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Funzioni di variabile complessa. — Generalization ofFueters result to Rn +1 . Nota 
di TAO QIAN, presentata (*) dal Socio E. Vesentini. 

ABSTRACT. — Fueter's result (see [6,8]) on inducing quaternionic regular functions from holomorphic 
functions of a complex variable is extended to Euclidean spaces Rn + 1. It is then proved to be consistent 
with M. See's generalization for n being odd integers [6]. 

KEY WORDS: Clifford analysis; Harmonic analysis; Complex analysis; Singular integrals; Fourier 
multiplier. 

RIASSUNTO. — Generalizzazione del risultato di Fueter allo spazio Rn +1. H risultato di Fueter [6,8] sulle fun­
zioni regolari determinate in funzioni olomorfe di una variabile complessa viene esteso allo spazio euclideo 
Rn + 1. Viene poi dimostrata, per n intero dispari, la compatibilità con la generalizzazione di M. See [6]. 

We will be working in Rn + 1 , the real-linear span of e0,ex,... ,en, where e0 is identi­
cal with 1 and e^ + e^e^ = —2ôjj. Rn + 1 is embedded into the Clifford algebra R{n) 

generated by eif... ,en. A typical element in Rn +1 is denoted x = x0 + x, where x0 e R 
and x = xxei + ... + xnen, xj sR. If x & 0, then its inverse x _ 1 exists: x _ 1 = x\x\ ~2, 
where x = x0 — x. We will study Rn + ^variable and Clifford-valued functions and the 
concepts of left- and right-monogeneity are introduced via the Dirac operator D = 

/£) â £) 

= — — Y ex — h ... + en —— in the usual way. In this Note, a function is said to be 
OQ OX i OyCw 

monogenic if it is both left- and right-monogenic. The Cauchy kernel stands for E{x) = 
= xj \x |n + 1 and the Kelvin inversion of a function / is 1(f) (x) = E(x)f(x ~1 ). The symbol 
Z and Z + denote the sets of all integers and positive integers, respectivley. 

We will use Fourier transform of functions / o n Rn + 1 defined by 

# { / ) ( £ ) = J e2*<*'*>/(*)<&, 

and the result (see [7]) 

| , | H » + l - a ' ' K> " I t i 

(*) Nella seduta del 7 marzo 1997. 
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where 0 < a < n + 1, £ e Z + , P^ is a homogeneous harmonie polynomial of degree k, 
and 

yka = jk^in + D/i-a r{k/2 + a/2)/r(k/2 + (» + l ) / 2 - a / 2 ) , 

(F denotes the ordinary gamma function). 
The inverse Fourier transform of a function g, denoted by 81(g), is defined by 

81(g) = je-2^x>^g(Ç)dÇ. 

Functions in the Schwarz class have Fourier transforms which are still in the class, 
and in this case the Fourier inversion formula holds: Sltf(f) = / . In the sequel, Fourier 
and inverse Fourier transforms will be used in the distribution sense. 

For a function g defined in Rn + l one can introduce a Fourier multiplier transform 
Mg by Mgf= &{g&f). It is easy to verify that the Laplace differential operator is identi­
cal with the Fourier multiplier transform induced by — An2 | £ | 2 . 

Let / 0 be a complex-valued function defined in an open set O in the upper half com­
plex plane. Write / ° = u + iv, where u and v are real-valued. Denote, for x e O, 

—*• x 
f°(x) =U(X0, \x\) + -r~-v(x0y \x\), 

diere 

O = {x e'Rr + 1 :(xQ\x\) eO} . 

/ ° is said to be the induced function f rom/ 0 , and O the induced set from O. 
We will be working with functions of the form 

x 
g(x) =p(x0, \x\) +i-f1-rq(x0y | x | ) , 

where/? and q are real-valued. We will call/? and q the real and the imaginary parts of g, 
respectively. 

The concepts of intrinsic sets and functions naturally fit into our theory. In the com­
plex plane C a set is said to be intrinsic, if it is open and symmetric with respect to the 
real axis; and a function/0 an intrinsic function if it is defined in an intrinsic set and sat­
isfies f°(z) =f°(z) within its domain (see [5]). In the notation/0 = u + iv, the above 
condition is equivalent to requiring that u is even and v is odd in their second argument. 
In particular, v(x0, 0) = 0, i.e. f° is real-valued if restricted to the real line in its 
domain. 

Denote by r the mapping 

r{f0)=A(n-l)/2j0f 

where/0 is any holomorphic intrinsic function and the differential operation in the dis­
tribution sense. Here we adopt the convention that / ° = 0 outside the induced set O. 

Note that for n e Z + being odd, the operator A{n ~ l)l2 is a pointwise differential 
operator, while for n e Z + being even, it is the Fourier multiplier operator induced by 
(liti | £ | )n " l mapping some functions to merely distributions. 
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OBSERVATION. If b is a complex function defined in an intrinsic set, then g°(z) = 
= {b(z) + b(z))/2, and h°(z) = (b(z) ~ b(z))/2i both are intrinsic, defined in the same 
set, and b = g° + ih°. 

The observation enables us to extend the domain of x to complex functions b de­
fined in intrinsic sets but not necessarily intrinsic themselves. We define, for such a 
function b: r(b) = r(g°) + iz(h°). The mapping r extended in such a way is linear un­
der addition and real-scalar multiplication. By virtue of the observation and the extend­
ed definition of r we may concentrante only on holomorphic intrinsic functions. A char­
acterization of such functions is that coefficients of their Laurent series expansions in 
annuii centered at real points in their domains are all real. Our study (see [2,4]) shows 
that it is essential to concentrate in the functions t((')~k), ksZ. 

Define, for k e Z + , 

P<-*> = r((-)~*), ?<*-D = I(p(-*)). 

We have 

THEOREM 1. Let k eZ+ . Then (i) P{~k) and P{k ~1] both are monogenic; (ii) P{~k) is 
homogeneous of degree —n + l—k and P{k ~ x) is homogeneous of degree (k — 1); (iii) if n 
is odd, then P ( *- 1 ) = r ( ( - r + * " 2 ) . 

The underlying idea of Theorem 1 is to explore the similarity between Clifford 
analysis and complex analysis of one variable. Some close similarity between the 
quaternionic and the complex analysis of one variable has been established in [4] via 
the corresponding relation zk —> P{h). An analogous theory for general Clifford algebras 
is studied in [2]. 

In the quaternionic space, which is not quite identical with our case n = 3 for the 
former is a full algebra but the latter is not, Fueter's result states that r maps holomor­
phic functions of a complex variable to quaternionic regular functions (see e.g. [8]). M. 
See proved that, if n is odd, then r maps holomorphic functions defined in open sets of 
the upper half complex plane to Clifford monogenic functions [6] which generalizes 
Fueter's result. The assertion (///) shows that, for n being odd, our generalization 
through the Kelvin inversion is consistent with See's on the functions/0 (z) = zk, k e Z. 
For n being even, however, Fueter or See's device in terms of the differential operator 
j (»-D/2 c a n o rjy ke generali2ed, using Fourier multiplier transform, to the power 
functions of negative powers, i.e. t o / 0 (z) = zk, — k eZ+ ; while the other half corre­
sponding to nonnegative powers cannot be generalized using the differential operator. 
This can be seen, e.g. from the following example: for/°(z) = z, t(z) is a distribution 
but not a function. The setting of using the Kelvin inversion to define P{k), k ^ 0, is 
suggested by the author's earlier work [4] where the setting is used for the convenience 
of proving estimates. Having proved the assertions (/) and (ii) the author got to know 
through J. Ryan about See's result and the reference [6]. The proof of (iii) is similar to 
the proof of the analogous relation in the quaternions case (see [4]), but uses, in a 
slightly developed form, some techniques of [6]. It would be interesting to see alterna-
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tive proofs of (///) simpler than what we give in below, e.g. using conformai covariance 
of intertwining differential operators like those used in [3]. 

PROOF. (/) Using the Fourier transform result cited above and the relation 

\-ki \ _ / x \k _ ( ! ) / _a Ve- ' / x_ 

( | x | 2 | ( * - D ! \ & o j \ \x\2 

we have 

-^(ir'-h'-'^-ii^)-
( - i f ' 1 / d \k-i 0 , v ( - I ) ^ " 1 / a \k-i 

where we let jr„ = ( 2 J » T " V M = (2/7 " lT2((n + l ) / 2 ) . This implies that P{~k) are 
monogenic for k e Z + . The monogeneity of P^ is from the property of the Kelvin in­
version (see [1]) or a special case of Bojarski's result on intertwining Dirac operators, 
for which we refer the reader to [3]. 

(//) It is a consequence of the expression of P{~k) obtained above and the prop­
erty of the Kelvin inversion. 

(Hi) Let n = 2m + 1. We have Kn = ( - l)m22m(m\)2 = ( - l)m ((2m)\\)2. We 
will use the mathematical induction. The case k = 1 reduces to verifying Am(x2m) = 
— ( — 1 )m ( 2m ) ! !. The following lemma will be used. 

LEMMA l.Letf°(z) = u(x0,y) + iv(x0, y) be a function holomorphically defined in an 
open set U of the upper half complex plane. Denote uQ = u, v0 = v, and, for s E Z + , 

0 3«,- l 1 0 ( dvs-i 1 *V-i\ 0 3 Vs-i u, = 2s — , V, = 2s\ —T — = 2s 
dy J ' s \ dy J y

2 J dy y 

Then 

—» x 
As f°(x) =us(x0, \x\) + -Fjvs(x09 | x | ) , x0 + / | x | e U . 

1*1 
The lemma may be proved using the mathematical induction via a computation of 

A(us-i +ivs-i) invoking the following relation proved in [6]: 

dus-x = dvs-1 vs-i dus_x = dvs-l 

dx0 dy y ' dy dx0 

We will frequently use the following formula given in [6]: For any function 
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f° = u+ iv and r e Z + , 

(2) (7°Y(x) = [f(-l)ll'\u'-2lv2l+-^T s V t f f ' ) « ' - * - V ^ 1 , 
/ = o \2 / / |x| / = o \2l + 1/ 

where I ] are binomial coefficients with the convention that ( j = 0 for / > r, and [s] 

the largest integer that does not exceed s. 
Using formula (2) for/°U) = z , r = 2m and Lemma 1, one immediately deduces 

Am(x2m) = (-l)m((2m)l\)2 which proves the case k = 1. Now assuming P ( ^ = 
= r((*y+^_ 1)> we need to show?(^ + 1) = r ( (* f + ^) . The verification is a bit crumble-
some. First, this reduces to proving 

(3) f ^ -£-(l(Am((-)2m+k)))=l(Am((-)2m + k + 1)), 

where k e Z + or k = 0. 
Using formula (2) and Lemma 1, we have 

A((-)2m+k)(x) = 

= (2m)U 
m + ik/2] 

2 ( -Dl(2m t *) (2/)(2/ - 2)...(2/ - 2 » + 2)x$m+k-2ly2l-2m + 
/ = o \ 2/ / 

w + [£/2] , ,v 

+ | X ( - 1 / 2
2 ^ ^ ( 2 / ) ( 2 / - 2 ) . . . ( 2 / - 2 ^ + 2 ) x 0

2 - ^ - 2 / - 1 3 ; 2 / + 1 - 2 -

where we have put y = \x\. 
By applying the Kelvin inversion, i.e. replacing x0, y and x/y by x0 \x \ ~2, y \x \ ~2 and 

— x/y, respectively, the above becomes 

(4) (2m)ll 
1*1* 

m + [kf2] 

+ 2& + 1 

È" ( - l ) / ( 2 / ; ' î / è ] ( 2 / ) ( 2 / - 2 ) . . . ( 2 / - 2 W + 2)xo2"+^-2/3;2/-2w + 
/ = o \ 2/ / 

+ - " E ( - l ) / + 1 ( 2 / J + y è ) ( 2 / ) ( 2 / - 2 ) . . . ( 2 / - 2 ^ + 2 ) ^ + ^ - 2 / - 1 3 ; 2 / + 1 - 2 w 

Applying the differential operator [ —1/(£ + l)ìd/dx0 to the expression (4), we 
obtain 

-{2m)\\ 

where [...] is as [...] in (4). 

E U ) M ^ { ( " U + 2 " ) X o + l y ) [ - ] + (x°2 + y 2 ) ^ [ - ] } ' 
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Now 

m + [kl 21 

1 = 0 

m + [k/2] 

i-(n + 2k)x0+ | y ) [...] = 

[k/2i , ,» 

2 ( - l ) / + 1 r ^ 2 p (« + 2/è)(2/)(2/-2)...(2/-2^ + 2)x0
2 

+ f \ - l ) / ( 2 ^ + y è i (2 / ) (2 / -2 ) . . . (2 / -2^ + 2)xo2w+^2/-13;2/+1-2w + 1 
i = o \ 2/ + 1 / 

2 ( ~ 1 ) / + I r 7 f (« + 2 ^ ) ( 2 / ) ( 2 / - 2 ) . . . ( 2 / - 2 ^ + 2)xo 2 w ^- 2 / 3; 2 / + 1 - 2 w + / = o \ 2/ + 1 / £ 

+ " Y (" l / f 2 *^*) (2/K2/- 2)... (2/ - 2W + 2)x0
2" + * - 2 / 3 ; 

2 w + è - 2 / + l 2/-2W i 

' + 

X 
+ -

3> 

m + [k/2] 

J.2m+k-2L,2l + 1 - 2 w 

and, 

dx0 

m + lk/2] 

2 ( -l)l(2m t *) (2/)(2/ - 2)... (2/ - 2» + 2){2m + k - 2l) 
i = o \ 21 I 

, („2m+k-2l + l„2l-2m j _ „2m + k - 21 - l„2l - 2m + 2\ 
\XQ / i"^o y ) + 

+ 
m + [k/2] 

2 ( - l ) / + l ( 2 ^ +
1 ^ ( 2 / ) ( 2 / - 2 ) . . . ( 2 / - 2 ^ + 2 ) ( 2 ^ + ^ - 2 / - l ) 

/ = o \ 2/ + 1 / 

. / 2m+k-2l 21 + \-2m \ 2m + k - 21 - 2 21 + 1 - 2 w + 2 \ l 

By comparing the coefficients of a general nomialXQm +k + 1 2ly21 2m m the real part of 
(5) with those in the real part of l(Am (( • )2m + k + ^ ( x ) = E(x)(Am (( • ^ + * + MK* - 1 ) , 
the later being of the expression (4) but with k 4- 1 in place of £, we are reduced to 
verifying 

(6) - 2/(» + 2*) (2 W
2+ *) + ( 2 * - 2/) ( * £ + * ) + 2 / (2» + * - 2/) ( 2 " 2 + *) 

\ 2/ 

+ 

+ ( 2 » - 2 / ) ( 2 w + * - 2 / + 2 ) r 7 ' " ) = -(k+\)2l[2m*~k"rl 2m + £ 
2 / - 2 

Using the relation 

( ' - '»(;)-"+ i )Ui)-
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the second and fourth entries on the left hand side of (6) add up to 

(7) 2l(2m-2l)(2™^\, 

while the first and third to 

n 
2/ 

(8) - 2/(2/ + k+l)l2m+k\ = [-4/2 - 21 (k + 1)] 12m + k\ 
\ 21 J 

= -2l(2m+k-2l+l)(fl^\-2l(k + l)(2m
2^

k 

Combining (7) with the right hand side of (8) and using the relation 

ls+ 1) 
\ I 

we obtain (6). The verification of the equality between the imaginary part of (5) and 
that of l(Am((-)2m + k + 1)) is similar, and the proof of (Hi) is complete. 

(H-.) 
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