ATTI ACCADEMIA NAZIONALE LINCEI CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI LINCEI MATEMATICA E APPLICAZIONI

JAIR MINORO ABE

Curry algebras N_1

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Serie 9, Vol. 7 (1996), n.3, p. 125–128.

Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLIN_1996_9_7_3_125_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Accademia Nazionale dei Lincei, 1996.

Logica matematica. — *Curry algebras* N_1 . Nota di JAIR MINORO ABE, presentata (*) dal Socio A. Bressan.

ABSTRACT. — In [6] da Costa has introduced a new hierarchy N_i , $1 \le i \le w$ of logics that are both paraconsistent and paracomplete. Such logics are now known as non-alethic logics. In this article we present an algebraic version of the logics N_i and study some of their properties.

KEY WORDS: Algebraic logic; Paraconsistent logic; Paracomplete logic; Non-alethic logic.

RIASSUNTO. — Le algebre «Curry» N_1 . Nell'articolo [6] da Costa ha introdotto una nuova gerarchia N_i , $1 \le i \le w$, di logiche che sono al tempo stesso paraconsistenti e paracomplete. Tali logiche sono adesso conosciute come logiche nonaletiche. In questo articolo presentiamo una versione algebrica della logica N_i e studiamo alcune proprietà.

1. INTRODUCTION

In recent years, a number of different kinds of logic have been proposed with the aim of avoiding the property that from a contradiction anything may be deduced. Roughly speaking, these logics (called *paraconsistent* logics) allow formulas of the form $A \& \neg A$ to be applied in a non-trivial manner in deductions. One such type of logic are the logics C_n of da Costa (see, *e.g.* [4, 5]). Their «duals», in a precise sense, are the logics known as *paracomplete* logics (systems P_n , see, *e.g.* [7]). A logic is called *paracomplete* if, according to it, a proposition and its negation can be both false.

In [6], da Costa describes a new hierarchy N_i , $1 \le i \le w$ of logics which are simultaneously paraconsistent and paracomplete. These logics were dubbed *non-alethic* by F. M. Quesada.

The aim of the present *Note* is to present an algebraic version of the logic N_1 , developing some ideas of the authors and to study some of the main properties of this algebraic version of N_1 .

2. The calculus N_1

We now present N_1 formally. We begin with a language L consisting of a denumerable number of sentential variables closed as usual under \neg (negation), \rightarrow (implication), \lor (disjunction), and & (conjunction); the symbol \Leftrightarrow (for equivalence) is introduced as usual, and we have three new defined symbols: A^0 is an abbreviation for $\neg (A \otimes \neg A)$, A^* is an abbreviation for $A \lor \neg A$, and -A is an abbreviation for $\neg A \otimes A^0$ (called strong negation). Capital latin letters are metalinguistic schematic variables. The postulates (axiom schemata and primitive rules of inference) of N_1 are those of classical positive logic plus the following:

(I)
$$A^* \& B^0 \to ((A \to B) \to (A \to \neg B) \to \neg A),$$

- $(\mathrm{II}) \quad A^{\,0} \, \& B^{\,0} \longrightarrow (A \longrightarrow B)^{0} \, \& \, (A \, \& \, B)^{0} \, \& \, (A \lor B)^{0} \, \& \, (\neg A)^{0} \,,$
- $(\mathrm{III}) \quad A^{\,\ast}\,\,\&\,B^{\,\ast} \longrightarrow (A \longrightarrow B)^{\,\ast}\,\&\,(A\,\&\,B)^{\,\ast}\,\&\,(A \lor B)^{\,\ast}\,\&\,(\neg A)^{\,\ast}\,,$

$$(\mathrm{IV}) \quad A^0 \to (A \to \neg \neg A) \& (A \to (\neg A \to B)),$$

- (V) $A^* \rightarrow (\neg \neg A \rightarrow A),$
- (VI) $A^0 \lor A^*$.

The concepts of proof, of deduction, etc. are defined as in Kleene [8].

DEFINITION 2.1. In $N_1: A \leq B =_{def.} \vdash A \rightarrow B$, $A \equiv B =_{def.} A \leq B$ and $B \leq A$.

THEOREM 2.2. \leq is a quasi-order, and \equiv is an equivalence relation.

THEOREM 2.3. In N_1 , \neg is not compatible with the equivalence relation \equiv , and we have $\vdash A \land \neg A \rightarrow B$.

THEOREM 2.4. Adding the principle of the excluded middle, $A \lor \neg A$, to N_1 , we get C_1 .

THEOREM 2.5. Adding the principle of contradiction, $\neg(A \otimes \neg A)$ to N_1 , we get P_1 .

THEOREM 2.6. Adjoining to N_1 the schemata $A \vee \neg A$ and $\neg (A \& \neg A)$, we obtain the classical propositional calculus.

THEOREM 2.7. The strong negation possesses all properties of the classical negation; for instance

$$\begin{split} & \vdash (A \to B) \to \left((A \to -B) \to -A \right), \quad \vdash A \to \left(-A \to B \right), \quad \vdash A \& -A \to B, \\ & \vdash A \to --A, \quad \vdash --A \to A. \end{split}$$

3. The Curry algebras N_1

The algebraic structures considered here are those seen in [2, 3].

From the algebraic point of view, N_1 is a classical implicative lattice. By Theorem 2.3 it follows that this lattice has a first element. Due to (I)-(VI), we concluded that in this lattice there is an operator, denoted by ', possessing some properties of the Boolean complement. Summarizing, N_1 is a Curry algebra N_1 .

CURRY ALGEBRAS N_1

DEFINITION 3.1. A Curry algebra N_1 is a classical implicative lattice $\langle S, \equiv, \land, \lor, ' \rangle$ with greatest and smallest elements (not necessarily unique), 1 and 0, and with an operator ' satisfying the following properties, where $p^0 = (p \land p')'$ and $p^* = p \lor p'$:

1)
$$p^{0} \wedge q^{*} \leq ((p \rightarrow q) \rightarrow ((p \rightarrow q') \rightarrow p')),$$

2) $p^{0} \wedge q^{0} \leq (p \rightarrow q)^{0} \wedge (p \wedge q)^{0} \wedge (p \vee q)^{0} \wedge (q')^{0},$
3) $p^{*} \wedge q^{*} \leq (p \rightarrow q)^{*} \wedge (p \wedge q)^{*} \wedge (p \vee q)^{*} \wedge (q')^{*},$
4) $p^{0} \leq (p \rightarrow p'') \wedge (p \rightarrow (p' \rightarrow q)),$
5) $p^{*} \leq p'' \rightarrow p,$
6) $p^{0} \vee q^{*} \equiv 1.$

THEOREM 3.2. Adjoining to a Curry algebra N_1 the postulate $(p \land p')' \equiv 1$, we obtain a CP_1 -algebra (for these algebras see [1]), and adjoining the postulate $p \lor p' \equiv 1$ we get a C_1 -algebra (for these algebras see [2]). Moreover if we add both postulates we obtain a Boolean algebra.

THEOREM 3.3. A Curry algebra N_1 is distributive and has a greatest element. DEFINITION 3.4. Let p be an element of a Curry algebra N_1 . We put $-p = p' \wedge p^0$. THEOREM 3.5. In a Curry algebra N_1 , -p is a Boolean complement of p, so $p \vee -p \equiv 1$ and $p \wedge -p \equiv 0$.

THEOREM 3.6. In a Curry algebra N_1 , the structure composed by the underlying set and by operations \land , \lor , -, is a Boolean algebra.

DEFINITION 3.7. Let $\langle S, \equiv, \rightarrow, \wedge, \vee, ' \rangle$ be a Curry algebra N_1 , and $\langle S, \equiv, \wedge, \vee, - \rangle$ be the Boolean algebra obtained as in the above theorem. Any Boolean algebra that is isomorphic to the quotient algebra of $\langle S, \equiv, \wedge, \vee, - \rangle$ by \equiv is called Boolean algebra algebra associated with the Curry algebra N_1 .

THEOREM 3.8 (Representation Theorem). Any Curry algebra N_1 is associated with a field of sets. Moreover, any Curry algebra N_1 is associated with the field of sets simultaneously open and closed of a totally disconnected compact Hausdorff space.

4. The completeness of the logic N_1

It is easy to introduce the concepts of *filter*, *ultrafilter*, and *homomorphisms* between Curry algebras N_1 . All usual properties from classical algebra are as expected: for instance, the shell of a homomorphism is a filter.

We would like to mention only the following results.

THEOREM 4.1 (Soundness). If A is a provable formula of the logic N_1 , then $h(A) \equiv 1$ for any homomorphism h from the set of all formulas of the logic N_1 into any Curry algebra N_1 .

PROOF. By induction on the length of proofs.

THEOREM 4.2. Let U be an ultrafilter in F (the set of all formulas of N_1). Then, there is a homomorphism h from F into 2 (where $2 = \{0, 1\}$ is the two-element Boolean algebra) such that the shell of h is U.

THEOREM 4.3 (Completeness). Let F be the set of all formulas of N_1 , and $A \in F$. Let us suppose that $h(A) \equiv 1$ for any homomorphism b from F into an arbitrary Curry algebra N_1 . Then, A is a provable formula of N_1 .

PROOF. Similar to the classical case, taking into account the previous theorem.

The algebraic treatment for the logics N_i , $1 \le i \le w$ does not offer difficulties. Besides the results presented here we would like to emphasize the importance of certain «pre-algebraical» structures (in the sense that the fundamental relation of the structure is an equivalence relation instead of equality). They were called Curry algebras not only as a hommage to the american logician H. B. Curry, but because he is one of defendants of the use of prestructures (see [3]). They are the central tool to deal algebraically with the majority of nonclassical logics.

We hope to say something more about this in forthcoming papers.

ACKNOWLEDGEMENTS

Thanks are due to Prof. Newton C. A. da Costa for proofreading an earlier version of this paper. I would like to thank the anonymous referees for the many helpful comments and suggestions provided.

The author is supported by CNPq grant 301114/92-7.

References

- J. M. ABE, A note on Curry algebras. Bulletin of the Section of Logic, Polish Academy of Sciences, vol. 16, n. 4, 1987, 151-158.
- [2] C. M. BARROS N. C. A. DA COSTA J. M. ABE, Topicos de Teoria dos Sistemas Ordenados, volume II: Sistemas de Curry. 1993, to appear.
- [3] H. B. CURRY, Foundations of Mathematical Logic. Dover, New York 1977.
- [4] N. C. A. DA COSTA, *Calculs propositionnels pour les systèmes formels inconsistants*. Comptes Rendus de l'Académie des Sciences de Paris, 1963, 3790-3792.
- [5] N. C. A. DA COSTA, On the theory of inconsistent formal systems. Notre Dame Journal of Formal Logic, 1974, 497-510.
- [6] N. C. A. DA COSTA, Logics that are both paraconsistent and paracomplete. Atti Acc. Lincei Rend. fis., s. 8, vol. 83, 1989, 29-32.
- [7] N. C. A. DA COSTA D. MARCONI, A note on paracomplete logic. Atti Acc. Lincei Rend. fis., s. 8, vol. 80, 1986, 504-509.
- [8] S. C. KLEENE, Introduction to Metamathematics. Van Nostrand, Princeton 1952.

Department of Informatics - ICET Paulista University Institute for Advanced Studies of University of São Paulo São Paulo (Brasile)