ATTI ACCADEMIA NAZIONALE LINCEI CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI LINCEI MATEMATICA E APPLICAZIONI

TATSUHIRO HONDA

A special version of the Schwarz lemma on an infinite dimensional domain

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Serie 9, Vol. 8 (1997), n.2, p. 107–110.

Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLIN_1997_9_8_2_107_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Funzioni di variabili complesse. — A special version of the Schwarz lemma on an infinite dimensional domain. Nota di Tatsuhiro Honda, presentata (*) dal Socio E. Vesentini.

ABSTRACT. — Let B be the open unit ball of a Banach space E, and let $f: B \to B$ be a holomorphic map with f(0) = 0. In this paper, we discuss a condition whereby f is a linear isometry on E.

KEY WORDS: Banach space; Schwarz lemma; Complex geodesic; Projective space.

RIASSUNTO. — Una versione speciale del lemma di Schwarz su un dominio di dimensione infinita. Sia B il disco unità aperto di uno spazio di Banach complesso. Si determina una condizione perché un'applicazione olomorfa $f: B \to B$, con f(0) = 0, sia un'isometria lineare.

1. Introduction

Let $\Delta = \{z \in \mathbb{C}; |z| < 1\}$ denote the unit disc in the complex plane \mathbb{C} . The classical Schwarz lemma is as follows:

THEOREM (The classical Schwarz lemma).

- (1) Let $f: \Delta \to \Delta$ be a holomorphic map such that f(0) = 0, then $|f(z)| \le |z|$ for all $z \in \Delta$.
- (2) Moreover, if there exists $z_0 \in \Delta \setminus \{0\}$ such that $|f(z_0)| = |z_0|$ then there exists a complex number λ with $|\lambda| = 1$ such that $f(x) = \lambda x$ and f is an automorphism of Δ .

Let E be a Banach space, and let D be a domain in E. The Carathéodory and Kobayashi invariant pseudo-distances have been introduced in D, together with the corresponding infinitesimal pseudo-metrics. A holomorphic map from Δ into D which is an isometry for the Poincaré distance of Δ and the Carathéodory or Kobayashi pseudo-distance of D is called a complex geodesic. It is known that complex geodesics do not always exist on D. However, their existence is a useful tool in the study of the group of all holomorphic isometry on D.

J. P. Vigué [13] generalized the above classical Schwarz lemma to the unit ball B in \mathbb{C}^n , for some norm such that every boundary point of B is a complex extreme point of \overline{B} and to a holomorphic map $f: B \to B$ for which $C_B(f(0), f(w)) = C_B(0, w)$ on an open subset U of B. H. Hamada [8] extended Vigué's results for some local complex submanifold of codimension 1 instead of an open subset U.

The notion of a complex geodesic on infinite dimensional spaces was first introduced by E. Vesentini [10]. He showed that if every boundary point of B_2 is a complex extreme point of $\overline{B_2}$ and if $C_{B_2}(f(0), f(w)) = C_{B_1}(0, w)$ for every $w \in B_1$, then f is a linear $\|\cdot\|$ -isometry, where B_1 and B_2 are the open unit balls for normed spaces E_1 and E_2 over \mathbb{C} .

^(*) Nella seduta del 7 febbraio 1997.

108 T. HONDA

In this paper, we give an infinite dimensional version of the above classical Schwarz lemma as follows:

MAIN THEOREM. Let E be a complex Banach space, let B be the unit ball of E, and let $f: B \to B$ be a holomorphic map such that f(0) = 0. We assume that every boundary point of B in E is a complex extreme point of the closure \overline{B} of B. Let X be a non-empty subset of B such that X is mapped homeomorphically onto an open subset Ω of the complex projective space $\mathbb{P}(E)$ by the quotient map from E onto $\mathbb{P}(E)$. If $C_B(f(0), f(w)) = C_B(0, w)$ for every $w \in X$, then f is a linear isometry on E.

If $E = \mathbb{C}$, $\mathbb{P}(E)$ is the set of only one element. This main theorem contains the part (2) of the classical Schwarz lemma.

2. Notations and preliminaries

Let $\Delta = \{z \in \mathbb{C}; |z| < 1\}$ be the unit disc in the complex plane \mathbb{C} . The Poincaré distance ρ on Δ is defined as follows:

$$\varrho(z,w)=(1/2)\log\left(1+\left|(z-w)/(1-z\overline{w})\right|\right)/(1-\left|(z-w)/(1-z\overline{w})\right|)\ (z,w\in\Delta)$$
. Let D_1 and D_2 be domains in complex Banach spaces. We denote by $H(D_1,D_2)$ the set of all holomorphic mappings on D_1 into D_2 . Let E be a complex Banach space, and let D be a domain in E . The Carathéodory distance C_D on D is defined as follows:

$$C_D(p,q) = \sup \{ \varrho(f(p), f(q)); f \in H(D, \Delta) \} \qquad (p, q \in D).$$

A mapping $g \in H(\Delta, D)$ is called a complex geodesic if $C_D(g(z), g(w)) = \varrho(z, w)$ (for all $z, w \in \Delta$).

THEOREM 1 [11, 4]. Let E be a complex Banach space, and let D be a convex domain in E. A mapping $g \in H(\Delta, D)$ is a complex geodesic if and only if there exist distinct points $z, w \in \Delta$ such that $C_D(g(z), g(w)) = \rho(z, w)$.

Theorem 2 [11]. Let E_1 and E_2 be two locally convex, locally bounded, complex vector spaces. Let D_1 and D_2 be two bounded, convex, balanced open neighborhoods of 0 in E_1 and E_2 , and let $f: D_1 \to D_2$ be a holomorphic map such that f(0) = 0. We assume that every boundary point of D_2 is a complex extreme point of the closure $\overline{D_2}$ of D_2 . If $C_{D_2}(f(0), f(w)) = C_{D_1}(0, w)$ holds for all $w \in D_1$, then f is a linear map of E_1 into E_2 .

3. Main results

PROPOSITION 3 [6]. Let E be a complex Banach space with the norm $\|\cdot\|$, let B be the open unit ball of E for the norm $\|\cdot\|$. Then $C_B(0,x) = C_A(0,\|x\|)$ for every $x \in B$.

Let f be a holomorphic map from B to B such that f(0) = 0. By Proposition 3 and the distance decreasing property of the Carathéodory distances, we have $C_{\Delta}(0, ||z||) = C_{B}(0, z) \ge C_{B}(0, f(z)) = C_{\Delta}(0, ||f(z)||)$ for all $z \in B$. Since $C_{\Delta}(0, r)$ is strictly increa-

sing for $0 \le r < 1$, we obtain that $||f(z)|| \le ||z||$ for $z \in B$. This is a generalization of part (1) of the classical Schwarz lemma.

PROPOSITION 4. Let E be a complex Banach space with the norm $\|\cdot\|$, let B be the open unit ball of E for the norm $\|\cdot\|$, and let $f: B \to B$ be a holomorphic map such that f(0) = 0. We assume that every boundary point of B is a complex extreme point of the closure \overline{B} of B. Let U be a non-empty open subset of B. If $C_B(f(0), f(w)) = C_B(0, w)$ for every $w \in U$, then f is a linear isometry on E.

PROOF. By Theorem 2, f is linear on E. So we show that f is injective.

By Proposition 3, the conditions ||f(w)|| = ||w|| and $C_B(f(0), f(w)) = C_B(0, w)$ are equivalent.

Let z be a point of E with f(z) = 0 and let $w \neq 0$ be a point of U. Since U is open, there exists a positive number r > 0 such that $w + \zeta z \in U$ for $\zeta \in \mathbb{C}$, $|\zeta| < r$. Then

$$||f(w + \zeta z)|| = ||w + \zeta z||.$$

On the other hand,

$$||f(w + \zeta z)|| = ||f(w) + \zeta f(z)|| = ||f(w)|| = ||w||.$$

By (4.1) and (4.2), we have $||w + \zeta z|| = ||w||$. So

$$\left\| \frac{w}{\|w\|} + \frac{\zeta}{\|w\|} z \right\| = 1 \text{ for } |\zeta| < r.$$

Since $w/\|w\|$ is a complex extreme point of \overline{B} , we have z=0. Therefore f is injective.

Now we introduce the projective space P(E). Let E be a Banach space. Let z and z' be points in $E\setminus\{0\}$. z and z' are said to be *equivalent* if there exists $\lambda\in\mathbb{C}^*$ such that $z=\lambda z'$. We denote by P(E) the quotient space of $E\setminus\{0\}$ by this equivalence relation. Then P(E) is a Hausdorff space. The Hausdorff space P(E) is called the *complex projective space induced by* E. We denote by Q the quotient map from $E\setminus\{0\}$ to P(E).

THEOREM 5 (Main theorem). Let E be a complex Banach space with the norm $\|\cdot\|$, let B be the open unit ball of E for the norm $\|\cdot\|$, and $f: B \to B$ a holomorphic map such that f(0) = 0. We assume that every boundary point of B is a complex extreme point of the closure \overline{B} of B. Let X be a non-empty subset of B such that X is mapped homeomorphically onto an open subset Ω of the projective space $\mathbb{P}(E)$ by the quotient map Q. If $C_B(f(0), f(w)) = C_B(0, w)$ holds for every $w \in X$, then f is a linear isometry on E.

PROOF. We take a point $w \neq 0$, $w \in X$. We set $\varphi(\zeta) = \zeta(w/\|w\|)$ for $\zeta \in \Delta$. Then φ is a complex geodesic of B. We have $C_B(f \circ \varphi(0), f \circ \varphi(\|w\|)) = C_\Delta(0, \|w\|)$. By Theorem 1, $f \circ \varphi$ is a complex geodesic of B. So there exists a point $y \in B \setminus \{0\}$ such that

$$(5.1) f \circ \varphi(\zeta) = \zeta(\gamma/\|y\|).$$

(see e.g. [10-12]). On the other hand, let $f(x) = \sum_{n=1}^{\infty} P_n(x)$ be the development of f by n-homogeneous continuous polynomials P_n in a neighborhood V of 0 in E. Then we have

(5.2)
$$f \circ \varphi(\xi) = \sum_{n=1}^{\infty} P_n \left(\xi \frac{w}{\|w\|} \right) = \sum_{n=1}^{\infty} \left(\frac{\xi}{\|w\|} \right)^n P_n(w)$$

in a neighborhood of 0 in Δ . By (7.1) and (7.2), we obtain $P_n(w) = 0$ for $w \in X$, $n \ge 2$.

We take any point $y \in \mathbb{C}^* X = \{tx; t \in \mathbb{C}^*, x \in X\}$. Then there exist $t \in \mathbb{C}^*$ and $x \in X$ such that y = tx. So

$$P_n(y) = P_n(tx) = t^n P_n(x) = 0$$
.

Thus $P_n \equiv 0$ on $\mathbb{C}^*X \subset E$ for every $n \ge 2$. Since Q is continuous, the set $\mathbb{C}^*X = Q^{-1}(\Omega)$ is an open subset of E. By the identity theorem, $P_n \equiv 0$ on E for every $n \ge 2$. Therefore $f = P_1$ on E. So we have ||f(tx)|| = ||tf(x)|| = ||t|||f(x)|| = ||t|||x|| = ||tx|| for every $t \in \mathbb{C}^*$, $x \in X$. Then ||f(y)|| = ||y|| for all $y \in \mathbb{C}^*X$. By Proposition 4, f is a linear isometry on E.

REFERENCES

- [1] L. BELKHCHICHA, Caractérisation des isomorphismes analytiques sur la boule-unité de C" pour une norme. Math. Z., 215, 1994, 129-141.
- [2] S. DINEEN, Complex Analysis in Locally Convex Spaces. North-Holland Math. Studies, 57, 1981.
- [3] S. DINEEN, The Schwarz Lemma. Oxford Mathematical Monographs, 1989.
- [4] S. Dineen R. M. Timoney, *Complex Geodesics on Convex Domains*. Progress in Functional Analysis, 1992, 333-365.
- [5] S. DINEEN R. M. TIMONEY J. P. VIGUÉ, Pseudodistances invariantes sur les domaines d'un espace localement convexe. Ann. Scuola Norm. Sup. Pisa, 12, 1985, 515-529.
- [6] T. Franzoni E. Vesentini, Holomorphic Maps and Invariant Distances. North-Holland Math. Studies, 40, 1980.
- [7] M. JARNICKI P. PFLUG, Invariant Distances and Metrics in Complex Analysis. de Gruyter, Berlin-New York 1983.
- [8] H. Hamada, A Schwarz lemma in several complex variables. In: Proceedings of the Third International Colloquium on Finite or Infinite Dimensional Complex Analysis. Seoul, Korea, 1995, 105-110.
- [9] M. NISHIHARA, On the indicator of growth of entire functions of exponential type in infinite dimensional spaces and the Levi problem in infinite dimensional projective spaces. Portugaliae Math., 52, 1995, 61-94.
- [10] E. VESENTINI, Variations on a theme of Carathéodory. Ann. Scuola Norm. Sup. Pisa, 7 (4), 1979, 39-68.
- [11] E. Vesentini, Complex geodesics. Compositio Math., 44, 1981, 375-394.
- [12] E. VESENTINI, Complex geodesics and holomorphic maps. Sympos. Math., 26, 1982, 211-230.
- [13] J. P. Vigué, Un lemme de Schwarz pour les domaines bornés symétriques irréductibles et certains domaines bornés strictement convexes. Indiana Univ. Math. J., 40, 1991, 239-304.
- [14] J. P. Vigué, Le lemme de Schwarz et la caractérisation des automorphismes analytiques. Astérisque, 217, 1993, 241-249.

Ariake National College of Technology
Higashihagio-machi 150
OMUTA, Fukuoka 836 (Giappone)