ATTI ACCADEMIA NAZIONALE LINCEI CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI LINCEI MATEMATICA E APPLICAZIONI

GIUSEPPE DA PRATO

Some results on elliptic and parabolic equations in Hilbert spaces

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Serie 9, Vol. 7 (1996), n.3, p. 181–199.

Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLIN_1996_9_7_3_181_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Accademia Nazionale dei Lincei, 1996.

Some results on elliptic and parabolic equations in Hilbert spaces

Memoria (*) di Giuseppe Da Prato

ABSTRACT. — We consider elliptic and parabolic equations with infinitely many variables. We prove some results of existence, uniqueness and regularity of solutions.

KEY WORDS: Elliptic and parabolic equations in Hilbert spaces; Ornstein-Uhlenbeck semigroup; Schauder estimates.

RIASSUNTO. — *Equazioni ellittiche e paraboliche negli spazi di Hilbert*. In questo lavoro si considerano equazioni ellittiche e paraboliche con un numero finito di variabili. Si provano risultati di esistenza, unicità e regolarità delle soluzioni.

1. INTRODUCTION

Let *H* be a separable Hilbert space (norm $|\cdot|$, inner product $\langle \cdot, \cdot \rangle$). We denote by $\mathcal{L}(H)$ the Banach algebra (norm $||\cdot||$) of all linear bounded operators from *H* into *H*, by $\mathcal{L}_1(H)$ (norm $||\cdot||_{\mathcal{L}_1(H)}$) the set of all trace-class operators and by $\mathcal{L}_2(H)$ (norm $||\cdot||_{\mathcal{L}_2(H)}$) the set of all Hilbert-Schmidt operators in *H*.

We are given a linear closed operator $A: D(A) \subset H \mapsto H$ and a symmetric bounded operator $Q \in \mathcal{L}(H)$. We assume

HYPOTHESIS 1.1. (i) A is the infinitesimal generator of an analytic semigroup e^{tA} in H, such that

$$(1.1) $\|e^{tA}\| \leq 1, \quad t \geq 0.$$$

(ii) There exists v > 0 such that

$$(1.2) (1/\nu)I \le Q \le \nu I.$$

(iii) For any t > 0, $e^{tA} \in \mathcal{L}_2(H)$ and

(1.3)
$$\int_{0}^{t} \operatorname{Tr}\left[e^{sA} Q e^{sA^{*}}\right] ds < +\infty .$$

If Hypothesis 1.1 holds then for arbitrary $t \ge 0$, the linear operator Q_t defined as

(1.4)
$$Q_t x = \int_0^t e^{sA} Q e^{sA^*} x \, dt \,, \qquad x \in H \,,$$

is well defined and trace-class.

(*) Presentata nella seduta del 9 marzo 1996.

The following result is proved in [8].

PROPOSITION 1.1. Under Hypothesis 1.1 one has

(1.5)
$$e^{sA}(H) \in Q_t^{1/2}(H), \quad 0 < s \le t$$

Moreover setting

(1.6)
$$\Lambda_t = Q_t^{-1/2} e^{tA}, \quad t > 0$$

one has

182

(1.7)
$$\|A_t\| \leq \nu/\sqrt{t}, \quad t > 0.$$

REMARK 1.2. Since

 $\Lambda_t = Q_t^{-1/2} e^{(t/2)A} e^{(t/2)A}, \quad t > 0,$

we have that $\Lambda_t \in \mathcal{L}_2(H)$ so that

(1.8)
$$\gamma(t) := \operatorname{Tr} \left[\Lambda_t \Lambda_t^* \right] < +\infty , \quad \forall t > 0 .$$

The main object of this paper is the Ornstein-Uhlenbeck transition semigroup P_t , $t \ge 0$ defined on $C_b(H)$, the Banach space of all uniformly continuous and bounded mappings from H into \mathbf{R} , endowed with the norm $\|\varphi\|_0 = \sup_{x \in H} |\varphi(x)|$. We set for t > 0⁽¹⁾.

(1.9)
$$P_t\varphi(x) = \int_H \varphi(x) \,\mathfrak{N}(e^{tA}x, Q_t)(dy) = \int_H \varphi(e^{tA}x + y) \,\mathfrak{N}(0, Q_t)(dy), \quad \varphi \in C_b(H).$$

It is useful to note that, setting

(1.10)
$$G_t \varphi(x) = \int_H \varphi(x+y) \mathcal{K}(0, Q_t)(dy), \qquad \varphi \in C_b(H),$$

we have

(1.11)
$$P_t \varphi(x) = (G_t \varphi)(e^{tA} x), \quad \varphi \in C_b(H), \quad t \ge 0, \quad x \in H.$$

 $P_t, t \ge 0$ is not a strongly continuous semigroup on $C_b(H)$, however it is *weakly continuous*, see [4]. In particular we have

(1.12)
$$\lim_{t \to 0} P_t \varphi(x) = \varphi(x), \quad \forall \varphi \in C_b(H), \quad \forall x \in H,$$

the convergence being uniform on the compact subsets of H.

In this paper we first study some regularity properties of the semigroup P_t , $t \ge 0$. Then we introduce its infinitesimal generator \mathfrak{M} and characterize the corresponding interpolation spaces. Finally we apply the obtained results to the study of the elliptic equation

(1.13)
$$\lambda \varphi - (1/2) \operatorname{Tr} [D^2 \varphi] - \langle Ax, D\varphi \rangle = g, \quad x \in H,$$

(1) For any $m \in H$ and any $S \in \mathcal{L}_1(H)$ symmetric nonnegative, we denote by $\mathcal{N}(m, S)$ the Gaussian measure with mean m and covariance operator S.

where $\lambda > 0$ and g: $H \mapsto R$ is a suitable function, and to the initial value problem

(1.14)
$$\begin{cases} du(t,x)/dt = (1/2)\operatorname{Tr}[D^2 u(t,x)] + \langle Ax, Du(t,x) \rangle + F(t,x), \\ t \in]0, T], x \in H, \\ u(0,x) = \varphi(x), \end{cases}$$

where $F: [0, T] \times H \mapsto \mathbf{R}$ and $\varphi: H \mapsto \mathbf{R}$ are given functions fulfilling suitable assumptions. We also study problems (1.13) and (1.14) in spaces $C_b^{\theta}(H)$ of Hölder continuos functions. In this case we will prove, following [3], Schauder estimates and we will characterize, under suitable hypotheses the domain of the infinitesimal generator \mathfrak{M} of P_t , $t \ge 0$.

Let us introduce our main notation. The following subspaces of $C_b(H)$ will be needed.

• $C_b^1(H)$ is the Banach space of all functions $\varphi \in C_b(H)$ which are Fréchet differentiable on H, with a bounded uniformly continuous derivative $D\varphi$, with the norm

$$\|\varphi\|_1 = \|\varphi\|_0 + [\varphi]_1,$$

where

$$[\varphi]_1 = \sup_{x \in H} |D\varphi(x)|.$$

If $\varphi \in C_b^1(H)$ and $x \in H$ we shall identify $D\varphi(x)$ with the element *b* of *H* such that

$$D\varphi(x) y = \langle b, y \rangle, \quad \forall y \in H.$$

• $C_b^2(H)$ is the Banach space of all functions $\varphi \in C_b^1(H)$ which are twice Fréchet differentiable on H, with a bounded uniformly continuous second derivative $D^2 \varphi$ with the norm

$$\|\varphi\|_2 = \|\varphi\|_1 + [\varphi]_2,$$

where

$$[\varphi]_2 = \sup_{x \in H} \left| D^2 \varphi(x) \right|.$$

If $\varphi \in C_b^2(H)$ and $x \in H$ we shall identify $D^2 \varphi(x)$ with the linear bounded operator $T \in \mathcal{L}(H)$ such that

$$D\varphi(x)(y,z) = \langle Ty, z \rangle, \quad \forall y, z \in H.$$

• $C_b^n(H)$, $n \in N$ is the Banach space of all functions $\varphi \in C_b(H)$ which are *n* times Fréchet differentiable on *H*, with bounded uniformly continuous derivatives of any order less or equal to *n*, with the norm

$$\|\varphi\|_{n} = \|\varphi\|_{0} + \sum_{k=1}^{n} [\varphi]_{k},$$

$$\left[\varphi\right]_{k} = \sup_{x \in H} \left|D^{k}\varphi(x)\right|, \quad k = 1, \dots, n.$$

We set

$$C_b^{\infty}(H) = \bigcap_{n=1}^{\infty} C_b^n(H).$$

• $C_b^{\alpha}(H), \alpha \in]0, 1[$, is the Banach space of all α -Hölder continuous and bounded functions $\varphi \in C_b(H)$ with the norm

$$\|\varphi\|_{\alpha} = \|\varphi\|_0 + [\varphi]_{\alpha},$$

where

$$[\varphi]_{\alpha} = \sup_{x, y \in H, x \neq y} \frac{|\varphi(x) - \varphi(y)|}{|x - y|^{\alpha}} < +\infty .$$

• $C_b^{1+\alpha}(H), \ \alpha \in]0, 1[$, is the set of all functions $\varphi \in C_b^1(H)$ such that

$$[D\varphi]_{\alpha} = \sup_{x, y \in H, x \neq y} \frac{|D\varphi(x) - D\varphi(y)|}{|x - y|^{\alpha}} < +\infty$$

 $C_b^{1+\alpha}(H)$ is a Banach space with the norm

 $\|\varphi\|_{1+\alpha} = \|\varphi\|_1 + [D\varphi]_{\alpha}.$

• $C_b^{2+\alpha}(H)$, $\alpha \in]0, 1[$, is the set of all functions $\varphi \in C_b^2(H)$ such that

$$[D^2 \varphi]_{\alpha} = \sup_{x, y \in H, x \neq y} \frac{\left\| D^2 \varphi(x) - D^2 \varphi(y) \right\|}{|x - y|^{\alpha}} < +\infty$$

 $C_b^{2+\alpha}(H)$ is a Banach space with the norm

$$\|\varphi\|_{2+a} = \|\varphi\|_2 + [D^2\varphi]_a.$$

We will also need some notations and results on Interpolation Theory.

Let first recall the definition of interpolation space, see [20]. Let X, $\|\cdot\|_X$ and Y, $\|\cdot\|_Y$ be Banach spaces such that $Y \in X$ and

 $\|y\|_X \leq c \|y\|_Y, \qquad \forall y \in Y$

for some constant c > 0.

Let $\alpha \in]0, 1]$. We denote by $(X, Y)_{\alpha, \infty}$ the real interpolation space consisting of all points $x \in X$ such that

$$\|x\|_{(X, Y)_{\alpha, \infty}} = \sup_{t>0} t^{-\alpha} K(t, x, X, Y) < +\infty ,$$

where

$$K(t, x, X, Y) = \inf\{\|a\|_X + t\|b\|_Y : x = a + b, a \in X, b \in Y\}$$

 $(X, Y)_{\alpha, \infty}$ is a Banach space with norm $\|\cdot\|_{(X, Y)_{\alpha, \infty}}$.

It is easy to see that x belongs to $(X, Y)_{\beta, \infty}$ if and only if for any $t \in [0, 1]$ there exists $a_t \in X$, $b_t \in Y$ and a constant C > 0 independent of t, such that $||a_t||_X \leq Ct^{\beta}$ and $||b_t||_Y \leq Ct^{\beta-1}$.

We also recall the following interpolation result, see [2]:

PROPOSITION 1.3. For all $\theta \in]0, 1[$ we have

$$(C_b(H), C_b^1(H))_{\theta,\infty} = C_b^{\theta}(H).$$

2. Regularity properties of P_t , $t \ge 0$

We first recall a result proved in [8].

THEOREM 2.1. For all t > 0 and for all $\varphi \in C_b(H)$, $P_t \varphi \in C_b^{\infty}(H)$. In particular, for any $b, k \in H$, we have

(2.1)
$$\langle DP_t \varphi(x), b \rangle = \iint_H \langle A_t b, Q_t^{-1/2} y \rangle \varphi(e^{tA} x + y) \mathcal{H}(0, Q_t)(dy)$$

and

(2.2)
$$\langle D^2 P_t \varphi(x) h, k \rangle =$$

= $\int_H \langle \Lambda_t h, Q_t^{-1/2} y \rangle \langle \Lambda_t k, Q_t^{-1/2} y \rangle \varphi(e^{tA} x + y) \mathfrak{N}(0, Q_t)(dy) - \langle \Lambda_t h, \Lambda_t k \rangle P_t \varphi(x).$

REMARK 2.2. By (2.1) and (2.2) the following estimates can be proved easily with the help of (1.7)

(2.3)
$$|DP_t\varphi(x)| \leq \nu t^{-1/2} \|\varphi\|_0, \quad x \in H,$$

(2.4)
$$||D^2 P_t \varphi(x)|| \leq (\sqrt{2\nu^2/t}) ||\varphi||_0, \quad x \in H.$$

We will also need an estimate for the third derivative of $P_t \varphi$, that can be proved in a similar way

(2.5)
$$||D^{3}P_{t}\varphi(x)|| \leq 2\sqrt{6}\nu^{3}t^{-3/2}||\varphi||_{0}, \quad x \in H$$

By Proposition 1.3 we easily obtain the following corollaries.

COROLLARY 2.3. For all t > 0, $\alpha \in]0, 1[$, we have

(2.6)
$$\|DP_t\varphi\|_{\alpha} \leq v^{\alpha}t^{-\alpha/2} \|\varphi\|_0, \quad \varphi \in C_b(H)$$

(2.7)
$$\begin{aligned} &\|P_t\varphi\|_{\alpha} \leq \nu^{\alpha-\theta}t^{(\theta-\alpha)/2} \|\varphi\|_{\theta}, \quad \varphi \in C_b^{\theta}(H). \end{aligned}$$

2.1. EXISTENCE OF Tr $[D^2 P_t \varphi(x)]$

We show here that the linear operator $D^2 P_t \varphi(x)$ is trace-class for all t > 0 and $x \in H$.

PROPOSITION 2.5. Let $\varphi \in C_b(H)$, t > 0 and $x \in H$. Then $D^2 P_t \varphi(x) \in \mathcal{L}_1(H)$ and

$$(2.8) \quad \operatorname{Tr}\left[D^2 P_t \varphi(x)\right] =$$

$$= \int_{H} |\Lambda_t^* Q_t^{-1/2} y|^2 \varphi(e^{tA} x + y) \mathcal{H}(0, Q_t)(dy) - \operatorname{Tr} [\Lambda_t \Lambda_t^*] P_t \varphi(x).$$

Moreover the following estimate holds

(2.9)
$$\|D^2 P_t \varphi(x)\|_{\mathcal{L}_1(H)} \leq 2 \operatorname{Tr} [\Lambda_t \Lambda_t^*] \|\varphi\|_0.$$

PROOF. Since $\Lambda_t \in \mathcal{L}_2(H)$ (see Remark 1.2) it is enough to show that the linear operator $S_{t,x}$ defined as

$$\langle S_{t,x}b,k\rangle = \iint_{H} \langle \Lambda_{t}b, Q_{t}^{-1/2}y \rangle \langle \Lambda_{t}k, Q_{t}^{-1/2}y \rangle \varphi(e^{tA}x+y) \mathcal{N}(0,Q_{t})(dy), \quad b,k \in H,$$

is trace-class for any t > 0 and $x \in H$. For this is enough to show, compare N. Dunford and J. T. Schwartz [10, Lemma 14(*a*), p. 1098], that there exists a constant C > 0 such that

$$|\operatorname{Tr}[NS_{t,x}]| \leq C ||N||,$$

for any symmetric positive operator $N \in \mathcal{L}(H)$ of finite rank. To this purpose let $\{e_j\}$ be a complete orthonormal system in H. Then we have

(2.11)
$$\operatorname{Tr}[NS_{t,x}] = \sum_{j=1}^{\infty} \int_{H} \langle \Lambda_{t} e_{j}, Q_{t}^{-1/2} y \rangle \langle \Lambda_{t} N^{*} e_{j}, Q_{t}^{-1/2} y \rangle \cdot \varphi(e^{tA}x + y) \,\mathfrak{N}(0, Q_{t})(dy) = \int_{H} |N^{1/2} \Lambda_{t}^{*} Q_{t}^{-1/2} y|^{2} \,\varphi(e^{tA}x + y) \,\mathfrak{N}(0, Q_{t})(dy) \,.$$

It follows,

(2.12)
$$|\operatorname{Tr}[NS_{t,x}]| \leq ||\varphi||_0 \operatorname{Tr}[\Lambda_t^*\Lambda_t N] \leq ||\varphi||_0 ||N|| \operatorname{Tr}[\Lambda_t^*\Lambda_t].$$

So (2.10) is fulfilled and we have proved that $D^2 P_t \varphi(x)$ is trace-class for any t > 0 and $x \in H$. Moreover (2.8) and (2.9) follow setting N = I respectively in (2.11) and in (2.12).

REMARK 2.6. We want to describe in next example the behaviour of $\gamma(t) = \text{Tr}[\Lambda_t \Lambda_t^*]$ near t = 0, in order to know whether it is integrable or not.

Assume that A is a negative self-adjoint operator, that Q = I, and that there exists a complete orthonormal system $\{e_k\}$ in H such that

$$Ae_k = -\lambda_k e_k$$
, $\lambda_k \uparrow + \infty$,

with

$$\sum_{k=1}^{\infty} \frac{1}{\lambda_k} < +\infty \; .$$

Then Hypothesis 1.1 is obviously fulfilled and we have

$$Q_t = (e^{2tA} - 1)/(2A)$$
.

It follows

$$\Lambda_t \Lambda_t^* = 2Ae^{2tA} / (e^{2tA} - 1), \quad t > 0,$$

so that

(2.13)
$$\Lambda_{t} = 2 \sum_{k=1}^{\infty} \lambda_{k} e^{-2t\lambda_{k}} / (1 - e^{-2t\lambda_{k}}) = (2/t) F(\lambda_{k}),$$

where

(2.14)
$$F(\xi) = \xi e^{-2\xi} / (1 - e^{-2\xi}), \quad \xi > 0$$

Let $C_1 > 0$, $C_2 > 0$ be such that

$$C_1 e^{-3\xi} \le F(\xi) \le C_2 e^{-\xi}, \quad \xi > 0.$$

So the behaviour of $\gamma(t)$ near 0 is determined by

$$\sum_{k=1}^{\infty} e^{-t\lambda_k}$$

For instance if

$$\lambda_k = k^{1+\alpha},$$

where $\alpha > 0$, we have that $\gamma(t)$ behaves at 0 as

$$(1/t) \int_{0}^{+\infty} e^{-tx^{1+\alpha}} dx$$
,

and so as $t^{-1-1/\alpha}$. In particular if $\lambda_k = k^2$ we have $\gamma(t) \simeq t^{-3/2}$.

2.2. Additional regularity result when $\varphi \in C_b^1(H)$.

PROPOSITION 2.7. Let $\varphi \in C_b^1(H)$, t > 0 and $x \in H$. Then we have

(2.15)
$$\langle D^2 P_t \varphi(x) h, k \rangle = \iint_H \langle A_t k, Q_t^{-1/2} y \rangle \langle D \varphi(e^{tA} x + y), e^{tA} h \rangle \mathfrak{N}(0, Q_t)(dy) .$$

Moreover $D^2 P_t \varphi(x) \in \mathcal{L}_1(H)$ and

(2.16)
$$\operatorname{Tr}\left[D^{2} P_{t} \varphi(x)\right] = \iint_{H} \left\langle A_{t}^{*} Q_{t}^{-1/2} y, e^{tA^{*}} D \varphi(e^{tA} x + y) \right\rangle \mathfrak{N}(0, Q_{t})(dy).$$

Finally the following estimates hold

$$||D^2 P_t \varphi(x)|| \leq (\nu/\sqrt{t}) ||\varphi||_1,$$

and

(2.18)
$$|\operatorname{Tr}[D^2 P_t \varphi(x)]| \leq {\operatorname{Tr}[\Lambda_t \Lambda_t^*]}^{1/2} ||\varphi||_1.$$

PROOF. Let t > 0, $x \in H$. Since

$$\langle DP_t \varphi(x), b \rangle = \int_H \langle D\varphi(e^{tA}x + y), e^{tA}b \rangle \mathcal{H}(0, Q_t)(dy) \rangle$$

(2.15) follows easily by differentiating (2.1). Moreover (2.16) is an immediate consequence of (2.15), recalling that, by Proposition 2.5, $D^2 P_t \varphi(x)$ is trace-class.

We prove now (2.17). By (2.15), using Hölder's estimate, it follows

$$\begin{split} |\langle D^2 P_t \varphi(x) b, k \rangle|^2 &\leq \|\varphi\|_1^2 |b|^2 = \int_H |\langle A_t k, Q_t^{-1/2} y \rangle|^2 \mathcal{N}(0, Q_t) (dy) = \\ &= \|\varphi\|_1^2 |b|^2 |A_t k|^2 \leq (1/t) \|\varphi\|_1^2 |b|^2 |k|^2 \,, \end{split}$$

and (2.17) is proved. We prove finally (2.18). We have, using again Hölder's estimate

$$\begin{aligned} |\operatorname{Tr}[D^{2}P_{t}\varphi(x)]|^{2} &\leq \|\varphi\|_{H}^{2} \int_{H} |e^{tA} \Lambda_{t}^{*} Q_{t}^{-1/2} y|^{2} \mathcal{H}(0, Q_{t})(dy) = \\ &= \|\varphi\|_{1}^{2} \operatorname{Tr}[\Lambda_{t} e^{tA^{*}} e^{tA} \Lambda_{t}^{*}] = \|\varphi\|_{1}^{2} \operatorname{Tr}[\Lambda_{t} \Lambda_{t}^{*}]. \end{aligned}$$

The proof is complete.

In a similar way we prove the following result.

PROPOSITION 2.8. Let $\varphi \in C_b^1(H)$, t > 0 and $x \in H$. Then for all $b, k, l \in H$ we have

(2.19)
$$D^{3}P_{t}\varphi(x)(b,k,l) = \iint_{H} \langle A_{t}b, Q_{t}^{-1/2}y \rangle \langle A_{t}k, Q_{t}^{-1/2}y \rangle \cdot$$

 $\cdot \langle D\varphi(e^{tA}x+y), e^{tA}j \rangle \mathfrak{N}(0, Q_t)(dy) - \langle \Lambda_t b, \Lambda_t k \rangle \langle DP_t \varphi(x), l \rangle.$

Moreover the following estimate holds

(2.20)
$$||D^{3}P_{t}\varphi(x)|| \leq (\sqrt{2\nu^{2}/t}) ||\varphi||_{1}.$$

By interpolation we obtain the following results.

COROLLARY 2.9. Let
$$\theta \in]0, 1[, \varphi \in C_{b}^{\theta}(H), t > 0 \text{ and } x \in H.$$
 Then we have
(2.21) $\|D^{2}P_{t}\varphi(x)\| \leq 2^{(1-\theta)/2} \nu^{2-\theta} t^{\theta/2-1} \|\varphi\|_{\theta},$

and

(2.22)
$$\left|\operatorname{Tr}\left[D^{2}P_{t}\varphi(x)\right]\right| \leq 2^{1-\theta} \left\{\operatorname{Tr}\left[\Lambda_{t}\Lambda_{t}^{*}\right]\right\}^{1-\theta/2} \left\|\varphi\right\|_{\theta}.$$

COROLLARY 2.10. Let $\theta \in]0, 1[, \varphi \in C_b^{\theta}(H), t > 0 and x \in H$. Then we have

(2.23)
$$\|D^2 P_t \varphi\|_{\alpha} \leq 2^{(1-\alpha-\theta)/2} \nu^{2+\alpha-\theta} t^{(\theta-\alpha)/2-1} \|\varphi\|_{\theta}.$$

REMARK 2.11. Assume that

$$\gamma(t) \leq C t^{-3/2} \, .$$

Then by (2.22) we have

$$\mathrm{Tr}\left[D^2 P_t \varphi(x)\right] \Big| \leq 2^{1-\theta} C^{1-\theta/2} t^{-3/2+3\theta/4} \left\|\varphi\right\|_{\theta}.$$

Thus $|\text{Tr}[D^2P_t\varphi(x)]|$ is integrable near 0 provided $\theta > 2/3$.

2.3. KOLMOGOROV EQUATION

We want to show here that if $\varphi \in C_b(H)$ then for t > 0 the function $u(t, x) = P_t \varphi(x)$ is a solution to the Kolmogorov equation

(2.24) $u_t(t,x) = (1/2) \operatorname{Tr} [D^2 u(t,x)] + \langle Ax, Du(t,x) \rangle, \quad t > 0, x \in D(A).$

If
$$Du(t, x) \in D(A^*)$$
 we can write (2.24) as

(2.25)
$$u_t(t,x) = (1/2) \operatorname{Tr} [D^2 u(t,x)] + \langle x, A^* D u(t,x) \rangle, \quad t > 0, x \in H$$

PROPOSITION 2.12. Let $\varphi \in C_b(H)$, t > 0 and $x \in D(A)$. Then $u(t, x) = P_t \varphi(x)$ is a solution to the Kolmogorov equation (2.25).

PROOF. Let $u(t, x) = P_t \varphi(x), t > 0, x \in H$. Then the term $\text{Tr}[D^2 u(t, x)]$ is well defined by Proposition 2.5. Moreover also the term $\langle x, A^* Du(t, x) \rangle$ is well defined, since, by (2.1) we have

(2.26)
$$\langle x, A^* Du(t, x) \rangle = \iint_{H} \langle Q_t^{-1/2} e^{(t/2)A} A e^{(t/2)A}, Q_t^{-1/2} y \rangle \varphi(e^{tA} x + y) \mathcal{K}(0, Q_t)(dy).$$

By (2.26) we have

(2.27)
$$|\langle x, A^* Du(t, x) \rangle| \leq K(t) \|\varphi\|_0 \|x\|,$$

where

(2.28)
$$K^{2}(t) = \left\| O_{t}^{-1/2} e^{(t/2)A} A e^{(t/2)A} \right\|.$$

It remains to show that u(t, x) is differentiable in t and that (2.25) holds. To this aim let us introduce the space of all *exponential functions* $\mathcal{E}(H)$. We denote by $\mathcal{E}(H)$ the linear subspace of $C_b(H)$ spanned by all ζ_b , $b \in H$:

$$\zeta_{h}(x) = e^{i\langle h, x \rangle}, \quad x \in H.$$

Since, as easily checked

$$(2.29) P_t \zeta_b(x) = e^{i\langle e^{tA}x, b\rangle - (1/2)\langle Q_t b, b\rangle}, \quad x \in H,$$

then the proposition holds when $\varphi \in \mathcal{E}(H)$.

Let now $\{\varphi_n\}$ be a sequence in $\mathcal{E}(H)$ such that

(i) $\lim_{n \to \infty} \varphi_n(x) = \varphi(x), \ \forall x \in H,$ (ii) $\|\varphi_n\|_0 \le 2 \|\varphi\|_0,$

and set $u_n(t, x) = P_t \varphi_n(x)$, $t \ge 0$, $x \in H$. We fix now t > 0. By (2.3)-(2.5) it follows that the sequence of functions $\{u_n(t, \cdot)\}$ has all derivatives of order less than 3, bounded. This implies that

$$\lim_{n \to \infty} u_n(t, \cdot) = u(t, \cdot), \quad \text{in } C_b^2(H),$$

uniformly in t on compact subsets of $]0, +\infty$ [. Moreover by (2.9) it follows that the sequence in $C_b(H)$ defined by $\{\operatorname{Tr}[D^2u_n(t, \cdot)]\}$ is bounded, so that

$$\lim_{n \to \infty} \operatorname{Tr} \left[D^2 u_n(t, \cdot) \right] = \operatorname{Tr} \left[D^2 u(t, \cdot) \right], \quad \text{in } C_b(H),$$

uniformly in t on compact subsets of $]0, +\infty[$. Finally from (2.27) it follows that

$$\lim_{n \to \infty} \langle x, A^* Du_n(t, x) \rangle = \langle x, A^* Du(t, x) \rangle, \quad x \in H,$$

uniformly in t on compact subsets of $]0, +\infty[$ and in x on bounded subsets of H. This

implies that for any $x \in H$

$$\lim_{n \to \infty} \frac{d}{dt} u_n(t, x) = \frac{d}{dt} u(t, x),$$

for all $x \in H$ uniformly in t on compact subsets of $]0, +\infty[$ and the conclusion follows.

3. The infinitesimal generator

We proceed here as in [4], by introducing the Laplace transform of P_t , $t \ge 0$. For any $\lambda > 0$ we set

(3.1)
$$F(\lambda)\varphi(x) = \int_{0}^{+\infty} e^{-\lambda t} P_t \varphi(x) dt, \quad x \in H, \varphi \in C_b(H).$$

Note that the above integral is convergent for any fixed $x \in H$ and not in $C_b(H)$ in general. In [4] is shown that $F(\lambda)$ maps $C_b(H)$ into itself and that it is one-to-one. So there exists a unique closed operator \mathfrak{M} in $C_b(H)$:

$$\mathfrak{M}: D(\mathfrak{M}) \subset C_{k}(H) \mapsto C_{k}(H),$$

such that the resolvent set $\rho(\mathfrak{M})$ of \mathfrak{M} contains $]0, +\infty[$ and

(3.2)
$$R(\lambda, \mathcal{M}) \varphi(x) = \int_{0}^{+\infty} e^{-\lambda t} P_{t} \varphi(x) dt, \quad \forall \lambda > 0.$$

 \mathfrak{M} is called the *infinitesimal generator* of the semigroup P_t , $t \ge 0$.

Let $\lambda > 0$, $g \in C_b(H)$ and set $\varphi = R(\lambda, \mathfrak{M})g$. Then φ is called a *generalized solution* to the equation

(3.3)
$$\lambda \varphi - (1/2) \operatorname{Tr} [D^2 \varphi] - \langle Ax, D\varphi \rangle = g.$$

It is also useful to introduce the concept of *strict solution*. To this purpose we have to introduce a suitable restriction \mathfrak{M}_0 of \mathfrak{M} .

By definition the domain $D(\mathcal{M}_0)$ of \mathcal{M}_0 is the set of all functions $\varphi \in C_b(H)$ such that

(i) $\varphi \in C_b^2(H)$ and $D^2 \varphi(x) \in \mathcal{L}_1(H)$ for all $x \in H$.

(*ii*) $D\varphi(x) \in D(A^*)$ and the mapping

$$H \mapsto \mathbf{R}$$
, $x \mapsto A^* D\varphi(x)$,

belongs to $C_b(H)$.

Then we define the operator \mathfrak{M}_0 by setting

(3.4)
$$\mathfrak{M}_{0}\varphi = (1/2)\operatorname{Tr}\left[D^{2}\varphi\right] + \langle x, A^{*}D\varphi \rangle, \quad \forall \varphi \in D(\mathfrak{M}_{0}).$$

REMARK 3.1. In the paper [5], it is proved that the operator \mathfrak{M} is the closure of \mathfrak{M}_0 with respect to the \mathfrak{R} -convergence. A sequence $\{\varphi_n\} \in C_b(H)$ is said to be \mathfrak{R} -convergent to $\varphi \in C_b(H)$ if

(i) $\sup_{n \in \mathbb{N}} \|\varphi_n\|_0 < +\infty.$

SOME RESULTS ON ELLIPTIC AND PARABOLIC EQUATIONS IN HILBERT SPACES

(ii) For any compact subset K in H, we have

$$\lim_{n \to \infty} \sup_{x \in K} |\varphi(x) - \varphi_n(x)| = 0.$$

From the regularity results of the semigroup P_t , $t \ge 0$, obtained in the previous section, one gets the following regularity results for the resolvent of \mathfrak{M} .

PROPOSITION 3.2. Let $\lambda > 0$, $g \in C_b(H)$, and set $\varphi = R(\lambda, \mathfrak{M})g$. Then the following statements hold

(i) $\varphi \in C_h^1(H)$ and

(3.5)
$$|D\varphi(x)| \leq \Gamma(1/2) \cdot \lambda^{-1/2} ||g||_0, \quad x \in H,$$

where Γ denotes the gamma Euler function.

(ii) For any $\alpha \in]0, 1[$, we have $\varphi \in C_b^{1+\alpha}(H)$ and

(3.6)
$$[D\varphi]_{\alpha} \leq 2^{\alpha/2} \Gamma((1-\alpha)/2) \cdot \lambda^{(\alpha-1)/2} \|g\|_{0},$$

(iii) If $g \in C_b^{\theta}(H)$ for some $\theta \in]0, 1[$, then $\varphi \in C_b^2(H)$, and

(3.7)
$$\|D^2\varphi(x)\| \leq 2^{(1-\theta)/2} \Gamma(\theta/2) \lambda^{-\theta/2} \|g\|_0, \quad x \in H.$$

(iv) If $g \in C_b^{\theta}(H)$ for some $\theta \in]0, 1[$, and if in addition $\gamma(t)^{1-\theta/2}$ is integrable near 0, then $\varphi \in D(\mathfrak{M}_0)$ and so it is a strict solution to equation (3.3).

Remark 3.3. If

$$\gamma(t) \leq Ct^{-3/2}$$

for some constant C > 0. Then condition (*iv*) is fulfilled provided $g \in C_b^{\theta}(H)$ with $\theta > 2/3$, see Remark 2.11.

3.1. Interpolation spaces $D_{\mathfrak{M}}(\theta, \infty)$

The semigroup P_t , $t \ge 0$ is not strongly continuous in $C_b(H)$, even when H is finitedimensional, see [4,7]. The following proposition, proved in [6], gives a characterization of the maximal subspace \mathcal{Y} of $C_b(H)$ where P_t , $t \ge 0$ is strongly continuous.

PROPOSITION 3.4. Let $\varphi \in C_b(H)$. Then the following statements are equivalent

(i) $\lim_{t \to 0} P_t \varphi = \varphi \text{ in } C_b(H).$ (ii) $\lim_{t \to 0} \varphi(e^{tA}x) = \varphi(x) \text{ in } C_b(H).$

We shall set

$$\mathcal{Y} = \left\{ \varphi \in C_b(H) : \lim_{t \to 0} \varphi(e^{tA}x) = \varphi(x) \text{ in } C_b(H) \right\},\$$

and for any $\theta \in]0, 1[$

 $\mathcal{Y} = \{ \varphi \in C_b(H) \colon \exists C > 0, \ \left| \varphi(e^{tA}x) - \varphi(x) \right| \leq Ct^{\theta}, \forall x \in H \}.$

We want now to characterize the interpolation spaces $(C_b(H), D(\mathfrak{M}))_{\theta,\infty}$ that we shall denote by $D_{\mathfrak{M}}(\theta, \infty)$. We need some preliminary result.

PROPOSITION 3.5. Let $\varphi \in C_b(H)$ and $\theta \in]0, 1[$. Then the following statements hold.

(i) If
$$\varphi \in D_{\mathfrak{M}}(\theta, \infty)$$
 then we have
(3.8)
$$\sup_{\lambda > 0} \lambda^{\theta} \|\mathfrak{M}R(\lambda, \mathfrak{M})\varphi\|_{0} < +\infty.$$
(ii) If $\varphi \in C_{b}(H)$ and fulfills (3.8) then $\varphi \in D_{\mathfrak{M}}(\theta, \infty)$.

PROOF. (i) Let $\varphi \in D_{\mathfrak{M}}(\theta, \infty)$. Then by the definition of interpolation space given in § 1, for any $t \in [0, 1]$ there exist $\alpha_t \in C_b(H)$, $\beta_t \in D(\mathfrak{M})$, such that $\varphi = \alpha_t + \beta_t$ and

$$\|\alpha_t\|_0 \leq Ct^{\theta}, \quad \|\mathfrak{M}\beta_t\|_0 \leq Ct^{\theta-1},$$

for some C > 0. Now for any $\lambda > 0$ we have

$$\mathfrak{M}R(\lambda, \mathfrak{M}) \varphi = \mathfrak{M}R(\lambda, \mathfrak{M})\alpha_{1/\lambda} + R(\lambda, \mathfrak{M}) \mathfrak{M}\beta_{1/\lambda}.$$

It follows

 $\|\mathfrak{M}R(\lambda,\,\mathfrak{M})\,\varphi\|_0 \leq C\,\|\mathfrak{M}R(\lambda,\,\mathfrak{M})\|\lambda^{-\theta} + C\,\|R(\lambda,\,\mathfrak{M})\|\lambda^{1-\theta} \leq 3\lambda^{-\theta}\,,$ and the statement is proved.

(*ii*) Assume that φ fulfills (3.8). Define

$$C_1 = \sup_{\lambda > 0} \lambda^{\theta} \|\mathfrak{M}R(\lambda, \mathfrak{M})\varphi\|_0,$$

and set

$$\alpha_t = -\mathfrak{M}R((1/t), \mathfrak{M}) \varphi \cdot \beta_t = (1/t)R((1/t), \mathfrak{M}) \varphi$$

Then we have $\alpha_t + \beta_t = \varphi$ and

$$\|\alpha_t\|_0 \leq C_1 t^{\theta}, \quad \|\beta_t\|_0 \leq t^{1-\theta}, \quad t > 0,$$

so that $\varphi \in D_{\mathfrak{M}}(\theta, \infty)$.

LEMMA 3.6. Let $\theta \in]0, 1/2[, T > 0, \varphi \in C_b^{2\theta}(H)$. Then there exists $C_T > 0$ such that

(3.9)
$$|G_t \varphi(x) - \varphi(x)| \leq C_T [\operatorname{Tr}(Q_t)]^{\theta} [\varphi]_{2\theta}, \quad t \in [0, T].$$

PROOF. We have

$$\begin{split} \left| G_t \varphi(x) - \varphi(x) \right| &\leq \int\limits_{H} \left| \varphi(x+y) - \varphi(x) \right| \mathcal{N}(0, Q_t) (dy) \leq \\ &\leq \left[\varphi \right]_{2\theta} \int\limits_{H} \left| y \right|^{2\theta} \mathcal{N}(0, Q_t) (dy) \leq D_{\theta} \left[\varphi \right]_{2\theta} \left[\operatorname{Tr} \left(Q_t \right) \right]^{\theta}, \end{split}$$

for some constant D_{θ} .

Now the conclusion follows.

LEMMA 3.7. Let $\theta \in [1/2, 1[, T > 0, \varphi \in C_b^{2\theta}(H)]$. Then there exists $C_{1,T} > 0$ such that

$$(3.10) \qquad |G_t\varphi(x) - \varphi(x)| \le C_{1,T}[\operatorname{Tr}(Q_t)]^{\theta}_{\theta}[\varphi]_{2\theta}, \quad t \in [0,T].$$

PROOF. We have

$$G_t \varphi(x) - \varphi(x) = \int_H [\varphi(x+y) - \varphi(x)] \mathcal{H}(0, Q_t)(dy) =$$
$$= \int_0^1 \int_H \langle D\varphi(x+\xi y) - D\varphi(x), y \rangle \mathcal{H}(0, Q_t)(dy) d\xi.$$

It follows

$$\left|G_t\varphi(x)-\varphi(x)\right| \leq \left[\varphi\right]_{2\theta} \int_{0}^{1} \int_{H} |y|^{2\theta} \xi^{2\theta-1} \mathcal{X}(0,Q_t)(dy) d\xi,$$

and the conclusion follows as in the previous lemma.

PROPOSITION 3.8. If
$$\varphi \in D_{\mathfrak{M}}(\theta, \infty)$$
, $\theta \in]0, 1[, there exists $C_T > 0$ such that
(3.11) $\|P_t \varphi - \varphi\|_0 \leq C_T t^{\theta}, \quad t \in [0, T].$$

PROOF. Let $\varphi \in D_{\mathfrak{M}}(\theta, \infty)$. Then for any t > 0 there exists $\alpha_t \in C_b(H)$, $\beta_t \in D(\mathfrak{M})$ such that $\varphi = \alpha_t + \beta_t$,

(3.12) $\|\alpha_t\|_0 \leq Ct^{\theta}$, $\|\mathfrak{M}\beta_t\|_0 \leq Ct^{\theta-1}$, for some constant C > 0. Since

$$P_t \varphi - \varphi = (P_t a_t - a_t) + (P_t b_t - b_t) = (P_t a_t - a_t) + \int_0^t P_s \mathfrak{M} b(t) ds$$

t

using (3.12), we find that (3.11) holds.

We can now prove the result

THEOREM 3.9. For all $\theta \in]0, 1/2[\cup]1/2, 1[$ we have (3.13) $D_{\mathfrak{M}}(\theta, \infty) \in C_{h}^{2\theta}(H) \cap \mathcal{Y}_{\theta}.$

PROOF. We only consider the case $\theta \in (0, 1/2)$, since the case $\theta \in (1/2, 1)$ can be

treated in an analogous way. STEP 1. If $\varphi \in D_{\mathcal{M}}(\theta, \infty)$ then there exists $C_1 > 0$ such that for all $\lambda \ge 1$ we

have (3.14) $\|\lambda DR(\lambda, \mathcal{M})\varphi\|_{0} \leq C_{1}\lambda^{1/2-\theta}\|\varphi\|_{D_{\infty}(\theta, \infty)}.$

We first note that, since

$$\frac{d}{d\lambda} \left[\lambda R(\lambda, \mathfrak{M}) \right] = R(\lambda, \mathfrak{M}) - \lambda (R(\lambda, \mathfrak{M}))^2 ,$$

we have

$$\lambda R(\lambda, \mathfrak{M}) \varphi = R(1, \mathfrak{M}) \varphi + \int_{1}^{\lambda} R(s, \mathfrak{M})(1 - sR(s, \mathfrak{M})) \varphi \, ds =$$
$$= R(1, \mathfrak{M}) \varphi + \int_{1}^{\lambda} R(s, \mathfrak{M}) \mathfrak{M} R(s, \mathfrak{M}) \varphi \, ds \, .$$

By Proposition 3.2 (i) it follows

$$D_x \lambda R(\lambda, \mathfrak{M}) \varphi = D_x R(1, \mathfrak{M}) \varphi + \int_{1}^{\infty} D_x [R(s, \mathfrak{M}) \mathfrak{M} R(s, \mathfrak{M}) \varphi] ds.$$

Moreover, taking into account (3.5) and (3.8), we find

$$\|R(\lambda, \mathfrak{M})\varphi\|_{1} \leq C\lambda^{-1/2} \|\varphi\|_{0}, \quad \forall \lambda > 0,$$

we get

$$\|R(\lambda, \mathcal{M})\varphi\|_{1} \leq C \|\varphi\|_{0} + C \int_{1}^{\lambda} s^{-1/2 - \theta} [\varphi]_{D_{\mathcal{M}}(\theta, \infty)} ds =$$

= $C \|\varphi\|_{0} + C/(1/2 - \theta)(\lambda^{1/2 - \theta} - 1)[\varphi]_{D_{\mathcal{M}}(\theta, \infty)},$

for some C > 0.

Step 2. $D_{\mathfrak{M}}(\theta, \infty) \in C_{b}^{2\theta}(H)$.

Let $x, y \in H$ such that $|x - y| \leq 1$, and let $\lambda \geq 1$. Then we have by (3.8) and (3.14),

$$\begin{split} |\varphi(x) - \varphi(y)| &\leq |\varphi(x) - \lambda R(\lambda, \mathcal{M}) \varphi(x)| + |\lambda R(\lambda, \mathcal{M}) \varphi(x) - \lambda R(\lambda, \mathcal{M}) \varphi(y)| + \\ &+ |\lambda R(\lambda, \mathcal{M}) \varphi(y) - \varphi(y)| \leq 2[\varphi]_{D_{\mathcal{M}}(\theta, \infty)} \lambda^{-\theta} + \|D(\mathcal{M}R(\lambda, \mathcal{M}) \varphi)\|_{0} |x - y| \leq \\ &\leq 2[\varphi]_{D_{\mathcal{M}}(\theta, \infty)} \lambda^{-\theta} + C \|\varphi\|_{D_{\mathcal{M}}(\theta, \infty)} (\lambda^{1/2 - \theta} + 1) |x - y| \,. \end{split}$$

Choosing $\lambda = |x - y|^{-2}$ we have

 $|\varphi(x) - \varphi(y)| \leq 2[\varphi]_{D_{\mathcal{R}}(\theta,\infty)} |x - y|^{2\theta} + C \|\varphi\|_{D_{\mathcal{R}}(\theta,\infty)} (|x - y|^{2\theta} + |x - y|),$ and the conclusion follows easily.

Step 3. $D_{\mathcal{M}}(\theta, \infty) \in Y_{\theta}$. Let $\varphi \in D_{\mathcal{M}}(\theta, \infty)$. Then we have

 $\begin{aligned} (3.15) \qquad \left| \varphi(e^{tB}x) - \varphi(x) \right| &\leq \left| \varphi(e^{tB}x) - G_t \varphi(e^{tB}x) \right| + \left| P_t \varphi(x) - \varphi(x) \right|. \\ \text{Since } \varphi \in C_b^{2\theta}(H) \text{ by } (3.9) \text{ we find} \end{aligned}$

$$(3.16) \qquad \qquad \left|\varphi(e^{t^B}x) - G_t\varphi(e^{t^B}x)\right| \leq Ct^{\theta}[\varphi]_{2\theta}, \quad t \in [0, T].$$

Moreover from (3.11) it follows

$$||P_t \varphi - \varphi||_0 \le C_T t^{\theta}, \quad t \in [0, T].$$

Substituting (3.16) and (3.17) into (3.15) we get finally

$$\left|\varphi(e^{tB}x) - \varphi(x)\right| \leq (C + C_T) t^{\theta} [\varphi]_{2\theta},$$

and the proof of the theorem is complete.

4. MAXIMAL REGULARITY RESULTS FOR ELLIPTIC EQUATIONS

The following result is proved in [3]. We give a sketch of the proof for the reader convenience.

PROPOSITION 4.1. Assume that $\theta \in]0, 1[, g \in C_b^{\theta}(H), and \lambda > 0$. Then the function $\varphi = R(\lambda, \mathfrak{M})g$ belongs to $C_b^{2+\theta}(H)$.

PROOF. The proof is based on a general interpolation argument due to A. Lunardi see [16], in particular on the following inclusion result

(4.1)
$$(C_b^{\alpha}(H), C_b^{2+\alpha}(H))_{1-(\alpha-\theta)/2, \infty} \subset C_b^{2+\theta}(H),$$

for any $\alpha \in]\theta$, 1[. Consequently, in order to prove the theorem it will be enough to show that for some $\alpha \in]\theta$, 1[, we have

(4.2)
$$\varphi \in (C_b^{\alpha}(H), C_b^{2+\alpha}(H))_{1-(\alpha-\theta)/2, \infty}.$$

To prove (4.2) we set

$$\varphi(x) = a(t, x) + b(t, x),$$

where

$$a(t,x) = \int_{0}^{t} e^{-\lambda s} P_{s}g(x) ds,$$

and

$$b(t,x) = \int_{t}^{+\infty} e^{-\lambda s} P_{s}g(x) \, ds$$

Then from (2.7) it follows that

$$\begin{aligned} \|a(\cdot,t)\|_{\alpha} &\leq C(\alpha,\theta) \int_{0}^{t} e^{-\lambda s} s^{-(\alpha-\theta)/2} ds \|g\|_{\theta} = \\ &= C(\alpha,\theta) t^{1-(\alpha-\theta)/2} \int_{0}^{1} e^{-\lambda t \sigma} \sigma^{-(\alpha-\theta)/2} d\sigma \|g\|_{\theta} \leq \frac{C(\alpha,\theta)}{1-(\alpha-\theta)/2} t^{1-(\alpha-\theta)/2} \|g\|_{\theta} \,, \end{aligned}$$

and from (2.8) that

$$\begin{aligned} \|b(\cdot,t)\|_{2+\alpha} &\leq C(\alpha,\theta) \int_{t}^{+\infty} e^{-\lambda s} s^{-((\alpha-\theta)/2)-1} ds \|g\|_{\theta} = \\ &= C(\alpha,\theta) t^{-(\alpha-\theta)/2} \int_{1}^{+\infty} e^{-\lambda t\sigma} \sigma^{-((\alpha-\theta)/2)-1} d\sigma \|g\|_{\theta} \leq \frac{C(\alpha,\theta)}{\alpha-\theta} t^{(\theta-\alpha)/2} \|g\|_{\theta} \,. \end{aligned}$$

This implies (4.2).

By Proposition 4.1 and 3.2(iv) we find the result.

THEOREM 4.2. Assume that $\theta \in]0, 1[, g \in C_b^{\theta}(H), \lambda > 0, and in addition that$

(4.3)
$$\int_{0}^{1} [\operatorname{Tr}(\Lambda_{t}\Lambda_{t}^{*})]^{1-\theta/2} dt < +\infty.$$

Then, setting $\varphi = R(\lambda, \mathfrak{M})g$, the following statements hold.

(i)
$$\varphi \in C_b^{2+\theta}(H)$$
 and $D^2 \varphi(x) \in \mathcal{L}_1(H)$ for any $x \in H$.
(ii) $\operatorname{Tr} [D^2 \varphi(\cdot)] \in C_b(H)$.
(iii) $x \to \langle x, A^* D \varphi \rangle \in C_b(H)$.

Moreover

(4.4)
$$\lambda \varphi(x) - (1/2) \operatorname{Tr} \left[D^2 \varphi(x) \right] - \langle x, A^* D \varphi \rangle = g(x),$$

for all $x \in H$.

REMARK 4.3. Let us consider the restriction P_t^{θ} , $t \ge 0$ of the semigroup P_t , $t \ge 0$ to $C_b^{\theta}(H), \ \theta \in]0, \ 1[$. We can still define the infinitesimal generator \mathfrak{M}^{θ} of $P_t, \ t \ge 0$ to $C_b^{\theta}(H)$ by the Laplace, transform setting

(4.5)
$$R(\lambda, \mathfrak{M}^{\theta}) \varphi(x) = \int_{0}^{+\infty} e^{-\lambda t} P_{t}^{\theta} \varphi(x) dt.$$

It is easy to check that \mathfrak{M}^{θ} is the part of \mathfrak{M} in $C_{h}^{\theta}(H)$:

$$D(\mathfrak{M}^{\theta}) = \left\{ \varphi \in D(\mathfrak{M}) \cap C_{b}^{\theta}(H) \colon \mathfrak{M}\varphi \in C_{b}^{\theta}(H) \right\}.$$

Theorem 4.2 enable us to characterize, under suitable assumptions, the domain of M^{θ} . We have

$$D(\mathfrak{M}^{\theta}) = \left\{ \varphi \in C_b^{2+\theta}(H) : \left\langle A \cdot, D\varphi \right\rangle \in C_b(H) \right\}$$

If H is finite-dimensional this characterization of $D(\mathfrak{M}^{\theta})$ was obtained in [7].

Under the hypotheses of Theorem 4.2 we can give the following definition of $D(\mathfrak{M}^{\theta})$

$$(4.6) \qquad D(\mathfrak{M}^{\theta}) = \left\{ \varphi \in C_{b}^{2+\theta}(H) \colon D^{2}\varphi(x) \in \mathcal{L}_{1}(H), \ \forall x \in H, \\ \operatorname{Tr}\left[D^{2}\varphi(x)\right] \in C_{b}(H), \left\langle A \cdot, D\varphi \right\rangle \in C_{b}(H) \right\}.$$

5. MAXIMAL REGULARITY RESULTS FOR PARABOLIC EQUATIONS

We are here concerned with the initial value problem

(5.1)
$$\begin{cases} du(t,x)/dt = (1/2) \operatorname{Tr} [D^2 u(t,x)] + \langle Ax, Du(t,x) \rangle + F(t,x), \\ t \in]0, T], x \in H, \\ u(0,x) = \varphi(x), \end{cases}$$

where
$$F \in C([0, T]; C_b(H))$$
 and $\varphi \in C_b(H)$.

Following S. Cerrai and F. Gozzi [5], we call the function $u: [0, T] \times H \mapsto \mathbf{R}$ defined as

(5.2)
$$u(t,x) = P_t \varphi(x) + \int_0^t P_{t-s} F(s, \cdot)(x) \, ds = u_1(t,x) + u_2(t,x) \, ,$$

the *mild* solution to (5.1). Several properties of the mild solution u are described in the quoted paper [5]. Here we will discuss only some new maximal regularity results for u_1 and u_2 . Concerning u_1 we have the following proposition.

PROPOSITION 5.1. The following statements are equivalent

(i) $u_1 \in C^{\theta}([0, T]; C_b(H)).$ (ii) $\varphi \in D_{\mathcal{M}}(\theta, \infty).$

PROOF. $(i) \Rightarrow (ii)$. It is enough to show that

(5.3)
$$\sup_{\lambda > 0} \lambda^{\theta} \| \mathfrak{MR}(\mathfrak{M}, \lambda) \varphi \|_{0} < + \infty .$$

In fact, by Proposition 3.5, if (5.3) holds, we have $\varphi \in D_{\mathfrak{M}}(\theta, \infty)$, and by Theorem 3.9 this implies (*ii*). By hypothesis (*i*) there exists K > 0 such that

(5.4)
$$|P_t\varphi(x) - \varphi(x)| \le Kt^{\theta}, \quad t \in [0, T].$$

It follows

$$\left|\mathfrak{MR}(\lambda, \mathfrak{M})\varphi(x)\right| \leq K\lambda \int_{0}^{+\infty} e^{-\lambda t} t^{\theta} dt \leq \frac{K\Gamma(\theta+1)}{\lambda^{\theta}},$$

and (5.3) holds.

 $(ii) \Rightarrow (i)$. Let $t > s \ge 0$. Then by Proposition 3.8, we have

$$\left|P_t\varphi(x) - P_s\varphi(x)\right| \leq \left|P_{t-s}\varphi(x) - \varphi(x)\right| \leq C_T \left|t-s\right|^{\theta},$$

and (i) is proved.

We conclude this section, by studying the regularity of u_2 .

THEOREM 5.2. Let $F \in C([0, T]; C_b(H))$, and assume that, for some $\theta \in]0, 1[$, we have $F(t, \cdot) \in C_b^{\theta}(H)$ and that

(5.5)
$$\sup_{t \in [0, T]} \|F(t, \cdot)\|_{\theta} < +\infty.$$

Then $u \in C([0, T]; C_{b}(H)), u(t, \cdot) \in C_{b}^{2+\theta}(H)$ and
(5.6)
$$\sup_{t \in [0, T]} \|u(t, \cdot)\|_{2+\theta} < +\infty.$$

PROOF. We fix t > 0. Arguing as in the proof of Proposition 4.1 it is enough to prove that

(5.7)
$$u(t, \cdot) \in (C_b^{\alpha}(H), C_b^{2+\alpha}(H))_{1-(\alpha-\theta)/2, \infty}$$

for some $\alpha \in]\theta$, 1[. To this purpose we set

$$a(t, \tau, x) = \int_{0}^{\tau} P_{s}u(t - s, \cdot)(x) ds, \quad \tau \in [0, t],$$

$$b(t, \tau, x) = \int_{\tau}^{t} P_{s}u(t - s, \cdot)(x) ds, \quad \tau \in [0, t].$$

Then by (2.7) we have

$$\begin{aligned} \|a(t,\tau,\cdot)\|_{\alpha} &\leq C(\alpha,\theta) \sup_{s \in [0,T]} \|u(s,\cdot)\|_{\theta} \int_{0}^{\tau} \frac{ds}{s^{(\alpha-\theta)/2}} &\leq \\ &\leq \frac{C(\alpha,\theta)}{1-(\alpha-\theta)/2} \sup_{s \in [0,T]} \|u(s,\cdot)\|_{\theta} \tau^{1-(\alpha-\theta)/2} \end{aligned}$$

Moreover by (2.8) we have

$$\begin{aligned} \|b(t,\tau,\cdot)\|_{2+\alpha} &\leq C(\alpha,\theta) \sup_{s \in [0,T]} \|u(s,\cdot)\|_{\theta} \int_{\tau}^{t} \frac{ds}{s^{(\alpha-\theta)/2+1}} \leq \\ &\leq \frac{2C(\alpha,\theta)}{(\alpha-\theta)/2} \sup_{s \in [0,T]} \|u(s,\cdot)\|_{\theta} \tau^{-(\alpha-\theta)/2} .\end{aligned}$$

This implies (5.7).

References

- P. CANNARSA G. DA PRATO, On a functional analysis approach to parabolic equations in infinite dimensions. J. Funct. Anal., 118, 1, 1993, 22-42.
- [2] P. CANNARSA G. DA PRATO, Infinite dimensional elliptic equations with Hölder continuous coefficients. Advances in Differential Equations, 1, 3, 1996, 425-452.
- [3] P. CANNARSA G. DA PRATO, Schauder estimates for Kolmogorov equations in Hilbert spaces. Proceedings of the meeting on Elliptic and Parabolic PDE's and Applications (Capri, september 1994). To appear.
- [4] S. CERRAI, A Hille-Yosida Theorem for weakly continuous semigroups. Semigroup Forum, 49, 1994, 349-367
- [5] S. CERRAI F. GOZZI, Strong solutions of Cauchy problems associated to weakly continuous semigroups. Differential and Integral Equations, 8, 3, 1994, 465-486.
- [6] G. DA PRATO, Transition semigroups associated with Kolmogorov equations in Hilbert spaces. In: M. CHIPOT J. SAINT JEAN PAULIN I. SHAFRIR (eds.), Progress in Partial Differential Equations: the Metz Surveys 3. Pitman Research Notes in Mathematics Series, no. 314, 1994, 199-214.
- [7] G. DA PRATO A. LUNARDI, On the Ornstein-Uhlenbeck operator in spaces of continuous functions. J. Funct. Anal., 131, 1995, 94-114.
- [8] G. DA PRATO J. ZABCZYK, Stochastic equations in infinite dimensions. Encyclopedia of Mathematics and its Applications, Cambridge University Press, 1992.
- [9] JU. L. DALECKIJ, Differential equations with functional derivatives and stochastic equations for generalized random processes. Dokl. Akad. Nauk SSSR, 166, 1966, 1035-1038.
- [10] N. DUNFORD J. T. SCHWARTZ, Linear Operators. Vol. II, 1956.
- [11] L. GROSS, Potential Theory in Hilbert spaces. J. Funct. Anal., 1, 1965, 139-189.
- [12] H. H. Kuo, Gaussian Measures in Banach Spaces. Springer-Verlag, 1975.
- [13] J. M. LASRY P. L. LIONS, A remark on regularization in Hilbert spaces. Israel J. Math., 55, 3, 1986, 257-266.
- [14] J. L. LIONS J. PEETRE, Sur une classe d'espaces d'interpolation. Publ. Math. de l'I.H.E.S., 19, 1964, 5-68.
- [15] A. LUNARDI, Analytic Semigroups and Optimal Regularity in Parabolic Problems. Birkhauser Verlag, Basel 1995.
- [16] A. LUNARDI, An interpolation method to characterize domains of generators of semigroups. Semigroup Forum, to appear.

- [17] A. S. NEMIROVKI S. M. SEMENOV, The polynomial approximation of functions in Hilbert spaces. Mat. Sb. (N.S.), 92, 134, 1973, 257-281.
- [18] A. PIECH, Regularity of the Green's operator in Abstract Wiener Space. J. Diff. Eq., 12, 1969, 353-360.
- [19] A. PIECH, A fundamental solution of the parabolic equation on Hilbert space. J. Funct. Anal., 3, 1972, 85-114.
- [20] H. TRIEBEL, Interpolation Theory, Function Spaces, Differential Operators. North-Holland, Amsterdam 1986.

Scuola Normale Superiore Piazza dei Cavalieri, 7 - 56126 PISA