Rendiconti Lincei Matematica E Applicazioni

Giuseppe Da Prato

Some results on elliptic and parabolic equations in Hilbert spaces

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Serie 9, Vol. 7 (1996), n.3, p. 181-199.
Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLIN_1996_9_7_3_181_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

$$
\begin{gathered}
\text { Articolo digitalizzato nel quadro del programma } \\
\text { bdim (Biblioteca Digitale Italiana di Matematica) } \\
\text { SIMAI \& UMI } \\
\text { http://ww.bdim.eu/ }
\end{gathered}
$$

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Accademia Nazionale dei Lincei, 1996.

Some results on elliptic and parabolic equations in Hilbert spaces

Memoria (*) di Giuseppe Da Prato

Abstract. - We consider elliptic and parabolic equations with infinitely many variables. We prove some results of existence, uniqueness and regularity of solutions.

Key words: Elliptic and parabolic equations in Hilbert spaces; Ornstein-Uhlenbeck semigroup; Schauder estimates.

Ruassunto. - Equazioni ellittiche e paraboliche negli spazi di Hilbert. In questo lavoro si considerano equazioni ellittiche e paraboliche con un numero finito di variabili. Si provano risultati di esistenza, unicità e regolarità delle soluzioni.

1. Introduction

Let H be a separable Hilbert space (norm $|\cdot|$, inner product $\langle\cdot, \cdot\rangle$). We denote by $\mathfrak{L}(H)$ the Banach algebra (norm $\|\cdot\|$) of all linear bounded operators from H into H, by $\mathfrak{L}_{1}(H)$ (norm $\|\cdot\|_{\mathscr{L}_{1}(H)}$) the set of all trace-class operators and by $\mathscr{L}_{2}(H)$ (norm $\left.\|\cdot\|_{\mathfrak{e}_{2}(H)}\right)$ the set of all Hilbert-Schmidt operators in H.

We are given a linear closed operator $A: D(A) \subset H \mapsto H$ and a symmetric bounded operator $Q \in \mathscr{L}(H)$. We assume

Hypothesis 1.1. (i) A is the infinitesimal generator of an analytic semigroup $e^{t A}$ in H, such that

$$
\begin{equation*}
\left\|e^{t A}\right\| \leqslant 1, \quad t \geqslant 0 \tag{1.1}
\end{equation*}
$$

(ii) There exists $v>0$ such that

$$
\begin{equation*}
(1 / v) I \leqslant Q \leqslant v I \tag{1.2}
\end{equation*}
$$

(iii) For any $t>0, e^{t A} \in \mathscr{L}_{2}(H)$ and

$$
\begin{equation*}
\int_{0}^{t} \operatorname{Tr}\left[e^{s A} Q e^{s A^{*}}\right] d s<+\infty . \tag{1.3}
\end{equation*}
$$

If Hypothesis 1.1 holds then for arbitrary $t \geqslant 0$, the linear operator Q_{t} defined as

$$
\begin{equation*}
Q_{t} x=\int_{0}^{t} e^{s A} Q e^{s A *} x d t, \quad x \in H, \tag{1.4}
\end{equation*}
$$

is well defined and trace-class.
(*) Presentata nella seduta del 9 marzo 1996.

The following result is proved in [8].
Proposition 1.1. Under Hypothesis 1.1 one has

$$
\begin{equation*}
e^{s A}(H) \subset Q_{t}^{1 / 2}(H), \quad 0<s \leqslant t . \tag{1.5}
\end{equation*}
$$

Moreover setting

$$
\begin{equation*}
\Lambda_{t}=Q_{t}^{-1 / 2} e^{t A}, \quad t>0, \tag{1.6}
\end{equation*}
$$

one has

$$
\begin{equation*}
\left\|\Lambda_{t}\right\| \leqslant v / \sqrt{t}, \quad t>0 . \tag{1.7}
\end{equation*}
$$

Remark 1.2. Since

$$
\Lambda_{t}=Q_{t}^{-1 / 2} e^{(t / 2) A} e^{(t / 2) A}, \quad t>0,
$$

we have that $\Lambda_{t} \in \mathscr{L}_{2}(H)$ so that

$$
\begin{equation*}
\gamma(t):=\operatorname{Tr}\left[\Lambda_{t} \Lambda_{t}^{*}\right]<+\infty, \quad \forall t>0 . \tag{1.8}
\end{equation*}
$$

The main object of this paper is the Ornstein-Ublenbeck transition semigroup $P_{t}, t \geqslant 0$ defined on $C_{b}(H)$, the Banach space of all uniformly continuous and bounded mappings from H into R, endowed with the norm $\|\varphi\|_{0}=\sup _{x \in H}|\varphi(x)|$. We set for $t>0\left({ }^{1}\right)$

$$
\begin{equation*}
P_{t} \varphi(x)=\int_{H} \varphi(x) \mathscr{N}\left(e^{t A} x, Q_{t}\right)(d y)=\int_{H} \varphi\left(e^{t A} x+y\right) \mathscr{N}\left(0, Q_{t}\right)(d y), \quad \varphi \in C_{b}(H) . \tag{1.9}
\end{equation*}
$$

It is useful to note that, setting

$$
\begin{equation*}
G_{t} \varphi(x)=\int_{H} \varphi(x+y) \mathscr{N}\left(0, Q_{t}\right)(d y), \quad \varphi \in C_{b}(H), \tag{1.10}
\end{equation*}
$$

we have

$$
\begin{equation*}
P_{t} \varphi(x)=\left(G_{t} \varphi\right)\left(e^{t A} x\right), \quad \varphi \in C_{b}(H), \quad t \geqslant 0, \quad x \in H . \tag{1.11}
\end{equation*}
$$

$P_{t}, t \geqslant 0$ is not a strongly continuous semigroup on $C_{b}(H)$, however it is weakly continuous, see [4]. In particular we have

$$
\begin{equation*}
\lim _{t \rightarrow 0} P_{t} \varphi(x)=\varphi(x), \quad \forall \varphi \in C_{b}(H), \quad \forall x \in H, \tag{1.12}
\end{equation*}
$$

the convergence being uniform on the compact subsets of H.
In this paper we first study some regularity properties of the semigroup $P_{t}, t \geqslant 0$. Then we introduce its infinitesimal generator \mathfrak{N} and characterize the corresponding interpolation spaces. Finally we apply the obtained results to the study of the elliptic equation

$$
\begin{equation*}
\lambda \varphi-(1 / 2) \operatorname{Tr}\left[D^{2} \varphi\right]-\langle A x, D \varphi\rangle=g, \quad x \in H, \tag{1.13}
\end{equation*}
$$

${ }^{(1)}$ For any $m \in H$ and any $S \in \mathscr{L}_{1}(H)$ symmetric nonnegative, we denote by $\mathcal{N}(m, S)$ the Gaussian measure with mean m and covariance operator S.
where $\lambda>0$ and $g: H \mapsto \boldsymbol{R}$ is a suitable function, and to the initial value problem

$$
\left\{\begin{array}{l}
d u(t, x) / d t=(1 / 2) \operatorname{Tr}\left[D^{2} u(t, x)\right]+\langle A x, D u(t, x)\rangle+F(t, x), \tag{1.14}\\
u(0, x)=\varphi(x),
\end{array}\right.
$$

where $F:[0, T] \times H \mapsto \boldsymbol{R}$ and $\varphi: H \mapsto \boldsymbol{R}$ are given functions fulfilling suitable assumptions. We also study problems (1.13) and (1.14) in spaces $C_{b}^{\theta}(H)$ of Hölder continuos functions. In this case we will prove, following [3], Schauder estimates and we will characterize, under suitable hypotheses the domain of the infinitesimal generator \mathfrak{K} of $P_{t}, t \geqslant 0$.

Let us introduce our main notation. The following subspaces of $C_{b}(H)$ will be needed.

- $C_{b}^{1}(H)$ is the Banach space of all functions $\varphi \in C_{b}(H)$ which are Fréchet differentiable on H, with a bounded uniformly continuous derivative $D \varphi$, with the norm

$$
\|\varphi\|_{1}=\|\varphi\|_{0}+[\varphi]_{1}
$$

where

$$
[\varphi]_{1}=\sup _{x \in H}|D \varphi(x)| .
$$

If $\varphi \in C_{b}^{1}(H)$ and $x \in H$ we shall identify $D \varphi(x)$ with the element b of H such that

$$
D \varphi(x) y=\langle b, y\rangle, \quad \forall y \in H
$$

- $C_{b}^{2}(H)$ is the Banach space of all functions $\varphi \in C_{b}^{1}(H)$ which are twice Fréchet differentiable on H, with a bounded uniformly continuous second derivative $D^{2} \varphi$ with the norm

$$
\|\varphi\|_{2}=\|\varphi\|_{1}+[\varphi]_{2}
$$

where

$$
[\varphi]_{2}=\sup _{x \in H}\left|D^{2} \varphi(x)\right| .
$$

If $\varphi \in C_{b}^{2}(H)$ and $x \in H$ we shall identify $D^{2} \varphi(x)$ with the linear bounded operator $T \in \mathscr{L}(H)$ such that

$$
D \varphi(x)(y, z)=\langle T y, z\rangle, \quad \forall y, z \in H .
$$

- $C_{b}^{n}(H), n \in \mathbf{N}$ is the Banach space of all functions $\varphi \in C_{b}(H)$ which are n times Fréchet differentiable on H, with bounded uniformly continuous derivatives of any order less or equal to n, with the norm

$$
\|\varphi\|_{n}=\|\varphi\|_{0}+\sum_{k=1}^{n}[\varphi]_{k}
$$

where

$$
[\varphi]_{k}=\sup _{x \in H}\left|D^{k} \varphi(x)\right|, \quad k=1, \ldots, n .
$$

We set

$$
C_{b}^{\infty}(H)=\bigcap_{n=1}^{\infty} C_{b}^{n}(H)
$$

- $\left.C_{b}^{\alpha}(H), \alpha \in\right] 0,1[$, is the Banach space of all α-Hölder continuous and bounded functions $\varphi \in C_{b}(H)$ with the norm

$$
\|\varphi\|_{\alpha}=\|\varphi\|_{0}+[\varphi]_{\alpha}
$$

where

$$
[\varphi]_{\alpha}=\sup _{x, y \in H, x \neq y} \frac{|\varphi(x)-\varphi(y)|}{|x-y|^{\alpha}}<+\infty
$$

- $\left.C_{b}^{1+\alpha}(H), \alpha \in\right] 0,1\left[\right.$, is the set of all functions $\varphi \in C_{b}^{1}(H)$ such that

$$
[D \varphi]_{\alpha}=\sup _{x, y \in H, x \neq y} \frac{|D \varphi(x)-D \varphi(y)|}{|x-y|^{\alpha}}<+\infty
$$

$C_{b}^{1+a}(H)$ is a Banach space with the norm

$$
\|\varphi\|_{1+\alpha}=\|\varphi\|_{1}+[D \varphi]_{a}
$$

- $\left.C_{b}^{2+a}(H), \alpha \in\right] 0,1\left[\right.$, is the set of all functions $\varphi \in C_{b}^{2}(H)$ such that

$$
\left[D^{2} \varphi\right]_{\alpha}=\sup _{x, y \in H, x \neq y} \frac{\left\|D^{2} \varphi(x)-D^{2} \varphi(y)\right\|}{|x-y|^{\alpha}}<+\infty
$$

$C_{b}^{2+a}(H)$ is a Banach space with the norm

$$
\|\varphi\|_{2+\alpha}=\|\varphi\|_{2}+\left[D^{2} \varphi\right]_{\alpha} .
$$

We will also need some notations and results on Interpolation Theory.
Let first recall the definition of interpolation space, see [20]. Let $X,\|\cdot\|_{X}$ and Y, $\|\cdot\|_{Y}$ be Banach spaces such that $Y \subset X$ and

$$
\|y\|_{X} \leqslant c\|y\|_{Y}, \quad \forall y \in Y
$$

for some constant $c>0$.
Let $\alpha \in] 0,1]$. We denote by $(X, Y)_{\alpha, \infty}$ the real interpolation space consisting of all points $x \in X$ such that

$$
\|x\|_{(X, Y)_{a, \infty}}=\sup _{t>0} t^{-\alpha} K(t, x, X, Y)<+\infty,
$$

where

$$
K(t, x, X, Y)=\inf \left\{\|a\|_{X}+t\|b\|_{Y}: x=a+b, a \in X, b \in Y\right\}
$$

$(X, Y)_{a, \infty}$ is a Banach space with norm $\|\cdot\|_{(X, Y)_{a, \infty}}$.
It is easy to see that x belongs to $(X, Y)_{\beta, \infty}$ if and only if for any $t \in[0,1]$ there exists $a_{t} \in X, b_{t} \in Y$ and a constant $C>0$ independent of t, such that $\left\|a_{t}\right\|_{X} \leqslant C t^{\beta}$ and $\left\|b_{t}\right\|_{Y} \leqslant C t^{\beta-1}$.

We also recall the following interpolation result, see [2]:
Proposition 1.3. For all $\theta \in] 0,1[$ we have

$$
\left(C_{b}(H), C_{b}^{1}(H)\right)_{\theta, \infty}=C_{b}^{\theta}(H)
$$

2. Regularity properties of $P_{t}, t \geqslant 0$

We first recall a result proved in [8].
Theorem 2.1. For all $t>0$ and for all $\varphi \in C_{b}(H), P_{t} \varphi \in C_{b}^{\infty}(H)$. In particular, for any $b, k \in H$, we bave

$$
\begin{equation*}
\left\langle D P_{t} \varphi(x), b\right\rangle=\int_{H}\left\langle\Lambda_{t} h, Q_{t}^{-1 / 2} y\right\rangle \varphi\left(e^{t A} x+y\right) \Re \pi\left(0, Q_{t}\right)(d y) \tag{2.1}
\end{equation*}
$$

and
$\left\langle D^{2} P_{t} \varphi(x) h, k\right\rangle=$
$=\int_{H}\left\langle\Lambda_{t} h, Q_{t}^{-1 / 2} y\right\rangle\left\langle\Lambda_{t} k, Q_{t}^{-1 / 2} y\right\rangle \varphi\left(e^{t A} x+y\right) \Re\left(0, Q_{t}\right)(d y)-\left\langle\Lambda_{t} b, \Lambda_{t} k\right\rangle P_{t} \varphi(x)$.
Remark 2.2. By (2.1) and (2.2) the following estimates can be proved easily with the help of (1.7)

$$
\begin{align*}
& \left|D P_{t} \varphi(x)\right| \leqslant v t^{-1 / 2}\|\varphi\|_{0}, \quad x \in H, \tag{2.3}\\
& \left\|D^{2} P_{t} \varphi(x)\right\| \leqslant\left(\sqrt{2} v^{2} / t\right)\|\varphi\|_{0}, \quad x \in H \tag{2.4}
\end{align*}
$$

We will also need an estimate for the third derivative of $P_{t} \varphi$, that can be proved in a similar way

$$
\begin{equation*}
\left\|D^{3} P_{t} \varphi(x)\right\| \leqslant 2 \sqrt{6} v^{3} t^{-3 / 2}\|\varphi\|_{0}, \quad x \in H \tag{2.5}
\end{equation*}
$$

By Proposition 1.3 we easily obtain the following corollaries.
Corollary 2.3. For all $t>0, \alpha \in] 0,1[$, we have

$$
\begin{equation*}
\left\|D P_{t} \varphi\right\|_{\alpha} \leqslant v^{\alpha} t^{-\alpha / 2}\|\varphi\|_{0}, \quad \varphi \in C_{b}(H) \tag{2.6}
\end{equation*}
$$

Corollary 2.4. For all $t>0, \theta \in] 0,1[, \alpha \in] \theta, 1[$ we have

$$
\begin{equation*}
\left\|P_{t} \varphi\right\|_{\alpha} \leqslant v^{\alpha-\theta} t^{(\theta-\alpha) / 2}\|\varphi\|_{\theta}, \quad \varphi \in C_{b}^{\theta}(H) \tag{2.7}
\end{equation*}
$$

2.1. Existence of $\operatorname{Tr}\left[D^{2} P_{t} \varphi(x)\right]$

We show here that the linear operator $D^{2} P_{t} \varphi(x)$ is trace-class for all $t>0$ and $x \in H$.

Proposition 2.5. Let $\varphi \in C_{b}(H), t>0$ and $x \in H$. Then $D^{2} P_{t} \varphi(x) \in \mathscr{L}_{1}(H)$ and

$$
\begin{align*}
& \operatorname{Tr}\left[D^{2} P_{t} \varphi(x)\right]= \tag{2.8}\\
& \quad=\int_{H}\left|\Lambda_{t}^{*} Q_{t}^{-1 / 2} y\right|^{2} \varphi\left(e^{t A} x+y\right) \mathscr{T}\left(0, Q_{t}\right)(d y)-\operatorname{Tr}\left[\Lambda_{t} \Lambda_{t}^{*}\right] P_{t} \varphi(x)
\end{align*}
$$

Moreover the following estimate bolds

$$
\begin{equation*}
\left\|D^{2} P_{t} \varphi(x)\right\|_{\mathscr{R}_{1}(H)} \leqslant 2 \operatorname{Tr}\left[\Lambda_{t} \Lambda_{t}^{*}\right]\|\varphi\|_{0} . \tag{2.9}
\end{equation*}
$$

Proof. Since $\Lambda_{t} \in \mathscr{L}_{2}(H)$ (see Remark 1.2) it is enough to show that the linear operator $S_{t, x}$ defined as

$$
\left\langle S_{t, x} h, k\right\rangle=\int_{H}\left\langle\Lambda_{t} h, Q_{t}^{-1 / 2} y\right\rangle\left\langle\Lambda_{t} k, Q_{t}^{-1 / 2} y\right\rangle \varphi\left(e^{t A} x+y\right) \mathscr{\tau}\left(0, Q_{t}\right)(d y), \quad b, k \in H,
$$

is trace-class for any $t>0$ and $x \in H$. For this is enough to show, compare N . Dunford and J. T. Schwartz [10, Lemma 14 (a), p. 1098], that there exists a constant $C>0$ such that

$$
\begin{equation*}
\left|\operatorname{Tr}\left[N S_{t, x}\right]\right| \leqslant C\|N\|, \tag{2.10}
\end{equation*}
$$

for any symmetric positive operator $N \in \mathscr{L}(H)$ of finite rank. To this purpose let $\left\{e_{j}\right\}$ be a complete orthonormal system in H. Then we have

$$
\begin{align*}
& \operatorname{Tr}\left[N S_{t, x}\right]=\sum_{j=1}^{\infty} \int_{H}\left\langle\Lambda_{t} e_{j}, Q_{t}^{-1 / 2} y\right\rangle\left\langle\Lambda_{t} N^{*} e_{j}, Q_{t}^{-1 / 2} y\right\rangle . \tag{2.11}\\
& \cdot \varphi\left(e^{t A} x+y\right) \mathscr{N}\left(0, Q_{t}\right)(d y)=\int_{H}\left|N^{1 / 2} \Lambda_{t}^{*} Q_{t}^{-1 / 2} y\right|^{2} \varphi\left(e^{t A} x+y\right) \mathscr{N}\left(0, Q_{t}\right)(d y) .
\end{align*}
$$

It follows,

$$
\begin{equation*}
\left|\operatorname{Tr}\left[N S_{t, x}\right]\right| \leqslant\|\varphi\|_{0} \operatorname{Tr}\left[\Lambda_{t}^{*} \Lambda_{t} N\right] \leqslant\|\varphi\|_{0}\|N\| \operatorname{Tr}\left[\Lambda_{t}^{*} \Lambda_{t}\right] . \tag{2.12}
\end{equation*}
$$

So (2.10) is fulfilled and we have proved that $D^{2} P_{t} \varphi(x)$ is trace-class for any $t>0$ and $x \in H$. Moreover (2.8) and (2.9) follow setting $N=I$ respectively in (2.11) and in (2.12).

Remark 2.6. We want to describe in next example the behaviour of $\gamma(t)=$ $=\operatorname{Tr}\left[\Lambda_{t} \Lambda_{t}^{*}\right]$ near $t=0$, in order to know whether it is integrable or not.

Assume that A is a negative self-adjoint operator, that $Q=I$, and that there exists a complete orthonormal system $\left\{e_{k}\right\}$ in H such that

$$
A e_{k}=-\lambda_{k} e_{k}, \quad \lambda_{k} \uparrow+\infty,
$$

with

$$
\sum_{k=1}^{\infty} \frac{1}{\lambda_{k}}<+\infty .
$$

Then Hypothesis 1.1 is obviously fulfilled and we have

$$
Q_{t}=\left(e^{2 t A}-1\right) /(2 A) .
$$

It follows

$$
\Lambda_{t} \Lambda_{t}^{*}=2 A e^{2 t A} /\left(e^{2 t A}-1\right), \quad t>0
$$

so that

$$
\begin{equation*}
\Lambda_{t}=2 \sum_{k=1}^{\infty} \lambda_{k} e^{-2 t \lambda_{k}} /\left(1-e^{-2 t \lambda_{k}}\right)=(2 / t) F\left(\lambda_{k}\right), \tag{2.13}
\end{equation*}
$$

where

$$
\begin{equation*}
F(\xi)=\xi e^{-2 \xi} /\left(1-e^{-2 \xi}\right), \quad \xi>0 . \tag{2.14}
\end{equation*}
$$

Let $C_{1}>0, C_{2}>0$ be such that

$$
C_{1} e^{-3 \xi} \leqslant F(\xi) \leqslant C_{2} e^{-\xi}, \quad \xi>0 .
$$

So the behaviour of $\gamma(t)$ near 0 is determined by

$$
\sum_{k=1}^{\infty} e^{-t \lambda_{k}}
$$

For instance if

$$
\lambda_{k}=k^{1+a},
$$

where $\alpha>0$, we have that $\gamma(t)$ behaves at 0 as

$$
(1 / t) \int_{0}^{+\infty} e^{-t x^{1+a}} d x,
$$

and so as $t^{-1-1 / \alpha}$. In particular if $\lambda_{k}=k^{2}$ we have $\gamma(t) \simeq t^{-3 / 2}$.
2.2. Additional regulartiy result when $\varphi \in C_{b}^{1}(H)$.

Proposition 2.7. Let $\varphi \in C_{b}^{1}(H), t>0$ and $x \in H$. Then we have

$$
\begin{equation*}
\left\langle D^{2} P_{t} \varphi(x) b, k\right\rangle=\int_{H}\left\langle\Lambda_{t} k, Q_{t}^{-1 / 2} y\right\rangle\left\langle D \varphi\left(e^{t A} x+y\right), e^{t A} b\right\rangle \mathscr{N}\left(0, Q_{t}\right)(d y) . \tag{2.15}
\end{equation*}
$$

Moreover $D^{2} P_{t} \varphi(x) \in \mathfrak{L}_{1}(H)$ and

$$
\begin{equation*}
\operatorname{Tr}\left[D^{2} P_{t} \varphi(x)\right]=\int_{H}\left\langle\Lambda_{t}^{*} Q_{t}^{-1 / 2} y, e^{t A^{*}} D \varphi\left(e^{t A} x+y\right)\right\rangle \mathcal{N}\left(0, Q_{t}\right)(d y) \tag{2.16}
\end{equation*}
$$

Finally the following estimates hold

$$
\begin{equation*}
\left\|D^{2} P_{t} \varphi(x)\right\| \leqslant(v / \sqrt{t})\|\varphi\|_{1}, \tag{2.17}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\operatorname{Tr}\left[D^{2} P_{t} \varphi(x)\right]\right| \leqslant\left\{\operatorname{Tr}\left[\Lambda_{t} \Lambda_{t}^{*}\right]\right\}^{1 / 2}\|\varphi\|_{1} . \tag{2.18}
\end{equation*}
$$

Proof. Let $t>0, x \in H$. Since

$$
\left\langle D P_{t} \varphi(x), b\right\rangle=\int_{H}\left\langle D \varphi\left(e^{t A} x+y\right), e^{t A} b\right\rangle \mathscr{N}\left(0, Q_{t}\right)(d y),
$$

(2.15) follows easily by differentiating (2.1). Moreover (2.16) is an immediate consequence of (2.15), recalling that, by Proposition $2.5, D^{2} P_{t} \varphi(x)$ is trace-class.

We prove now (2.17). By (2.15), using Hölder's estimate, it follows

$$
\begin{aligned}
&\left|\left\langle D^{2} P_{t} \varphi(x) b, k\right\rangle\right|^{2} \leqslant\|\varphi\|_{1}^{2}|b|^{2}=\int_{H}\left|\left\langle\Lambda_{t} k, Q_{t}^{-1 / 2} y\right\rangle\right|^{2} \vartheta\left(0, Q_{t}\right)(d y)= \\
&=\|\varphi\|_{1}^{2}|b|^{2}\left|\Lambda_{t} k\right|^{2} \leqslant(1 / t)\|\varphi\|_{1}^{2}|b|^{2}|k|^{2}
\end{aligned}
$$

and (2.17) is proved. We prove finally (2.18). We have, using again Hölder's estimate

$$
\begin{aligned}
&\left|\operatorname{Tr}\left[D^{2} P_{t} \varphi(x)\right]\right|^{2} \leqslant\|\varphi\|_{1}^{2} \int_{H}\left|e^{t A} \Lambda_{t}^{*} Q_{t}^{-1 / 2} y\right|^{2} \operatorname{T}\left(0, Q_{t}\right)(d y)= \\
&=\|\varphi\|_{1}^{2} \operatorname{Tr}\left[\Lambda_{t} e^{t A^{*}} e^{t A} \Lambda_{t}^{*}\right]=\|\varphi\|_{1}^{2} \operatorname{Tr}\left[\Lambda_{t} \Lambda_{t}^{*}\right] .
\end{aligned}
$$

The proof is complete.
In a similar way we prove the following result.
Proposition 2.8. Let $\varphi \in C_{b}^{1}(H), t>0$ and $x \in H$. Then for all $h, k, l \in H$ we bave

$$
\begin{align*}
D^{3} P_{t} \varphi(x)(h, k, l)= & \int_{H}\left\langle\Lambda_{t} h, Q_{t}^{-1 / 2} y\right\rangle\left\langle\Lambda_{t} k, Q_{t}^{-1 / 2} y\right\rangle \tag{2.19}\\
& \cdot\left\langle D \varphi\left(e^{t A} x+y\right), e^{t A} j\right\rangle \mathscr{N}\left(0, Q_{t}\right)(d y)-\left\langle\Lambda_{t} h, \Lambda_{t} k\right\rangle\left\langle D P_{t} \varphi(x), l\right\rangle
\end{align*}
$$

Moreover the following estimate bolds

$$
\begin{equation*}
\left\|D^{3} P_{t} \varphi(x)\right\| \leqslant\left(\sqrt{2} v^{2} / t\right)\|\varphi\|_{1} . \tag{2.20}
\end{equation*}
$$

By interpolation we obtain the following results.
Corollary 2.9. Let $\theta \in] 0,1\left[, \varphi \in C_{b}^{\theta}(H), t>0\right.$ and $x \in H$. Then we have

$$
\begin{equation*}
\left\|D^{2} P_{t} \varphi(x)\right\| \leqslant 2^{(1-\theta) / 2} v^{2-\theta} t^{\theta / 2-1}\|\varphi\|_{\theta}, \tag{2.21}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\operatorname{Tr}\left[D^{2} P_{t} \varphi(x)\right]\right| \leqslant 2^{1-\theta}\left\{\operatorname{Tr}\left[\Lambda_{t} \Lambda_{t}^{*}\right]\right\}^{1-\theta / 2}\|\varphi\|_{\theta} \tag{2.22}
\end{equation*}
$$

Corollary 2.10. Let $\theta \in] 0,1\left[, \varphi \in C_{b}^{\theta}(H), t>0\right.$ and $x \in H$. Then we have

$$
\begin{equation*}
\left\|D^{2} P_{t} \varphi\right\|_{\alpha} \leqslant 2^{(1-\alpha-\theta) / 2} v^{2+\alpha-\theta} t^{(\theta-\alpha) / 2-1}\|\varphi\|_{\theta} . \tag{2.23}
\end{equation*}
$$

Remark 2.11. Assume that

$$
\gamma(t) \leqslant C t^{-3 / 2}
$$

Then by (2.22) we have

$$
\left|\operatorname{Tr}\left[D^{2} P_{t} \varphi(x)\right]\right| \leqslant 2^{1-\theta} C^{1-\theta / 2} t^{-3 / 2+3 \theta / 4}\|\varphi\|_{\theta}
$$

Thus $\left|\operatorname{Tr}\left[D^{2} P_{t} \varphi(x)\right]\right|$ is integrable near 0 provided $\theta>2 / 3$.

2.3. Kolmogorov equation

We want to show here that if $\varphi \in C_{b}(H)$ then for $t>0$ the function $u(t, x)=$ $=P_{t} \varphi(x)$ is a solution to the Kolmogorov equation

$$
\begin{equation*}
u_{t}(t, x)=(1 / 2) \operatorname{Tr}\left[D^{2} u(t, x)\right]+\langle A x, D u(t, x)\rangle, \quad t>0, x \in D(A) \tag{2.24}
\end{equation*}
$$

If $D u(t, x) \in D\left(A^{*}\right)$ we can write (2.24) as

$$
\begin{equation*}
u_{t}(t, x)=(1 / 2) \operatorname{Tr}\left[D^{2} u(t, x)\right]+\langle x, A * D u(t, x)\rangle, \quad t>0, x \in H \tag{2.25}
\end{equation*}
$$

Proposition 2.12. Let $\varphi \in C_{b}(H), t>0$ and $x \in D(A)$. Then $u(t, x)=P_{t} \varphi(x)$ is a solution to the Kolmogorov equation (2.25).

Proof. Let $u(t, x)=P_{t} \varphi(x), t>0, x \in H$. Then the term $\operatorname{Tr}\left[D^{2} u(t, x)\right]$ is well defined by Proposition 2.5. Moreover also the term $\langle x, A * D u(t, x)\rangle$ is well defined, since, by (2.1) we have

$$
\begin{equation*}
\langle x, A * D u(t, x)\rangle=\int_{H}\left\langle Q_{t}^{-1 / 2} e^{(t / 2) A} A e^{(t / 2) A}, Q_{t}^{-1 / 2} y\right\rangle \varphi\left(e^{t A} x+y\right) \mathscr{N}\left(0, Q_{t}\right)(d y) \tag{2.26}
\end{equation*}
$$

By (2.26) we have

$$
\begin{equation*}
\left|\left\langle x, A^{*} D u(t, x)\right\rangle\right| \leqslant K(t)\|\varphi\|_{0}|x| \tag{2.27}
\end{equation*}
$$

where

$$
\begin{equation*}
K^{2}(t)=\left\|Q_{t}^{-1 / 2} e^{(t / 2) A} A e^{(t / 2) A}\right\| \tag{2.28}
\end{equation*}
$$

It remains to show that $u(t, x)$ is differentiable in t and that (2.25) holds. To this aim let us introduce the space of all exponential functions $\mathcal{E}(H)$. We denote by $\mathcal{E}(H)$ the linear subspace of $C_{b}(H)$ spanned by all $\zeta_{b}, b \in H$:

$$
\zeta_{b}(x)=e^{i\langle h, x\rangle}, \quad x \in H
$$

Since, as easily checked

$$
\begin{equation*}
P_{t} \xi_{b}(x)=e^{i\left\langle e^{t A} x, b\right\rangle-(1 / 2)\left\langle Q_{t} b, b\right\rangle}, \quad x \in H \tag{2.29}
\end{equation*}
$$

then the proposition holds when $\varphi \in \mathcal{E}(H)$.
Let now $\left\{\varphi_{n}\right\}$ be a sequence in $\delta(H)$ such that
(i) $\lim _{n \rightarrow \infty} \varphi_{n}(x)=\varphi(x), \forall x \in H$,
(ii) $\left\|\varphi_{n}\right\|_{0} \leqslant 2\|\varphi\|_{0}$,
and set $u_{n}(t, x)=P_{t} \varphi_{n}(x), t \geqslant 0, x \in H$. We fix now $t>0$. By (2.3)-(2.5) it follows that the sequence of functions $\left\{u_{n}(t, \cdot)\right\}$ has all derivatives of order less than 3 , bounded. This implies that

$$
\lim _{n \rightarrow \infty} u_{n}(t, \cdot)=u(t, \cdot), \quad \text { in } C_{b}^{2}(H)
$$

uniformly in t on compact subsets of $] 0,+\infty[$. Moreover by (2.9) it follows that the sequence in $C_{b}(H)$ defined by $\left\{\operatorname{Tr}\left[D^{2} u_{n}(t, \cdot)\right]\right\}$ is bounded, so that

$$
\lim _{n \rightarrow \infty} \operatorname{Tr}\left[D^{2} u_{n}(t, \cdot)\right]=\operatorname{Tr}\left[D^{2} u(t, \cdot)\right], \quad \text { in } C_{b}(H),
$$

uniformly in t on compact subsets of $] 0,+\infty[$. Finally from (2.27) it follows that

$$
\lim _{n \rightarrow \infty}\left\langle x, A^{*} D u_{n}(t, x)\right\rangle=\left\langle x, A^{*} D u(t, x)\right\rangle, \quad x \in H
$$

uniformly in t on compact subsets of $] 0,+\infty[$ and in x on bounded subsets of H. This
implies that for any $x \in H$

$$
\lim _{n \rightarrow \infty} \frac{d}{d t} u_{n}(t, x)=\frac{d}{d t} u(t, x)
$$

for all $x \in H$ uniformly in t on compact subsets of $] 0,+\infty[$ and the conclusion follows.

3. The infinitesimal generator

We proceed here as in [4], by introducing the Laplace transform of $P_{t}, t \geqslant 0$. For any $\lambda>0$ we set

$$
\begin{equation*}
F(\lambda) \varphi(x)=\int_{0}^{+\infty} e^{-\lambda t} P_{t} \varphi(x) d t, \quad x \in H, \varphi \in C_{b}(H) \tag{3.1}
\end{equation*}
$$

Note that the above integral is convergent for any fixed $x \in H$ and not in $C_{b}(H)$ in general. In [4] is shown that $F(\lambda)$ maps $C_{b}(H)$ into itself and that it is one-to-one. So there exists a unique closed operator \mathfrak{N} in $C_{b}(H)$:

$$
\mathfrak{N}: D(\Re) \subset C_{b}(H) \mapsto C_{b}(H)
$$

such that the resolvent set $\varrho(\mathscr{N})$ of \mathscr{N} contains $] 0,+\infty[$ and

$$
\begin{equation*}
R(\lambda, \mathfrak{K}) \varphi(x)=\int_{0}^{+\infty} e^{-\lambda t} P_{t} \varphi(x) d t, \quad \forall \lambda>0 \tag{3.2}
\end{equation*}
$$

\mathfrak{N} is called the infinitesimal generator of the semigroup $P_{t}, t \geqslant 0$.
Let $\lambda>0, g \in C_{b}(H)$ and set $\varphi=R(\lambda, \mathfrak{K}) g$. Then φ is called a generalized solution to the equation

$$
\begin{equation*}
\lambda \varphi-(1 / 2) \operatorname{Tr}\left[D^{2} \varphi\right]-\langle A x, D \varphi\rangle=g \tag{3.3}
\end{equation*}
$$

It is also useful to introduce the concept of strict solution. To this purpose we have to introduce a suitable restriction \mathfrak{N}_{0} of \mathfrak{N}.

By definition the domain $D\left(\mathscr{N}_{0}\right)$ of \mathscr{R}_{0} is the set of all functions $\varphi \in C_{b}(H)$ such that
(i) $\varphi \in C_{b}^{2}(H)$ and $D^{2} \varphi(x) \in \mathscr{L}_{1}(H)$ for all $x \in H$.
(ii) $D \varphi(x) \in D\left(A^{*}\right)$ and the mapping

$$
H \mapsto \boldsymbol{R}, \quad x \mapsto A * D \varphi(x)
$$

belongs to $C_{b}(H)$.
Then we define the operator \mathscr{N}_{0} by setting

$$
\begin{equation*}
\mathscr{N}_{0} \varphi=(1 / 2) \operatorname{Tr}\left[D^{2} \varphi\right]+\langle x, A * D \varphi\rangle, \quad \forall \varphi \in D\left(\mathscr{N}_{0}\right) . \tag{3.4}
\end{equation*}
$$

Remark 3.1. In the paper [5], it is proved that the operator \mathfrak{N} is the closure of \mathscr{N}_{0} with respect to the \mathcal{K}-convergence. A sequence $\left\{\varphi_{n}\right\} \subset C_{b}(H)$ is said to be \mathcal{K}-convergent to $\varphi \in C_{b}(H)$ if
(i) $\sup _{n \in N}\left\|\varphi_{n}\right\|_{0}<+\infty$.
(ii) For any compact subset K in H, we have

$$
\lim _{n \rightarrow \infty} \sup _{x \in K}\left|\varphi(x)-\varphi_{n}(x)\right|=0
$$

From the regularity results of the semigroup $P_{t}, t \geqslant 0$, obtained in the previous section, one gets the following regularity results for the resolvent of \mathfrak{N}.

Proposition 3.2. Let $\lambda>0, g \in C_{b}(H)$, and $\operatorname{set} \varphi=R(\lambda, \mathfrak{N}) g$. Then the following statements hold
(i) $\varphi \in C_{b}^{1}(H)$ and

$$
\begin{equation*}
|D \varphi(x)| \leqslant \Gamma(1 / 2) \cdot \lambda^{-1 / 2}\|g\|_{0}, \quad x \in H \tag{3.5}
\end{equation*}
$$

where Γ denotes the gamma Euler function.
(ii) For any $\alpha \in] 0,1\left[\right.$, we have $\varphi \in C_{b}^{1+\alpha}(H)$ and

$$
\begin{equation*}
[D \varphi]_{\alpha} \leqslant 2^{\alpha / 2} \Gamma((1-\alpha) / 2) \cdot \lambda^{(\alpha-1) / 2}\|g\|_{0}, \tag{3.6}
\end{equation*}
$$

(iii) If $g \in C_{b}^{\theta}(H)$ for some $\left.\theta \in\right] 0,1\left[\right.$, then $\varphi \in C_{b}^{2}(H)$, and

$$
\begin{equation*}
\left\|D^{2} \varphi(x)\right\| \leqslant 2^{(1-\theta) / 2} \Gamma(\theta / 2) \lambda^{-\theta / 2}\|g\|_{0}, \quad x \in H \tag{3.7}
\end{equation*}
$$

(iv) If $g \in C_{b}^{\theta}(H)$ for some $\left.\theta \in\right] 0,1\left[\right.$, and if in addition $\gamma(t)^{1-\theta / 2}$ is integrable near 0 , then $\varphi \in D\left(\mathscr{M}_{0}\right)$ and so it is a strict solution to equation (3.3).

Remark 3:3. If

$$
\gamma(t) \leqslant C t^{-3 / 2},
$$

for some constant $C>0$. Then condition (iv) is fulfilled provided $g \in C_{b}^{\theta}(H)$ with $\theta>2 / 3$, see Remark 2.11.

3.1. Interpolation spaces $D_{\mathscr{T}}(\theta, \infty)$

The semigroup $P_{t}, t \geqslant 0$ is not strongly continuous in $C_{b}(H)$, even when H is finitedimensional, see $[4,7]$. The following proposition, proved in [6], gives a characterization of the maximal subspace \mathcal{Y} of $C_{b}(H)$ where $P_{t}, t \geqslant 0$ is strongly continuous.

Proposition 3.4. Let $\varphi \in C_{b}(H)$. Then the following statements are equivalent
(i) $\lim _{t \rightarrow 0} P_{t} \varphi=\varphi$ in $C_{b}(H)$.
(ii) $\lim _{t \rightarrow 0} \varphi\left(e^{t A} x\right)=\varphi(x)$ in $C_{b}(H)$.

We shall set

$$
y=\left\{\varphi \in C_{b}(H): \lim _{t \rightarrow 0} \varphi\left(e^{t A} x\right)=\varphi(x) \text { in } C_{b}(H)\right\},
$$

and for any $\theta \in] 0,1[$

$$
y=\left\{\varphi \in C_{b}(H): \exists C>0,\left|\varphi\left(e^{t A} x\right)-\varphi(x)\right| \leqslant C t^{\theta}, \forall x \in H\right\} .
$$

We want now to characterize the interpolation spaces $\left(C_{b}(H), D(\mathscr{M})\right)_{\theta, \infty}$ that we shall denote by $D_{\mathfrak{\pi}}(\theta, \infty)$. We need some preliminary result.

Proposition 3.5. Let $\varphi \in C_{b}(H)$ and $\left.\theta \in\right] 0,1[$. Then the following statements bold.
(i) If $\varphi \in D_{\pi}(\theta, \infty)$ then we bave

$$
\begin{equation*}
\sup _{\lambda>0} \lambda^{\theta}\|\mathscr{M} R(\lambda, \mathfrak{M}) \varphi\|_{0}<+\infty \tag{3.8}
\end{equation*}
$$

(ii) If $\varphi \in C_{b}(H)$ and fulfills (3.8) then $\varphi \in D_{\Re}(\theta, \infty)$.

Proof. (i) Let $\varphi \in D_{\Re}(\theta, \infty)$. Then by the definition of interpolation space given in $\mathbb{S} 1$, for any $t \in[0,1]$ there exist $\alpha_{t} \in C_{b}(H), \beta_{t} \in D(\mathscr{K})$, such that $\varphi=\alpha_{t}+\beta_{t}$ and

$$
\left\|\alpha_{t}\right\|_{0} \leqslant C t^{\theta}, \quad\left\|\Re \tilde{T} \beta_{t}\right\|_{0} \leqslant C t^{\theta-1}
$$

for some $C>0$. Now for any $\lambda>0$ we have

$$
\mathfrak{M} R(\lambda, \mathfrak{N}) \varphi=\mathfrak{N} R(\lambda, \mathscr{N}) \alpha_{1 / \lambda}+R(\lambda, \mathfrak{N}) \mathscr{N} \beta_{1 / \lambda}
$$

It follows

$$
\|\mathscr{N} R(\lambda, \mathfrak{N}) \varphi\|_{0} \leqslant C\|\mathscr{N} R(\lambda, \mathscr{N})\| \lambda^{-\theta}+C\|R(\lambda, \mathfrak{N})\| \lambda^{1-\theta} \leqslant 3 \lambda^{-\theta}
$$

and the statement is proved.
(ii) Assume that φ fulfills (3.8). Define

$$
C_{1}=\sup _{\lambda>0} \lambda^{\theta}\|\mathscr{N} R(\lambda, \mathfrak{N}) \varphi\|_{0}
$$

and set

$$
\alpha_{t}=-\mathfrak{N} R((1 / t), \mathfrak{N}) \varphi \cdot \beta_{t}=(1 / t) R((1 / t), \mathfrak{N}) \varphi
$$

Then we have $\alpha_{t}+\beta_{t}=\varphi$ and

$$
\left\|\alpha_{t}\right\|_{0} \leqslant C_{1} t^{\theta}, \quad\left\|\beta_{t}\right\|_{0} \leqslant t^{1-\theta}, \quad t>0
$$

so that $\varphi \in D_{\Re \pi}(\theta, \infty)$.
Lemma 3.6. Let $\theta \in] 0,1 / 2\left[, T>0, \varphi \in C_{b}^{2 \theta}(H)\right.$. Then there exists $C_{T}>0$ such that

$$
\begin{equation*}
\left|G_{t} \varphi(x)-\varphi(x)\right| \leqslant C_{T}\left[\operatorname{Tr}\left(Q_{t}\right)\right]^{\theta}[\varphi]_{2 \theta}, \quad t \in[0, T] \tag{3.9}
\end{equation*}
$$

Proof. We have

$$
\begin{aligned}
&\left|G_{t} \varphi(x)-\varphi(x)\right| \leqslant \int_{H}|\varphi(x+y)-\varphi(x)| \mathscr{N}\left(0, Q_{t}\right)(d y) \leqslant \\
& \leqslant[\varphi]_{2 \theta} \int_{H}|y|^{2 \theta} \mathcal{N}\left(0, Q_{t}\right)(d y) \leqslant D_{\theta}[\varphi]_{2 \theta}\left[\operatorname{Tr}\left(Q_{t}\right)\right]^{\theta}
\end{aligned}
$$

for some constant D_{θ}.
Now the conclusion follows.
Lemma 3.7. Let $\theta \in] 1 / 2,1\left[, T>0, \varphi \in C_{b}^{2 \theta}(H)\right.$. Then there exists $C_{1, T}>0$ such that

$$
\begin{equation*}
\left|G_{t} \varphi(x)-\varphi(x)\right| \leqslant C_{1, T}\left[\operatorname{Tr}\left(Q_{t}\right)\right]^{\theta}[\varphi]_{2 \theta}, \quad t \in[0, T] . \tag{3.10}
\end{equation*}
$$

Proof. We have

$$
\begin{aligned}
G_{t} \varphi(x)-\varphi(x)=\int_{H}[\varphi(x+y)-\varphi(x)] & \mathscr{L}\left(0, Q_{t}\right)(d y)= \\
& =\int_{0}^{1} \int_{H}^{1}\langle D \varphi(x+\xi y)-D \varphi(x), y\rangle \mathscr{N}\left(0, Q_{t}\right)(d y) d \xi
\end{aligned}
$$

It follows

$$
\left|G_{t} \varphi(x)-\varphi(x)\right| \leqslant[\varphi]_{2 \theta} \int_{0}^{1} \int_{H}|y|^{2 \theta} \xi^{2 \theta-1} \mathcal{N}\left(0, Q_{t}\right)(d y) d \xi
$$

and the conclusion follows as in the previous lemma.
Proposition 3.8. If $\left.\varphi \in D_{\pi}(\theta, \infty), \theta \in\right] 0,1\left[\right.$, there exists $C_{T}>0$ such that

$$
\begin{equation*}
\left\|P_{t} \varphi-\varphi\right\|_{0} \leqslant C_{T} t^{\theta}, \quad t \in[0, T] \tag{3.11}
\end{equation*}
$$

Proof. Let $\varphi \in D_{\Re}(\theta, \infty)$. Then for any $t>0$ there exists $\alpha_{t} \in C_{b}(H), \beta_{t} \in D(\mathscr{M})$ such that $\varphi=\alpha_{t}+\beta_{t}$,

$$
\begin{equation*}
\left\|\alpha_{t}\right\|_{0} \leqslant C t^{\theta}, \quad\left\|\mathscr{M} \beta_{t}\right\|_{0} \leqslant C t^{\theta-1} \tag{3.12}
\end{equation*}
$$

for some constant $C>0$. Since

$$
P_{t} \varphi-\varphi=\left(P_{t} a_{t}-a_{t}\right)+\left(P_{t} b_{t}-b_{t}\right)=\left(P_{t} a_{t}-a_{t}\right)+\int_{0}^{t} P_{s} \Re \operatorname{T} b(t) d s
$$

using (3.12), we find that (3.11) holds.
We can now prove the result
Theorem 3.9. For all $\theta \in] 0,1 / 2[U] 1 / 2,1[$ we have

$$
\begin{equation*}
D_{\mathscr{N}}(\theta, \infty) \subset C_{b}^{2 \theta}(H) \cap y_{\theta} . \tag{3.13}
\end{equation*}
$$

Proof. We only consider the case $\theta \in] 0,1 / 2[$, since the case $\theta \in] 1 / 2,1[$ can be treated in an analogous way.

STEP 1. If $\varphi \in D_{\mathscr{M}}(\theta, \infty)$ then there exists $C_{1}>0$ such that for all $\lambda \geqslant 1$ we have

$$
\begin{equation*}
\|\lambda D R(\lambda, গ \mathbb{N}) \varphi\|_{0} \leqslant C_{1} \lambda^{1 / 2-\theta}\|\varphi\|_{D_{\mathscr{N}}(\theta, \infty)} \tag{3.14}
\end{equation*}
$$

We first note that, since

$$
\frac{d}{d \lambda}[\lambda R(\lambda, \mathscr{K})]=R(\lambda, \mathscr{K})-\lambda(R(\lambda, \mathscr{K}))^{2}
$$

we have

$$
\begin{aligned}
\lambda R(\lambda, \mathfrak{N}) \varphi=R(1, \mathfrak{N}) \varphi+\int_{1}^{\lambda} R(s, \mathfrak{N})(1-s R(s, \mathfrak{N})) \varphi d s & = \\
& =R(1, \mathfrak{N}) \varphi+\int_{1}^{\lambda} R(s, \mathfrak{K}) \mathfrak{N} R(s, \mathfrak{N}) \varphi d s
\end{aligned}
$$

By Proposition 3.2 (i) it follows

$$
D_{x} \lambda R(\lambda, \mathfrak{N}) \varphi=D_{x} R(1, \mathfrak{N}) \varphi+\int_{1}^{\lambda} D_{x}[R(s, \mathfrak{N}) \mathfrak{N} R(s, \mathfrak{N}) \varphi] d s
$$

Moreover, taking into account (3.5) and (3.8), we find

$$
\|R(\lambda, \mathfrak{N}) \varphi\|_{1} \leqslant C \lambda^{-1 / 2}\|\varphi\|_{0}, \quad \forall \lambda>0
$$

we get

$$
\begin{aligned}
\|R(\lambda, \mathfrak{M}) \varphi\|_{1} \leqslant C\|\varphi\|_{0}+C \int_{1}^{\lambda} s^{-1 / 2-\theta}[\varphi]_{D_{\mathfrak{N}}(\theta, \infty)} d s & \\
& =C\|\varphi\|_{0}+C /(1 / 2-\theta)\left(\lambda^{1 / 2-\theta}-1\right)[\varphi]_{D_{\Re}(\theta, \infty)}
\end{aligned}
$$

for some $C>0$.
$S_{\text {TEP }}$ 2. $D_{\Re}(\theta, \infty) \subset C_{b}^{2 \theta}(H)$.
Let $x, y \in H$ such that $|x-y| \leqslant 1$, and let $\lambda \geqslant 1$. Then we have by (3.8) and (3.14),

$$
\begin{array}{r}
|\varphi(x)-\varphi(y)| \leqslant|\varphi(x)-\lambda R(\lambda, \mathfrak{N}) \varphi(x)|+|\lambda R(\lambda, \mathfrak{N}) \varphi(x)-\lambda R(\lambda, \mathfrak{N}) \varphi(y)|+ \\
+|\lambda R(\lambda, \mathfrak{N}) \varphi(y)-\varphi(y)| \leqslant 2[\varphi]_{D_{\mathfrak{N}}(\theta, \infty)} \lambda^{-\theta}+\|D(\mathfrak{N} R(\lambda, \mathfrak{N}) \varphi)\|_{0}|x-y| \leqslant \\
\leqslant 2[\varphi]_{D_{\mathfrak{N}}(\theta, \infty)} \lambda^{-\theta}+C\|\varphi\|_{D_{\mathfrak{N}}(\theta, \infty)}\left(\lambda^{1 / 2-\theta}+1\right)|x-y|
\end{array}
$$

Choosing $\lambda=|x-y|^{-2}$ we have

$$
|\varphi(x)-\varphi(y)| \leqslant 2[\varphi]_{D_{\text {лा }}(\theta, \infty)}|x-y|^{2 \theta}+C\|\varphi\|_{D_{\rho_{\pi}(\theta, \infty)}}\left(|x-y|^{2 \theta}+|x-y|\right)
$$

and the conclusion follows easily.
Step 3. $D_{\mathscr{N}}(\theta, \infty) \subset Y_{\theta}$.
Let $\varphi \in D_{\Re}(\theta, \infty)$. Then we have

$$
\begin{equation*}
\left|\varphi\left(e^{t B} x\right)-\varphi(x)\right| \leqslant\left|\varphi\left(e^{t B} x\right)-G_{t} \varphi\left(e^{t B} x\right)\right|+\left|P_{t} \varphi(x)-\varphi(x)\right| \tag{3.15}
\end{equation*}
$$

Since $\varphi \in C_{b}^{2 \theta}(H)$ by (3.9) we find

$$
\begin{equation*}
\left|\varphi\left(e^{t B} x\right)-G_{t} \varphi\left(e^{t B} x\right)\right| \leqslant C t^{\theta}[\varphi]_{2 \theta}, \quad t \in[0, T] \tag{3.16}
\end{equation*}
$$

Moreover from (3.11) it follows

$$
\begin{equation*}
\left\|P_{t} \varphi-\varphi\right\|_{0} \leqslant C_{T} t^{\theta}, \quad t \in[0, T] \tag{3.17}
\end{equation*}
$$

Substituting (3.16) and (3.17) into (3.15) we get finally

$$
\left|\varphi\left(e^{t B} x\right)-\varphi(x)\right| \leqslant\left(C+C_{T}\right) t^{\theta}[\varphi]_{2 \theta}
$$

and the proof of the theorem is complete.
4. Maximal regularity results for elliptic equations

The following result is proved in [3]. We give a sketch of the proof for the reader convenience.

Proposition 4.1. Assume that $\theta \in] 0,1\left[, g \in C_{b}^{\theta}(H)\right.$, and $\lambda>0$. Then the function $\varphi=R(\lambda, \mathfrak{\pi}) \mathrm{g}$ belongs to $C_{b}^{2+\theta}(H)$.

Proof. The proof is based on a general interpolation argument due to A . Lunardi see [16], in particular on the following inclusion result

$$
\begin{equation*}
\left(C_{b}^{a}(H), C_{b}^{2+\alpha}(H)\right)_{1-(\alpha-\theta) / 2, \infty} \subset C_{b}^{2+\theta}(H), \tag{4.1}
\end{equation*}
$$

for any $\alpha \in] \theta, 1[$. Consequently, in order to prove the theorem it will be enough to show that for some $\alpha \in] \theta$, $1[$, we have

$$
\begin{equation*}
\varphi \in\left(C_{b}^{a}(H), C_{b}^{2+\alpha}(H)\right)_{1-(a-\theta) / 2, \infty} . \tag{4.2}
\end{equation*}
$$

To prove (4.2) we set

$$
\varphi(x)=a(t, x)+b(t, x),
$$

where

$$
a(t, x)=\int_{0}^{t} e^{-\lambda s} P_{s} g(x) d s
$$

and

$$
b(t, x)=\int_{t}^{+\infty} e^{-\lambda s} P_{s} g(x) d s .
$$

Then from (2.7) it follows that

$$
\begin{aligned}
& \|a(\cdot, t)\|_{\alpha} \leqslant C(\alpha, \theta) \int_{0}^{t} e^{-\lambda s} s^{-(\alpha-\theta) / 2} d s\|g\|_{\theta}= \\
& \quad=C(\alpha, \theta) t^{1-(\alpha-\theta) / 2} \int_{0}^{1} e^{-\lambda t \sigma} \sigma^{-(\alpha-\theta) / 2} d \sigma\|g\|_{\theta} \leqslant \frac{C(\alpha, \theta)}{1-(\alpha-\theta) / 2} t^{1-(\alpha-\theta) / 2}\|g\|_{\theta},
\end{aligned}
$$

and from (2.8) that

$$
\begin{aligned}
& \|b(\cdot, t)\|_{2+\alpha} \leqslant C(\alpha, \theta) \int_{t}^{+\infty} e^{-\lambda s} s^{-((\alpha-\theta) / 2)-1} d s\|g\|_{\theta}= \\
& \quad=C(\alpha, \theta) t^{-(\alpha-\theta) / 2} \int_{1}^{+\infty} e^{-\lambda t \sigma} \sigma^{-((\alpha-\theta) / 2)-1} d \sigma\|g\|_{\theta} \leqslant \frac{C(\alpha, \theta)}{\alpha-\theta} t^{(\theta-\alpha) / 2}\|g\|_{\theta} .
\end{aligned}
$$

This implies (4.2).
By Proposition 4.1 and $3.2(i v)$ we find the result.
Theorem 4.2. Assume that $\theta \in] 0,1\left[, g \in C_{b}^{\theta}(H), \lambda>0\right.$, and in addition that

$$
\begin{equation*}
\int_{0}^{1}\left[\operatorname{Tr}\left(\Lambda_{t} \Lambda_{t}^{*}\right)\right]^{1-\theta / 2} d t<+\infty . \tag{4.3}
\end{equation*}
$$

Then, setting $\varphi=R(\lambda, \mathfrak{N}) g$, the following statements hold.
(i) $\varphi \in C_{b}^{2+\theta}(H)$ and $D^{2} \varphi(x) \in \mathscr{L}_{1}(H)$ for any $x \in H$.
(ii) $\operatorname{Tr}\left[D^{2} \varphi(\cdot)\right] \in C_{b}(H)$.
(iii) $x \rightarrow\left\langle x, A^{*} D \varphi\right\rangle \in C_{b}(H)$.

Moreover

$$
\begin{equation*}
\lambda \varphi(x)-(1 / 2) \operatorname{Tr}\left[D^{2} \varphi(x)\right]-\langle x, A * D \varphi\rangle=g(x) \tag{4.4}
\end{equation*}
$$

for all $x \in H$.
Remark 4.3. Let us consider the restriction $P_{t}^{\theta}, t \geqslant 0$ of the semigroup $P_{t}, t \geqslant 0$ to $\left.C_{b}^{\theta}(H), \theta \in\right] 0,1\left[\right.$. We can still define the infinitesimal generator π^{θ} of $P_{t}, t \geqslant 0$ to $C_{b}^{\theta}(H)$ by the Laplace, transform setting

$$
\begin{equation*}
R\left(\lambda, \pi^{\theta}\right) \varphi(x)=\int_{0}^{+\infty} e^{-\lambda t} P_{t}^{\theta} \varphi(x) d t \tag{4.5}
\end{equation*}
$$

It is easy to check that \mathscr{N}^{θ} is the part of \mathfrak{N} in $C_{b}^{\theta}(H)$:

$$
D\left(\mathscr{N}^{\theta}\right)=\left\{\varphi \in D(\mathfrak{N}) \cap C_{b}^{\theta}(H): \mathfrak{N} \varphi \in C_{b}^{\theta}(H)\right\}
$$

Theorem 4.2 enable us to characterize, under suitable assumptions, the domain of M^{θ}.
We have

$$
D\left(\mathscr{N}^{\theta}\right)=\left\{\varphi \in C_{b}^{2+\theta}(H):\langle A \cdot, D \varphi\rangle \in C_{b}(H)\right\} .
$$

If H is finite-dimensional this characterization of $D\left(\mathbb{N}^{\theta}\right)$ was obtained in [7].
Under the hypotheses of Theorem 4.2 we can give the following definition of $D\left(\mathscr{N}^{\theta}\right)$

$$
\begin{align*}
D\left(\mathscr{N}^{\theta}\right)=\left\{\varphi \in C_{b}^{2+\theta}(H): D^{2} \varphi(x)\right. & \in \mathfrak{L}_{1}(H), \forall x \in H \tag{4.6}\\
& \left.\operatorname{Tr}\left[D^{2} \varphi(x)\right] \in C_{b}(H),\langle A \cdot, D \varphi\rangle \in C_{b}(H)\right\} .
\end{align*}
$$

5. Maximal regularity results for parabolic equations

We are here concerned with the initial value problem

$$
\left\{\begin{array}{l}
d u(t, x) / d t=(1 / 2) \operatorname{Tr}\left[D^{2} u(t, x)\right]+\langle A x, D u(t, x)\rangle+F(t, x), \tag{5.1}\\
t \in] 0, T], x \in H, \\
u(0, x)=\varphi(x),
\end{array}\right.
$$

where $F \in C\left([0, T] ; C_{b}(H)\right)$ and $\varphi \in C_{b}(H)$.
Following S. Cerrai and F. Gozzi [5], we call the function $u:[0, T] \times H \mapsto \boldsymbol{R}$ defined as

$$
\begin{equation*}
u(t, x)=P_{t} \varphi(x)+\int_{0}^{t} P_{t-s} F(s, \cdot)(x) d s=u_{1}(t, x)+u_{2}(t, x) \tag{5.2}
\end{equation*}
$$

the mild solution to (5.1). Several properties of the mild solution u are described in the quoted paper [5]. Here we will discuss only some new maximal regularity results for u_{1} and u_{2}. Concerning u_{1} we have the following proposition.

Proposition 5.1. The following statements are equivalent
(i) $u_{1} \in C^{\theta}\left([0, T] ; C_{b}(H)\right)$.
(ii) $\varphi \in D_{\pi}(\theta, \infty)$.

Proof. (i) \Rightarrow (ii). It is enough to show that

$$
\begin{equation*}
\sup _{\lambda>0} \lambda^{\theta}\|\mathfrak{M} R(\mathfrak{N}, \lambda) \varphi\|_{0}<+\infty . \tag{5.3}
\end{equation*}
$$

In fact, by Proposition 3.5, if (5.3) holds, we have $\varphi \in D_{\pi}(\theta, \infty)$, and by Theorem 3.9 this implies (ii). By hypothesis (i) there exists $K>0$ such that

$$
\begin{equation*}
\left|P_{t} \varphi(x)-\varphi(x)\right| \leqslant K t^{\theta}, \quad t \in[0, T] . \tag{5.4}
\end{equation*}
$$

It follows

$$
|\Re R R(\lambda, \mathscr{\pi}) \varphi(x)| \leqslant K \lambda \int_{0}^{+\infty} e^{-\lambda t} t^{\theta} d t \leqslant \frac{K \Gamma(\theta+1)}{\lambda^{\theta}},
$$

and (5.3) holds.
(ii) $\Rightarrow(i)$. Let $t>s \geqslant 0$. Then by Proposition 3.8, we have

$$
\left|P_{t} \varphi(x)-P_{s} \varphi(x)\right| \leqslant\left|P_{t-s} \varphi(x)-\varphi(x)\right| \leqslant C_{T}|t-s|^{\theta},
$$

and (i) is proved.
We conclude this section, by studying the regularity of u_{2}.
Theorem 5.2. Let $F \in C\left([0, T] ; C_{b}(H)\right)$, and assume that, for some $\left.\theta \in\right] 0$, $1[$, we have $F(t, \cdot) \in C_{b}^{\theta}(H)$ and that

$$
\begin{equation*}
\sup _{t \in[0, T]}\|F(t, \cdot)\|_{\theta}<+\infty . \tag{5.5}
\end{equation*}
$$

Then $u \in C\left([0, T] ; C_{b}(H)\right), u(t, \cdot) \in C_{b}^{2+\theta}(H)$ and

$$
\begin{equation*}
\sup _{t \in[0, T]}\|u(t, \cdot)\|_{2+\theta}<+\infty . \tag{5.6}
\end{equation*}
$$

Proof. We fix $t>0$. Arguing as in the proof of Proposition 4.1 it is enough to prove that

$$
\begin{equation*}
u(t, \cdot) \in\left(C_{b}^{a}(H), C_{b}^{2+a}(H)\right)_{1-(\alpha-\theta) / 2, \infty}, \tag{5.7}
\end{equation*}
$$

for some $\alpha \in] \theta, 1[$. To this purpose we set

$$
\begin{array}{ll}
a(t, \tau, x)=\int_{0}^{\tau} P_{s} u(t-s, \cdot)(x) d s, & \tau \in[0, t], \\
b(t, \tau, x)=\int_{\tau}^{t} P_{s} u(t-s, \cdot)(x) d s, & \tau \in[0, t] .
\end{array}
$$

Then by (2.7) we have

$$
\begin{aligned}
&\|a(t, \tau, \cdot)\|_{\alpha} \leqslant C(\alpha, \theta) \sup _{s \in[0, T]}\|u(s, \cdot)\|_{\theta} \int_{0}^{\tau} \frac{d s}{s^{(\alpha-\theta) / 2}} \leqslant \\
& \leqslant \frac{C(\alpha, \theta)}{1-(\alpha-\theta) / 2} \sup _{s \in[0, T]}\|u(s, \cdot)\|_{\theta} \tau^{1-(\alpha-\theta) / 2}
\end{aligned}
$$

Moreover by (2.8) we have

$$
\begin{aligned}
\|b(t, \tau, \cdot)\|_{2+\alpha} \leqslant C(\alpha, \theta) & \sup _{s \in[0, T]}\|u(s, \cdot)\|_{\theta} \int_{\tau}^{t} \frac{d s}{s^{(\alpha-\theta) / 2+1}} \leqslant \\
& \leqslant \frac{2 C(\alpha, \theta)}{(\alpha-\theta) / 2} \sup _{s \in[0, T]}\|u(s, \cdot)\|_{\theta} \tau^{-(\alpha-\theta) / 2}
\end{aligned}
$$

This implies (5.7).

References

[1] P. Cannarsa - G. Da Prato, On a functional analysis approach to parabolic equations in infinite dimensions. J. Funct. Anal., 118, 1, 1993, 22-42.
[2] P. Cannarsa - G. Da Prato, Infinite dimensional elliptic equations with Hölder continuous coefficients. Advances in Differential Equations, 1, 3, 1996, 425-452.
[3] P. Cannarsa - G. Da Prato, Schauder estimates for Kolmogorov equations in Hilbert spaces. Proceedings of the meeting on Elliptic and Parabolic PDE's and Applications (Capri, september 1994). To appear.
[4] S. Cerral, A Hille-Yosida Theorem for weakly continuous semigroups. Semigroup Forum, 49, 1994, 349-367
[5] S. Cerrai - F. Gozzi, Strong solutions of Cauchy problems associated to weakly continuous semigroups. Differential and Integral Equations, 8, 3, 1994, 465-486.
[6] G. Da Prato, Transition semigroups associated with Kolmogorov equations in Hilbert spaces. In: M. Chipot - J. Saint Jean Paulin - I. Shafrir (eds.), Progress in Partial Differential Equations: the Metz Surveys 3. Pitman Research Notes in Mathematics Series, no. 314, 1994, 199-214.
[7] G. Da Prato - A. Lunardi, On the Ornstein-Ublenbeck operator in spaces of continuous functions. J. Funct. Anal., 131, 1995, 94-114.
[8] G. Da Prato - J. Zabczyk, Stochastic equations in infinite dimensions. Encyclopedia of Mathematics and its Applications, Cambridge University Press, 1992.
[9] Ju. L. DALECKI], Differential equations with functional derivatives and stochastic equations for generalized random processes. Dokl. Akad. Nauk SSSR, 166, 1966, 1035-1038.
[10] N. Dunford - J. T. Schwartz, Linear Operators. Vol. II, 1956.
[11] L. Gross, Potential Theory in Hilbert spaces. J. Funct. Anal., 1, 1965, 139-189.
[12] H. H. Kuo, Gaussian Measures in Banach Spaces. Springer-Verlag, 1975.
[13] J. M. Lasry - P. L. Lions, A remark on regularization in Hilbert spaces. Israel J. Math., 55, 3, 1986, 257-266.
[14] J. L. Lions - J. Peetre, Sur une classe d'espaces d'interpolation. Publ. Math. de l'I.H.E.S., 19, 1964, 5-68.
[15] A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems. Birkhauser Verlag, Basel 1995.
[16] A. Lunardi, An interpolation method to characterize domains of generators of semigroups. Semigroup Forum, to appear.
[17] A. S. Nemirovki - S. M. Semenov, The polynomial approximation of functions in Hilbert spaces. Mat. Sb. (N.S.), 92, 134, 1973, 257-281.
[18] A. Piech, Regularity of the Green's operator in Abstract Wiener Space. J. Diff. Eq., 12, 1969, 353-360.
[19] A. Piech, A fundamental solution of the parabolic equation on Hilbert space. J. Funct. Anal., 3, 1972, 85-114.
[20] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators. North-Holland, Amsterdam 1986.

Scuola Normale Superiore
Piazza dei Cavalieri, 7-56126 PisA

