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A n a l i s i m a t e m a t i c a . — Some results on stochastic convolutions arising in Volterra 

equations perturbed by noise. N o t a di P H I L I P P E C L é M E N T e G I U S E P P E D A P R A T O , presen

t a t a ! " ) dal Corr i sp . G . D a P r a t o . 

ABSTRACT. — Regularity of stochastic convolutions corresponding to a Volterra equation, perturbed by 
a white noise, is studied. Under suitable assumptions, hòlderianity of the corresponding trajectories is 
proved. 

KEY WORDS: Stochastic convolution; Volterra equations; Completely positive kernels. 

RIASSUNTO. — Sulle convoluzioni stocastiche relative a equazioni di Volterra perturbate da un rumore. Si 
dimostra la regolarità della convoluzione stocastica relativa a equazioni di Volterra perturbate da un rumo
re bianco. Sotto opportune ipotesi viene provata l'hòlderianità delle traiettorie corrispondenti. 

1. INTRODUCTION 

Let H be a separable Hilbert space and let {e^} be a complete orthonormal system 
in H. We are concerned with a stochastic version of a linear Volterra equation in H of 
the general form: 

t 

( H ) u(t) = I a(t - x)Au{x)dr + x + gU), x e H , 
o 

where A is a linear operator in H, a is a locally integrable kernel, and g is an H-valued 
mapping. 

This equation has been treated by many people in connection with applications to 
problems in mathematical physics, such as viscoelasticity and heat conduction in ma
terials with memory. We refer to J. Priiss [3] for a recent survey. 

We shall assume that problem (1.1) is well posed, and we shall denote by S(t), t ^ 0 
the corresponding resolvent operator. We recall that S(')x is the solution to (1.1) cor
responding to g = 0. 

In order to take into account random fluctuations, it is natural to consider equation 
(1.1) with a very irregular exterior force: g(t) = W(t), where W is a cylindrical Wiener 
process, or white noise, defined in a stochastic basis (Q, $, $n P). We shall take W of 
the form 

(1.2) (W(t),h)= Ì (h,ek)pkit), heH, 
k = l 

where {/3k} is a sequence of real valued, mutually independent, Wiener proces
ses. 

For as the kernel a is concerned, we shall assume, following Ph. Clément and J. A. 
Nohel [1], that a is completely positive, since completely positive kernels naturally arise 

(*) Nella seduta del 19 aprile 1996. 
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in the applications, see [3]. We recall that a e L\oc ( 0, + °° ) is said to be completely posi
tive if the solution s{a, •)> a > 0 to the integral equation 

(1.3) s(t) + ala(t~-x)s(x)dx=ly t^0y 

0 

is nonnegative and nonincreasing for any a > 0. 
Thus, we arrive to the problem 

(1.4) X(t) = [ * ( / - x)AX{x)dx + x + W(t), x E H . 
o 

If a e WfocMO, + oo ), we can write problem (1.4) as an integrodifferential equa
tion 

(1.5) dX(t) a(0)AX(t) + I V (t - x)AX{x)dr dt + dW(t), X(0)=xeH. 

For the sake of simplicity we shall assume that A is self-adjoint, negative, and diagonal 
with respect to the basis {e^}: 

(1.6) Aek=-[tkeky / ^ > 0 , ksN. 

In this paper we will try to extend the semigroup approach of G. Da Prato and J. 
Zabczyk [2] to problem (1.4). By definition, a mild solution of (1.4) is a process X(t), 
t ^ 0, adapted to the filtration &n t^0, such that 

t 

(1.7) X(t) = S(t)x+[S(t-x)iW(x). 
0 

In Section 2, we shall give sufficient conditions in order that this formula be mean
ingful. Sections 3 and 4 are devoted to prove regularity properties of the stochastic 
convolution 

t 

(1.8) WA,a(t) = \S(t-T)dW(r). 
0 

We notice that, as it was shown in [2] in the case when a = 1, these regularity proper
ties are important to solve nonlinear equations as for instance 

(1.9) X{t)= la(t-x)(AX(x)+F(X(x)))dx + x + W(t), x e H , 
o 

where F: H—>H is a locally Lipschitz continuous mapping. 
Applications of our results to linear and nonlinear heat equations with memory, will 

be the object of a future paper. 
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2. STOCHASTIC CONVOLUTION 

We shall assume 

HYPOTHESIS 1. (/) A is a self-adjoint negative operator. Moreover Aek — — ftkek> 
k e N , for some positive numbers ftj,, k e N . 

(//) a is completely positive. 

{Hi) We have 
00 

-TrW"1)= 2 (1/ftkX +*..-
k = i 

Under these assumptions, it is easy to see that there exists the resolvent S(t), t ^ 0 

of the deterministic equation (1.1), which is determined by 

(2.1) S{t)ek = s{fA,kyt)ek> keN. 

Moreover, the stochastic convolution WA,U *S given formally by 
00 / 

(22) WAtA*)= 2 \s(ptkyt-r)ekdl3k(r)y 

o. 
the integrals being intended in the Ito's sense. In order to prove that the above series is 
convergent in L2(Q), we first need a lemma. 

LEMMA 2.1. Under Hypothesis 1 we have 

(2.3) 2 \s2(uk>r)dr< + oo forali / > 0 , 
o 

where s{fi^y •) & róe solution to (1.3) «;//& a — ftk-

PROOF. A locally integrable function a is completely positive if and only if there exist 
K0 ^ 0 and Ki eLioc(0, +<*>), nonnegative nonincreasing, satisfying 

(2.4) ffotfW + (#i **)(*)== 1, f > 0 , 

where * represents the convolution product. The pair (A*0, KX) is uniquely determined 
by ay see [3]. Moreover the operator L in L1(0,T) defined by 

D(L):= {u e L1 (0, T): K0U + Kx*ue Wh l (0, T), (*0« + ^*u) (0 ) = 0} , 
(2.5) 

Lu\- — (K0U + KX*U) , 

is #z-accretive and densely defined in L^O, T). Denoting by w = w(g,t) the 
function 

(2.6) ^(e,r) = (é>-eL(i))(o, -e^o..,- f e [ o , T ] , 

one can show that 0 ^ W(Q, t) ^ 1, for all Q ^ 0, t e [0, T] , and 
T +00 

(2.7) Jj0«4,f)<&= J e-<*»(K0w{Q, T) + (K^w)(T))dQ. 
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We now can prove (2.3). Since *$(/,/*) G [0 ,1 ] , we have 

T T 

js(f*k,t)
2dt^ \s(iAk,t)dt, 

0 0 

from which, recalling (2.7) 

T • +oo 

js(/ik9t)
2dl^ J" e-^(K0w(Q,T) + (K^w)(T))dQ . 

0 0 

Since W(Q, t) G [0, 1] we obtain 

js([ik,t)
2dt^ J e-™*IK0+ jKl(s)ds\de-(l/pk)lKQ + JK1(s)dsV 

and the conclusion follows summing up on k and recalling Hypothesis l-(iii). • 

Now we prove the main result of this section. 

THEOREM 2.2. Assume that Hypothesis 1 holds. Then for any t^- 0 the series-. 

S \s(/tk,t-r)ekdpk(T), 

o 
is convergent in L2(Q) to a Gaussian random variable WAyU (t) with mean 0 and covariance 
operator Qt determined by 

t 

(2.8) Qtek = js2(/uk,T)dtekj keN. 
o 

PROOF. Set 

• ' » t 
WlAt)= E \s(/,k>t-t)ekdl3k(r), neN. 

k = l J 
o 

If n, p G N we have 

m;/(t)-wiAt)\2= 2 \\s(fik,t-T)d/3k(T) 2. 
k=n+1 J 

0 

Taking expectation, we find 

E(\WlV(t)-Wla(t)\
2)= E [ * 2 ( / W - r ) i r . 

o 

In view of Lemma 2.1, this implies that the sequence {WA>a(t)} is convergent in 
L2(Q) to a random variable WA>a(t). Moreover WA>a{t) is Gaussian since WA)a(t) is. 
Also we have E{WAtû(t)) = 0 since E(W2f,(f)) = 0. 



SOME RESULTS ON STOCHASTIC CONVOLUTIONS ... 151 

It remains to compute the covariance Cov WA>a{t) of WAya(t). Since, for any 
x,yeH, 

00 t 

{Cov{WA,a{t))-x,y) = E({WAta{t),x){WA,a{t),y))= 2 \s2(fik, t) dt(x, ek)(y, ek), 
k = 1 J 

o 
the conclusion follows. • 

EXAMPLE 2.3. Assume that H = L 2(0, 1), and set 

(2.9) Au=D2u, V*/eH2(0, D f l H j f O , 1). 

Then Hypothesis l-(i) holds with 

ek(%) = ^Jlfrtsin££, £ e [ 0 , l ] , , * e N , •. 

and / ^ = 7t2k2
 y k&N. Let moreover 

(2.10) * ( / ) = * - ' , ; ^ 0 , 

then one has, as easily checked, 

(2.11) ^ , ^ = ( i + ^ r 1 [ i + ^ - ( 1 + ^ u ] , t,v>o. 

Thus a is completely positive and Hypothesis 1 is fulfilled. 

3. HÔLDERIANITY OF THE STOCHASTIC CONVOLUTION 

We first prove the result. 

PROPOSITION 3.1. WA>a is mean square continuous. 

PROOF. If t > x > 0, we have 

\WA>a(t) - WAia(r)\2 = \WAia{t)\2 - \WAJr)\2 - 2{WAaU) ~ WAitM, WAtt(r)). 

Since WAa(t) — WA>a(x) and WA>a{x) are independent, we have 

(3.1) E(\WA>a(t)-WA>a(x)\2) = 
00 / 

= E(\WAa(t)\
2)-E(\WA>a(T)\2)= 2 \s2(ftk>a)day 

k = l J 
T 

and the conclusion follows from (2.3). • 

We now want to prove almost sure hòlderianity of WAa. For this we need an addi
tional assumption 

HYPOTHESIS 2. There exists 0 e]0, 1[ and Ce > 0 such that, for all 0 < x < t we 
have 

t 

(3.2) \s2(fi,o)do^Cefi
e-1\(-T\6, 

X 

X 

(3.3) ^bin, r - o) - s{fi, t - a)f da ^CeHe'l\t-x\e 

and 
oo 

(3.4) 2 fil'l< + o o . • • •• 
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REMARK 3.2. If the kernel a is completely positive, inequalities (3.2) and (3.3) of 
Hypothesis 2 holds for any 0 e [0, 1]. 

PROPOSITION 3.3. Under Hypotheses 1 and 2, forevery positive number a < 0 /2, the 
trajectories of WAa are almost surely a-Hòlder continuous. 

PROOF. By (3.1), taking into account (3.2) and (3.3), we have 

E(\wA>a(t)-wA)a(T)\2)^cd £ fiBrl\t-T\9. 

Since, by Theorem 2.2, WA>a{t) — WA>a(r) is Gaussian, then for any m e N , there 
exists a constant C^> 0 such that 

E(\WA>a(t)-WA,a(r)\2m)^Cm Ce 2J l*k 
k = i 

> - r | mB 

Choosing m such that mO > 1 and applying the Kolmogorov test, see e.g, [2], we find 
that WA>a is a-Holder continuous for a = 6/2 - I/{2m). The conclusion follows from 
the arbitrariness of m. • 

EXAMPLE 3.4. We use here notation from Example 2.3. We want to check that Hy
pothesis 2 is fulfilled. Since (3.3) obviously holds, it remains to prove (3.2). 

Let t > r > 0, then from (2.11) we have 

ls2(M,o)da = (1 + fi)-2[(t - r) + 2fi(l + fi)-l(e-{l+f,)T - e-(1+t,)t) + 
T 

+ / / 2 - ( 2 ( l + / * ) ) ^ 

Let CQ be such that 

\e-a-e~V\^CQ\a-$W a , £ ^ 0 . 

Then we have 

\s2{ixya)do^ (1 + [i)~2[{t-r) + 2/*(l + iJi)e-lCe\t - x\6 + 

\fi
2{2{l^^-e)-l2eGe\t-x\e\. 

Thus (3.2) is fulfilled. 

4 . HÒLDERIANITY OF THE STOCHASTIC CONVOLUTION IN SPACES 

O F CONTINUOUS FUNCTIONS 

We assume here that H = L 2 (0) , where O is a bounded open subset of W. 
We set WA>a(t)(%) = WA>a{t, £) and write the stochastic convolution as 

00 t 

(4.1) WAtAt,Ç)=I, \s(f*k,t-T)ek(ï)dl3k(T). 



(4.2) 
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We want to prove that WA$a(t,£) is Holder continuous in / and £ For this 

we need an additional hypothesis 

HYPOTHESIS 3. There exists M > 0 such that 

f\ek(Ç)\<M9 keN,- | e 0 , 

{ | V ^ ( | ) | ^ M / / | / 2 , £ e N , § e O . 

Note that if Hypothesis 3 holds then, by interpolation, for all 6 e]0, 1[ there exists 
Ma > 0 such that 

(4.3) \ek{è)-ek(ti)\^M9p
e
k'

2\Ç-y\e, keN. 

THEOREM 4.1. Under Hypotheses 1, 2, #/z<i 3, /£e trajectories of WAtû(tt £) <m? afco^ 
j&re/j a-Holder continuous in U, £ ) /or ^^j a e]0, l /4 [ . 

PROOF. We first note that, arguing as in the proof of Lemma 2.1, we find 

t 

(4.4) E Ufc2(0*,<j)</a< +00 • 
o 

It follows that there exists Ne > 0 such that 

(4.5) ^ . « ( ^ - ^ ( / . « / J l ^ N ^ - i / l * , 0 e ] 0 , 1[. 

Moreover, arguing as in the proof of Proposition 3.1 we find that there exists Nie> 0 
such that 

(4.6) E\WAt4(t,ë)-WA,a(T,Ç)\2<Nlte\t-T\e
9 0 e]0, 1[, t,r>0. 

By (4.5) and (4.6) it follows that, for some constant N2)e 

(4.7) Ê | ^ , . ( ^ ^ ) - ^ . ( r , / ; ) | 2 ^ N 2 , 0 [ | | - ? 7 | 2 + | ^ - r | 2 f / 2 , 0e]O, 1[. 

By the Kolmogorov's test, see [2], we arrive at the conclusion. • 

REMARK 4.2. It is easy to see that the functions {e^} defined in Example 2.3 fulfill 
Hypothesis 3. Moreover in Example 2.3, the kernel a(t) = e ~l can be replaced for in
stance by any locally integrable, positive, decreasing and log convex function. 
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