle way) of a critical point of F, allow to 
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conclude the proof of Theorem 10. Indeed, it is proved that the linear map associated 
to the Hessian form is a compact perturbation of a positive definite linear map. Hence 
the «Morse index» of a critical point z of F is finite. Finally it is proved that such Morse 
index is equal to the geometric index ' [â(Z). 
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