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Fisica matematica. — Existence and continuous dependence results in the dynamical 
theory of piezoelectricity. Nota di MICHELE CIARLETTA, presentata (*) dal Socio T. 
Manacorda. 

ABSTRACT. — The paper is concerned with the dynamical theory of linear piezoelectricity. First, an ex­
istence theorem is derived. Then, the continuous dependence of the solutions upon the initial data and 
body forces is investigated. 

KEY WORDS: Piezoelectricity; Dynamical; Existence; Stability. 

RIASSUNTO. — Teoremi di esistenza e dipendenza continua nella dinamica dei materiali piezoelettrici. Nel­
l'ambito della teoria lineare dei processi dinamici dei materiali piezoelettrici, si studiano teoremi di esisten­
za e di dipendenza continua. 

1. INTRODUCTION 

The interaction of electromagnetic fields with deformable bodies has been the sub­
ject of many investigations. Extensive reviews in this direction can be found in the 
works of Dòkmeci [1], Nowacki [2], Toupin [3], Eringen and Dixon [4], Parkus [5], 
Grot [6], Maugin [7]. 

This paper is concerned with the dynamical theory of linear piezoelectricity with 
dissipative boundary conditions. Existence results in the static theory of linear piezo­
electricity have been established in [8]. Uniqueness results and minimum principles in 
the dynamical theory of piezoelectricity have derived in [9]. In the first part of the pa­
per we use the results of the semigroups theory of linear operators to obtain an exis­
tence theorem. Dafermos [10] and Navarro and Quintanilla [11] have used a similar 
method to study boundary-initial-value problems in other theories of continuum me­
chanics. Then we investigate the continuous dependence of solutions upon the initial 
data and body forces. 

2. BASIC EQUATIONS 

We consider a body that at time t = 0 occupies the region B of Euclidean three-di­
mensional space and is bounded by the piecewise smooth surface dB. The motion of 
the body is referred to the reference configuration B and the fixed system of rectangu­
lar Cartesian axes Oxk (k = 1, 2, 3). We shall employ the usual summation and differ­
entiation conventions: Latin subscripts are understood to range over the integers 
( 1, 2, 3), summation over repeated subscripts is implied and subscripts preceded by a 
comma denote partial differentiation with respect to the corresponding Cartesian coor­
dinate. In all that follows, we use a superposed dot to denote partial differentiation with 
respect to the time. Letters in boldface stand for tensors of an order/? ^ 1 and if v has 

(*) Nella seduta del 16 dicembre 1995. 
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the order p, we write #/,•...* (^subscripts) for the components of v in the underlying 
rectangular Cartesian coordinate frame. 

In this paper we consider the dynamical theory of linear piezoelectricity (see, 
e.g. [3-6]). The Maxwell equations have the form 

(2.1) eirseSyr + {l/c)^ = Qy sïrsbs>f- (l/c)d, = 0 , 

(2.2) £/,/ = 0, diti = 0, 

on JB X (0, t\). Here e is the electric field, b is the magnetic flux density, d is the elec­
tric displacement, c is the velocity of light in vacuum, eirs is the alternating symbol, and 
ti is some finite time instant. 

The equations of motion are given by 

(2.3) tjij + Qfi = Qtii, 

on B X (0, ti), where fy is the stress tensor, / i s the body force per unit mass, Q is the 
mass density, and u is the displacement vector field. The strain field associated with u is 
defined by 

(2.4) Eij=(uu + Ujj)/2. 

Throughout this paper we assume that the body is homogeneous. The constitutive 
equations are given by 

(Z.j) tjj = L,jjrsbrs — DjajCk , ai — Dirshrs + 1 ̂ -ej , 

where Cijrs, Dmij and F^ are characteristic constants of the material. The coefficients 
Cjjrs, Dmij and F^ have the following symmetries 

To the system of field equations we adjoin the initial conditions 

[«,•(#, 0) =«,-(#), «,-(#, 0) =vi(x), 
(2.7) \ ~ ~ _ 

\bjix, 0) = bj{x)9 dj(x, 0) = di(x), x eB, 

where ut, v{, b, and dj are prescribed functions. We assume that 

(2.8) £/,,- = Q> dt-ti = 0 on Ë . 

We note that the equations (2.2) are immediate consequences of the equations 
(2.1) and (2.8). The equations (2.1), (2.3), (2.4) and (2.5), if r0- is invertible, combine 
to yield the following system 

QUj = ^>ijrsur,sj ~ ^mijemj ' Qfi > 

(2.9) Ui = %ij{c£jrsbSir - Djrsùr>s), 

Here Xtj *s defined by 

(2.io) r ^ = ô/y, 
where ô^ is the Kronecker delta. 
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The conditions (2.7) may be written in the form 

(2.11) u = u, u = v, e = e, b = b o n B , 

where 

We consider the following boundary conditions 

'et- = òeirsbrns on dB X [0, t{\, 

(2.12) <Ui = Q on ^ X [ 0 , ^ ] , 

Vi = —vtijHj on S2X [0, ti\, 

where <5, v are positive coefficients characteristic of the boundary, while Sx and S2 are 
subsets of dB such that 5i U S2 = dB, Sx 0 S2 = 0, and « is the outward unit normal 
of 3B. 

3. EXISTENCE AND CONTINUOUS DEPENDENCE RESULTS 

Throughout this section we assume that: 

(/) the density Q is strictly positive; 

(ii) Cijrs and T^ are positive definite, i.e. there exist the positive constants c0 and 
£0 such that 

(3-D Cifrar: ^ C^ij^ij , TijYliYlj ^ 80VtVt > 

for every symmetric tensor £,y and every vector ç,-. In the first part of this section we 
use results of the semigroups theory of linear operators to obtain an existence theorem. 
Recently, Navarro and Quintanilla [11] have used this method to obtain existence re­
sults in thermoelasticity. 

Let 

(3.2) X = {w = (*, v9 e, b); u eHl(B),v eH°(B)ye e H°(B),be H°(B)}, 

where Hm (B) are the Sobolev space and Hm (B) = [Hm (B)?. Consider now the fol­
lowing linear operators on X 

Aitv = Vi, BiW = (CijrsurySJ - DkijekJ )/Q , 

CiW = Xij(cejrsbs>r - Dj,svftS), Ditv = ~ceirseSir. 

Let A be the operator 

(3.4) Aw = (Aito, BiW, Qw, Ditv), 

with the domain 

(3.5) D(A) = {u> = (u, v, e, b)eX;AweX, e^^-«^ = 0 on SÌ9 eijkbjnk = 0 onS2} . 

Clearly, D(A) is dense in X. The boundary-initial-value problems (2.9), (2.11), (2.12) 

(3.3) 
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can be transformed into the following equation in the Hilbert space X 

\ dw{t)/dt = Aw(t) + F(t), t > 0 , 

[ w(0) = w0 , 

where 

F = ( 0 , / , 0 , 0 ) , w0 = (u,v,e,b). 

Let X* be the Hilbert space X equipped with the norm || • ||* induced by the inner 
product 

(3.7) (w, w)* = \(Ci/rsuftSûu + Quivi + Tijeiéj + b^)dv . 
B 

By the hypotheses (3.1) and the first Korn inequality we conclude that the norm || * ||* is 
equivalent to the original norm || • || in X. 

LEMMA 3.1. The operator A is dissipative. 

PROOF. By (3.3), (3.4) and (3.7), 

(Aw,w)* = 

= J[Cijrsur>sVij + Vi(Cijrsurtsj-DkijekJ) + TijeiXjk(cekrsbS)r-Dkrsvr>s) -cbi£irseSjridv . 
B 

Using (2.10) and the divergence theorem we obtain 

{Awy w)* = J {vi(CijrsurtS - Dkijek)nj - c£irsesb^nr]da . 
dB 

The boundary conditions (2.12) imply 

{Aw, w)* ^ 0 for every w e D(A). 

The proof is complete. 

We now consider the operator XI — A where I is the identity operator and 
X>0. 

LEMMA 3.2. The operator A satisfies the range condition 

R(XI-A)=X, X>0. 

PROOF. Let w = («, v, e, b) e X. We must prove that the equation 

(3.8) Xw-Aw=w, X>0, 

has a solution w = («, v, e, b) in D{A). By eliminating v, (3.8) yields the following sys­
tem for u, e and b 

f Lj = X2Ui - {CijrsuTjSJ - DkijekJ)/Q = gj, 

(3.9) \ Mû - ^ - %ij(ceJrsbS)r - XDjrsu,tS) = h{, 

Nij = Xbi + c£irses>r = hi, 
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where 

(3.10) y = (Uì, <?,-, * / ) , £/ = ?/ + ̂ / , k = <?,- ~ %ijDjrsur,s . 

Let [•, •] denote a conveniently weighted L2(B) X L2(B) X L2(£) inner product, 
and consider the bilinear form 

(3.11) G(yJ) = [(L^,M/3;,N/};),(^,^J/)] = \(Q^LJ + T^Mjy +b^y)dv . 
B 

The divergence theorem and the boundary conditions imply 

(3.12) G(y9y) = [ HX2QU,Uì + CijrsuYìSuu + r^ej + b^^dv + 

+ (Av ~* UjUi + ò~l e^i ) J a 

BB 

tot my y = (u, e, b) eY = Hl(B) XH°(B) XH°(B). By (3.1), (3.12) and the first 
Korn inequality [12], 

(3.13) G(y,y) ^ a\\y\\Y for every y e Y, 

where a = min(A2c1, hc0cu Xe0, A), | |y | |y= ||(», e, 6) | |y= I W I H 1 ^ ) + IMIH0(B) + 
+ | |^||H°(B) + II#IIH°OB) + ||^||H°(3JB)>

 anc* c\ is t n e constant from the first Korn ine­
quality. 

Since the bilinear form G(y, y) is continuous in Y X Y, there exists a linear bound­
ed transformation T from Y into itself such that 

(3.14) G(yJ) = [y,Ty]Y, 

for any y, yeY. Since |[y, Ty]y| ^tf||;y||y, we have ||Ty||y ^ tf||;y||y, for every 
yeY. 

Let R(T) be the range of T. Let 3/0eY such that Ty0 = 0. By (3.14) we obtain 
G(yoy yo) = 0 and (3.13) implies y0 = 0. Thus, we conclude that T is one to one. 
Therefore, there exists T - 1 : R(T) —>Y. We can also prove that R{T) is dense in Y 
Then, we can continue T" 1 to Y For any z G R(T), set cp(z) = [(&,£/, £,•), œ]Y where 
cy is the only element of Y such that z = Tû>. Then, cp is a linear bounded functional de­
fined on JR(T). We can continue cp in the whole space Y, in such a way that the contin­
ued functional <P shall have the same norm. Since Y is a Hilbert space, there exists a 
unique y * e Y such that 

(3.15) ®(y) = ly*>yh> for any y G Y. 

If we choose 3; = TjT, then (3.14) and (3.15) imply that y* = (u* , £* , b*) s Y satisfies 
the equation 

G(y * , y) = [(&•, A,-, 5/), 3T]y for every y G Y. 

Thus,L,yf = &,M/:y* = ^^ 
We conclude that («*, v*, **, **) e D(A). • 

THEOREM 3.1. The operator A generates a C0 semigroup of contractions on X. 
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PROOF. The proof follows from the Lemmas 3.1, 3.2 and the Lumer-Phillips 
theorem (see, e.g., [13, p. 13]). 

We now state the following result (see, for example, Pazy [13, Chapter 4]). 

THEOREM 3.2. Let A be the infinitesimal generator of a C0 contractive semigroup. If 
F is continuously differentiable on [0, tx] then the initial value problem (3.6) has, for 
every w0 e D(A)9 a unique solution weC1 ([0, / J ; X) D C° ([0, t{\-, D(A)). 

The next theorem is an immediate consequence of Theorems 3.1 and 3.2. 

THEOREM 3.3. Assume that the density field is strictly positive and the consti­
tutive coefficients satisfy the conditions^ (2.6) and (3.1). Further, assume that 
fe C1 ([0, / J ; L2 (B)) and w0 = (u, v, e, b) e D(A). Then there exists a unique sol­
ution weC1([0,t1i;X)nC°([0,tii;D(A)) to be boundary-initial-value problem 
(2.9), (2.11), (2.12). 

Now we establish the continuous dependence of the solution upon the initial data 
and body forces. 

THEOREM 3.4. Assume that the density field is strictly positive and that (3.1) holds. 
Further, assume that / E LX ([0, tx]; L2(B)) and ueHl(B), veH°(B), esH°(B), 
beH°(B). 

Let (u,e,b) be the solution of the boundary-initial-value problem (2.9), (2.11), 
(2.12) corresponding to the body force/and the initial data (u,v,e,b). Let M be the 
positive function on [0, t{\ defined by 

M2 = |M|H1(B) + NIH°(B) + +lklllr°(B) + WHHHB) • 

Then there exists a positive constant a such that 

(3.16) M(t) ^ a M(0) + j\\6f\\Howdr telO, til. 

PROOF. By (2.5) and (2.6), 

1 £) 

(3.17) tijÈij + eJi + bibi = - — (QJrsE0Ers + T^e^ + bfa). 

On the other hand, from (2.1), (2.3), (2.4) and (2.6) we obtain 

tijÈij + eJi + bibi = {tijùi)j - tjijùi + c8irsbSyfei + ceirsbseiir = 

= Qfiùi - QUiùi + {tijùi)j + (c£irsbsei)>r 

By the divergence theorem and (2.12), 
(3.18) jUy£// + ed + M/)dv = jgif, -ù))ù)dv. 
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Let E be the function on [0 , ^ ] defined by 

(3.19) E = Ugùiùi + CijrsEijErs + T^e^j + bt-bt- ) dv . 
B 

It follows from (3.17) and (3.18) that 

(3.20) E^llgfiuidv. 
B 

Then, we have 

(3.21) E{t) ^ E(0) + 2 [ f qfiùidxdv , t e [0, tx]. 

By the Schwarz inequality, 

(3.22) B ( / ) ^ E ( 0 ) + 2j | |e / | |Ho ( B ) | | i | |„o ( B )rfr . 
o 

By using the first Korn inequality, (3.1) and the assumption that g be strictly positive, 
we can determine a positive constant m0 such that 

(3.23) M2(t)^m0E(t), ^ [ 0 , / J . 

On the other hand, we can determine a positive constant mx such that 

(3.24) £ ( 0 ) ^ ^ ! M 2 ( 0 ) . 

It follows from (3.22), (3.23) and (3.24) that 
t 

M2(t)^m0m1M
2(0)+2m0j\\Qf\\Ho{B)Mdr} ; e [ 0 , / J . 

o 
This is a Gronwall-type inequality, so that [14] 

(3.25) M{t) ^ V ^ i M ( 0 ) + m0 J \\Qf\\Ho{B) dx, / e [0, tx ] . 
o 

The desired result is an immediate consequence of (3.25). • 

Some asymptotic and Liapounov stability results have been established in [15]. 

Work performed under the auspicies of G.N.F.M. of Italian Research Council (C.N.R.), with the 
grant 60% M.U.R.S.T. 
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