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Calcolo delle variazioni. — Barriers for a class of geometrie evolution problems. Nota 
di GIOVANNI BELLETTINI e MATTEO NOVAGA, presentata (*) dal Socio E. Magenes. 

ABSTRACT. — We present some general results on minimal barriers in the sense of De Giorgi for geo­
metrie evolution problems. We also compare minimal barriers with viscosity solutions for fully nonlinear ge­
ometric problems of the form ut + F(t,x,Vu,V2u) = 0. If F is not degenerate elliptic, it turns out that we 
obtain the same minimal barriers if we replace F with F + , which is defined as the smallest degenerate ellip­
tic function above F. 

KEY WORDS: Barriers; Nonlinear partial differential equations of parabolic type; Mean curvature flow; 
Viscosity solutions. 

RIASSUNTO. — Barriere per una classe di problemi geometrici di evoluzione. Vengono presentati alcuni ri­
sultati di Carattere generale sulle minime barriere nel senso di De Giorgi per evoluzioni geometriche di in­
siemi. Vengono anche confrontate le minime barriere con le evoluzioni ottenute usando le soluzioni nel sen­
so della viscosità, per problemi geometrici completamente non lineari della forma ut + F(t,x,Vu,V2u) = 0. 
Se F non è ellittica degenere, si osserva che si ottengono le stesse minime barriere se, al posto di F, si consi­
dera la funzione F + , definita come la più piccola funzione ellittica degenere maggiore o uguale a F. 

0. INTRODUCTION 

In [8] De Giorgi introduced a notion of weak solution, called minimal barrier, for a 
wide class of evolution problems. An interesting example that falls within this general 
definition is the mean curvature flow; in this case, since singularities may appear at a fi­
nite time even starting from smooth compact data, it is particularly important to have a 
(possibly unique) notion of weak evolution. In the literature there are many different 
generalized approaches to geometric evolutions; in particular we mention the pioneris-
tic work of Brakke in the context of geometric measure theory, the viscosity approach 
of Evans-Spruck [10], Chen-Giga-Goto [5], Giga-Goto-Ishii-Sato [11], the method of 
the distance function of Soner [16], the variational approach of Almgren-Taylor-
Wang [1] and its generalization by means of the minimizing movements of De Gior­
gi [7], the elliptic regularization method [14] and the set-theoretic subsolutions of II-
manen [13], the minimal barriers [8] and the penalization method on higher derivatives 
of De Giorgi [9]. 

The aim of this Note is twofold. Firstly in Sect. 3 we present some general proper­
ties of minimal barriers for geometric evolutions: in particular, concerning geometric 
fully nonlinear parabolic problems of the form 

(0.1) ^+F(t,x,Vu,V2u) = 0, 

we study under which conditions on F the disjoint sets property and the joint sets prop­
erty hold (see Definition 4.1). Moreover, denoting by 3fF the family of all smooth local 
geometric supersolutions of (0.1) (see Definition 2.8), and denoting by 9K(E, &F) the 

(*) Nella seduta del 7 febbraio 1997. 
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minimal barrier starting from an open set E çRn (see Definition 2.2), we observe (The­
orem 3.2) that 9il(E, &F) = 9K(E, <̂ F + ), where F+ is defined as the smallest degener­
ate elliptic function greater than or equal to F (see (1.1)). Secondly, in Sect. 5 we show 
(see Theorems 5.2, 5.3) that minimal barriers are equivalent to viscosity solutions for 
geometric problems of the form (0.1) under the assumptions on F made by Giga-Goto-
Ishii-Sato in [11]. More generally, it turns out that the minimal barrier corresponds to 
the maximal between all viscosity subsolutions assuming a given initial datum (Corol­
lary 5.3). All proofs will appear in [2,3]. 

1. NOTATION 

In the following we let I : = [t0, 4- oo [? for a fixed t0eR; in Sect. 5 we will take 
t0 = 0. We denote by &(Rn ) the family of all subsets of RP, n ^ 1. If C is a subset of Rn 

such that C *Rn and C * 0, we set dc(x):= distU, C) - dist(x,R*\C), and for any 
Q > 0 

C~ := {xeRn:dist(x,Rn\C) > Q} , CQ
+ := {x e Rn : dist(x, C) < Q} . 

Given a map 0: J —» (P(Rn)y where / Ç 2? is a convex set, if 0(/) ^ 1?* and 0(*) ^ 0 
for any tejwe let J 0 : / X Rn —» i? be the function defined as 

J 0 U, x) : = dist (x, 0(/)) - dist (x,R*\0(f)) = J0W (x). 

Given 0 ! , 02* J—> {P(Rn), by 0 i C 0 2 (resp. 0 i = 02) we mean (/>i(t) C(/)2(t) 
(resp. 0 iU) = 02 U)) for any £ e / . 

Given a function ^: J X Rn —>Rwe denote by #* (resp. #*) the lower (resp. upper) 
semicontinuous envelope of v. 

For x e IT and R > 0 we set £R(x): = {3; e Rn : J? - x | < R } and S* ~ 1 := {x e IT : 
\xI = 1}. If cx, c2 e Ry we let ci/\c2=

z m i n ^ , c2) and ̂  V c2 = m a x ^ , c2). We de­
note by Sym(«) the space of all symmetric real (n X #.)-matrices. Given/? E 1T\{0}, 
we set Pp :=Id-p®p/\p\2. We also set J0 := / X JT X (1T\{0}) X Sym(«). 

Given a function F: J0->R, we denote by F* (resp. F*) the lower (resp. upper) 
semicontinuous envelope of F. 

For any (/, x,p, X) E / 0 , we define 

'Fc(t,x,p,X): = -F{t,x, -p, - X ) , 

(1.1) . F + ( / , x , p , X ) : = s u p { F U , x , p , y ) : y ^ X } , 

F-(t,x,p, X):= inf {F(/,x,p, F): 7 ^ X} . 

We say that F is locally Lipschitz in X if for any (t, x, p) E I X Rn X ( Rn \{ 0}) the func­
tion F(t,x,p, •) is locally Lipschitz. 

We recall that F is geometric [5, (1.2)] if F{t,x, XpvXX + op ®p) = AF(t, x,p, X), 
for any A > 0, CTEJR, (t,x9p9X) E / 0 . 

For all definitions and results concerning viscosity solutions we refer to [6] and ref­
erences therein. In the appendix we list some assumptions used in the paper, following 
the notation of [11]. 
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2. DEFINITIONS OF BARRIERS AND MINIMAL BARRIERS 

Definitions 2.1, 2.2 are a particular case of the definitions proposed in [8]. 

DEFINITION 2.1 (barriers). Let $be a family of functions with the following property: 
for anyfe. & there exist a,b eR,a < b, such thatf: [a, b] —> &{Rn). A function 0 is a bar­
rier with respect to & if and only if there exists a convex set Lei such that 0 : L —» (P{Rn) 
and the following property holds: iff: [a,b]çL-^ &lRtt) belongs to &andf{a) C(j){a) then 
f{b) C(p{b). We denote by $>{$) the family of all barriers 0 such that L = I {that is, barriers 
on the whole of I). 

DEFINITION 2.2 (minimal barrier). Let EçRn be a given set. The minimal barrier 
911{E, 3r,t0): I—> £P{Rn) {with origin in E at time t0) with respect to the family $ at any 
time t el is defined by 

(2.1) ME, &, t0)(/):= fl {(/>{t): 0 :1 -> 8>{Rn ), 0 e £ (# ) , </>{t0) D E} . 

DEFINITION 2.3 (maximal inner barrier). Let E çRn be a given set. The maximal inner 
barrier K{E, $, t0): I —» £P(R*) {with origin in E at time t0) with respect to the family $ at 
any time t el is defined by 

(2.2) Jt{E, &, t0){t) := U{ip{t): y: I - » S>{Rn), V e â(tf), V(t0)çE} , 

where &{&) is as in Definition 2.1 with the set inclusion ç replaced by D. 

The connections between 9K{E, $, t0) and N(E, &,t0) enee explained in Theorem 
4.3. 

The following regularization was introduced in [4] and turns out to be very 
useful. 

DEFINITION 2.4 (regularizations of barriers). Let E ç Rn. If t e I we set 

DKAE,&,t0){t):= U 3KC(E-9&,t0)(t), 311* {E, &, t0){t) := fl 3TC(E+, # f 0 ) t o , 
Q>0 W Q>0 * 

Jf*(E, 5- /„)(/):= U X(Ee-,&,t0)(t), X*(E,&,t0)(t):= fi X(EQ
+ , $, t0)(t). 

Q>0 * Q>0 W 

Once we have a unique evolution of any subset E of Rn, we have a unique evolution 
of any initial function u0. 

DEFINITION 2.5. Let u0: Rn —» R be a given function. The two functions 
9Ku0,?r>9Ku0>?r'- IXRn-^RU{±oo} are defined by 

IXo,*( / , x) := inf {X e R: 31l{{u0 < A}, &, t0 ){t)Bx} , 

I DRUo> #{t, x) := inf {X e R: 3TC* {{u0 < A}, &, t0 ){t) 3x} . 

Besides the concept of barrier, we can also consider the concept of local 
barrier. 

DEFINITION 2.6 (local barriers). A function 0 is a local barrier with respect to $ if and 
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only if there exists a convex set Lei such that (p : L —» tP(Rn ) and the following property 
holds: for any x e Rn there exists R > 0 (depending on 0 and x) so that if f: [ay b] C L —> 
-+ {P(Rn) belongs to tfandf(a) ç <p(a) D BR(x)ythenf(b) c (j)(b). We denote by &Xoc(&) the 

family of all local barriers 0 such that L = I [that is, local barriers on the whole of I). 

DEFINITION 2.7 (local minimal barrier). Let EcRn be a given set. The local minimal 
barrier 3ltloc (E, &y t0): I —» tP(Rn) (with origin in E at time t0) with respect to the family $ 
at any time t el is defined by 

DJlloc(E, $, t0)(t) := fi {<p(t): <t>:I^8>(Rn ), 0 e % * ( # ) , 0(/o) ?E} . 

Note that a similar definition to Definition 2.6 can be given by localizing also with 
respect to time. The connection between barriers and local barriers is explained in The­
orem 3.1. 

The definitions of barriers for geometric evolutions described by a function F for 
problems of the form (0.1) are a particular case of the previous definitions, by choosing 
a suitable family #>, and read as follows. Let F: J0->R be an arbitrary function. 

DEFINITION 2.8. Let a,b eR, a < b, [a, b] ci and let f: [a, b] —> 8>(Rn). We write 
fe&F (and we saJ that fis a smooth local geometric supersolution of (0.1)) if and only if the 
following conditions hold: f(t) is closed and df(t) is compact for any t e [a, b\ there exists 
an open set AçW such that dfeCœ([a,b] X A)y df(t) cA for any t e [a, b\ and 

(2.4) - ^ > * ) + Ht,xyVdf(tyx)yV
2df(tyx)) 2*0, £ e [*,£], x e df(t). 

We write f e tfp (resp. / e &f , / e &y ) if the strict inequality (resp. the inequality ^ , the 
equality) holds in (2.4). 

It turns out that, if F is bounded on compact subsets of/0, then &(dfF) coincides 
with the class of all barriers with respect to the subfamily of ff-p consisting of all 
/ : [a,b]—> &(Rn) such tha t / e &F and/U) is compact for any t e [a, b]. Notice also that 
Rn\3Z* (Ey tfFy t0)=N* (Rn\Ey 3fe, t0)y andR"\3Z* (E, $Fy t0)=M* (Rn\Ey 3fe, t0). 

3. GENERAL RESULTS ON BARRIERS 

The following lemma shows some general properties of the minimal barrier, such 
as comparison and semigroup property. If r e R, by 9il(E, &y r) we mean the minimal 
barrier constructed by taking barriers on the interval [r, + oo [ containing E at the 
time x. 

LEMMA 3.1. Let EcRn. Then the following properties hold. 

(1) 3Z(E, &, t0) exists and is unique; 

(2) 9Jl(E,&,t0)e&(&); 

(3) E1cE2=*31l(Elytf,t0)c31l(E2y&yt0); 

(4) 3Z(E,&,t0)(t0)=E; 



BARRIERS FOR A CLASS OF GEOMETRIC EVOLUTION PROBLEMS 123 

(5) / / / : [a, b]çI->8>(Rn), / e &, then 

(3.1) f{t) ç 3IC(f{a), &, a){t), * e [a, b] ; 

(6) ^ ç g ^ ^ ( E , ^ , / 0 ) ç ^ ( £ , §,'o); 

(7) assume that the family $ satisfies the following property, given f: [a,b]çI—> 
—» tP(Rn),fe 3, t e]a, b[, thenf\ [<M], / | ^ ^ E #\ TA<?# 3K(E, «̂ , £0) verifies the semigroup 
property, i.e., 3K(E, &, t0)(t2) = 3Z(3ÏC(E9 &, /0)(*i), <̂> 'i)( '2) */ 'o ^ h ^ t2. 

The following proposition shows in particular that the minimal barrier coincides 
with the smooth evolution qf (0.1) whenever the latter exists (see (3.2)). 

PROPOSITION 3.1. Assume that F does not depend on x, is geometric, uniformly elliptic 
and of class C00. Then for any E çRn we have M(E, &p ) = 9Jl(E, &F). Moreover for any 
/ : [a, £] ç I -> 8>{Rn), fe $p , we have 

(3.2) f{t) = ?K{f{a),$p,a){t), ts[a,b]. 

For simplicity of notation, from now on we drop the dependence on t0 of the mini­
mal barrier. 

Under suitable assumptions on F, the families &F and &F give raise to the same 
minimal barriers, as explained in the following useful remark. 

REMARK 3.1. Assume that F: ( Rn \ { 0 } ) X Sym ( n ) —» R is continuous and locally Lips­
chitz in X. Then for any E ç Rn we have 3Z* (E, tfp ) = 3Z* (E, &F), M* (E,tfp) = 
= 911* (E, $p), and the same holds for local minimal barriers. 

The following result shows the connection between barriers and local barriers. 

THEOREM 3.1. Assume that F: (Rn\{0}) X Sym(n) -*R is continuous and locally 
Lipschitz in X. Then Œioc(3p) = tBitfp). In particular, for any EcRn we have 
mE,df) = 3Mloc(E93f). 

The following theorem provides a sort of canonical representation for minimal bar­
riers when F is not degenerate elliptic (i.e., for evolutions without comparison princi­
ple), and it is one of the main results of this Note. 

THEOREM 3.2. Assume that F: (Rn\{0}) X Sym(n) -^R is continuous, locally Lips­
chitz inXandF+ < + *> in (IT \{0}) X Sym(«). Then &{&p) = &(#£+). In particu­
lar, for any EcRn we have 3Z(E, 3f ) = 9Z(E, 3rF+). 

4. THE DISJOINT SETS PROPERTY AND THE JOINT SETS PROPERTY 

The following properties play an important rôle in the theory of minimal 
barriers. 

DEFINITION 4.1. Let F, G: (Rn\{0}) X Sym(#) —>R be two functions, and let $p, 
$Q be the corresponding families of smooth local geometric supersolutions. We say that the 
disjoint sets property with respect to ( %fF, $G ) holds if, for any E ç Rn, we have 
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3TC* (E, &F) fi 3K* (Rn\E, &G) = 0. We say that the joint sets property with respect to 
(&F, &G) holds if, for any EcRn, we have 911* (E, $F) U 3\l* {Rn \E, &G) = Rn. 

The following theorem characterizes the disjoint sets property and the joint sets 
property in terms of the functions F and G describing the evolution. 

THEOREM 4.1. Assume that F, G : (R*\{0}) X Sym (n) -» R are continuous and local­
ly Lipschitz in X. Assume that F+ < + oo and G+ < + & in {Rn\{0}) X Sym(/z) and 
that F+ , G + are continuous. The following two statements hold. 

(i) The disjoint sets property with respect to ($F,$G) holds if and only if 
G+^(F + )C. 

(ii) The joint sets property with respect to (&F, $Q) holds if and only if 

The following theorem was proved in [4] in the case of driven motion by mean 
curvature. 

THEOREM 4.2. Assume that F: (Rn\{0}) X Sym (n) —> R is continuous and degenerate 
elliptic. Then, for any E çRn we have 

3lt* (E, &P) = Rn\3K* (Rn\E, &Fe), 31L* (E, &p) = Rn\DJl* (Rn\E, &Pe). 

The following result shows the connection between minimal barriers and maximal 
inner barriers. 

THEOREM 4.3. Assume that F : (R*\{0}) X Sym(/z) —»Ris continuous and degenerate 
elliptic. Then for any E ç Rn we have 

tf* (E, 3f ) = 3TC* (E, &F), tf* (E, 0 ) = 3IL* (E, $F). 

5. COMPARISON BETWEEN THE MINIMAL BARRIER AND THE LEVEL SET FLOW 

From now on we take I = [0, + oo [ (i.e., t0 = 0) and all barriers we consider are 
barriers on [0, + oo[. The following theorem is proved in [11, Theorem 4.9]. 

THEOREM 5.1. Assume that F: J0->R is geometric and satisfies either (F1)-(.F4), (F8), 
or (Fl), (F3), (F4), (F9), (FIO) (see the Appendix). Let v0:R

n -*Rbe a continuous func­
tion which is constant outside a bounded subset ofRn. Then there exists a unique continuous 
viscosity solution (constant outside a bounded subset of Rn) of (0.1) with v(0,x) = 
= v0(x). 

Theorems 5.2 and 5.3 clarify the relations between minimal barriers and viscosity 
subsolutions for geometric evolutions. 

THEOREM 5.2. Assume that F: J0-~>R is geometric and satisfies (Fl), (F3), (F4), (F6'), 
(F7), (F9), (FIO). Let u and v be, respectively, a viscosity sub- and supersolution o/(0.1) in 
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]0, + o o [ x F . Then for any XeR we have 

(5.1) {x<=Rn:u*{-,x) <l}c=&{tfF)) 

(5.2) { x e r ^ M ' ^ l ^ l e ^ ) ; 

(5.3) {xeRn:v*{%x) > X} e &{tfFc)y 

(5.4) {x eRn:v* (•, x) ^ X} G &(&Pe ) . 

Moreover (5.1), (5.2) still hold if we assume that F+ in place of F satisfies all previous as­
sumptions {and we replace (0.1) with (5.7) below). 

The next theorem is a sort of converse of Theorem 5.2. 

THEOREM 5.3. Let u,v:[0, + °°[X Rn ->R be functions such that u* < + oo {resp. 
v*> - oo ) in [0, 4- oo [ x Rn. Assume that F:J0-^R is geometric, lower {resp. upper) 
semicontinuous and satisfies (F4). Suppose that for any X e R 

(5.5) {x G Rn : u* (•, x) < X} e ffl(^ ), 

(5.6) {resp. {xeRn: v* (•, x) > X} e ffi(#£ )) . 

If F satisfies (F2), (F8') J#e» u {resp. v) is a viscosity subsolution {resp. supersolution) of 
(0.1) in ]0, + oo [ x Rn . I /F + (rasp. F~ ) satisfies (F4), (F8') /Ae» « (resp. i;) « <? viscosity 
subsolution {resp. supersolution) of 

(5.7) ^+F+{t,xyVu,V2u) = 0 
at 

(5.8) (rap. y- +F-{t,x,Vu,V2u) = 0 

in ]0, + o o [ x F . 

The following result shows the connection between minimal barriers and the con­
tinuous viscosity solution whenever the latter exists and is unique, and generalizes a re­
sult of [4]. 

COROLLARY 5.1. Assume that F: J0-^R is geometric and satisfies (Fl), (F3), (F4), 
(F6'), (F7), (F9), (FIO). Let EcRn be a bounded set and denote with v:[0, + oo[x 
X Rn —>R the unique uniformly continuous viscosity solution of (0.1) with v{0,x) = 
= VQ{X):= { — 1 ) V dE(x) A 1. Then for any t G [0, + oo [ we have 

(5.9) 3TC* (£, 3? )(t) = 3TC* (E, &F)(t) = {x<=Rn: v{t, x) < 0} , 

(5.10) 3d* (E, ^ )(/) = ^ v (E, ^p )(/) = {x G JT : *(f, x) ^ 0} , 

&?»«? 9KV0)#F = t\ Moreover if F = Fc fl&<?» 3TC* (E, ^F)\aTC,v (E, #>) G &(#>). 

The following results generalize Corollary 5.1. 

COROLLARY 5.2. Assume that F: J0-^Ris geometric, lower semicontinuous and satisfies 
(F4). Assume that F+ satisfies (Fl), (F3), (F4), (F6'), (F7), (F9), (FIO). Then 
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for any bounded set EçRn and any / e [ 0 , +oo[ we have 3\1*{E, &F)(t) = 
= 3JI* (E, 3f )(t) = {xeRn: v(t*) < 0}, 3K* (E, &P)(t) = 9K* (E, 3? )(t) = {xeRn: 
v(t,x) ^ 0}, where v is the unique uniformly continuous viscosity solution of {5.1) and 
v(0,x) = v0(x) := ( — 1) \/ dE{x) A 1. In particular, thanks to Corollary 5.1, we have 
3TC* (E, &F) = Dilit (E, &F + ) , Oil* (E, &F) = DÏC* (E, &F+) (compare with Theorem 3.2). 

COROLLARY 5.3. Assume that F: JQ->R is geometric and satisfies (Fl), (F3), (F4), 
(F6'), (F7), (F9), (FIO). Let u0:R

n-*Rbea given function such that «0* < + oo in Rn. 
Define SUQ := {v: v is a viscosity subsolution of (0.1) in ]0, + oo [ x Rn

 y v*(0,x) = 
= UQ (X)}. Ifu0is upper semicontinuous then 3HUo> &F = 3î£«0, &f = s u p { ^ : v G ^u0}' ^n the 

general case we have y&UQ,$F ~ ^u0,^ì = sup{v: v G £«0}-

REMARK 5.1. A similar assertion to Corollary 5.3 (under the same hypotheses) holds 
for supersolutions. Precisely, if u0 is lower semicontinuous (resp. arbitrary) such that 
u^> ~ °° *# Rn we have that, for any (t,x) E [0, + oo [ x Rn

 y the function 
sup{//: 9Jl({u0 > JU}, &F)(t) 3x} (resp. sup{ju: 3Z* ({u0 > JU}, &F)(t) 3x}) coincides 
with the infimum of u(t,x), where u varies over all viscosity supersolutions of (0.1) in 
]0, + oo [ x Rn such that u * ( 0, x) = u0(x) (resp. u*(0,x) = u0i(x)) and same assertions 
with &F replaced by &^ . 

The following remark shows the connections between the minimal barrier and the 
viscosity evolution without growth conditions on F (see [15,12]) and for unbounded 
sets E. 

REMARK5.2. Assume that F': (l?"\{0}) X Sym(#) —» Ris geometric and satisfies (F'1), 
(F2). Let u and v be, respectively, a viscosity sub- and supersolution of 

(5.11) % + F(Vu,V2u) = 0 
at 

in 10, + oo [ x Rn, in the sense of {15, Definition 1.2]. Then (5.1)-(5.4) hold. Moreover, if 
u:[0, + oo [ x Rn —> R is a function such that u * < + oo in [0, + oo [ x Rn and satisfies 
(5.5) for any X sR, then u is a viscosity subsolution of (5.11) in ]0, + oo [ x Rn. Finally, 
Corollary 5.1 still holds, even if E is unbounded. 

In particular we have the following result. 

COROLLARY 5.4. Assume that F: (Rn\{0}) X Sym(n) —>R is geometric and satisfies 
(Fl), (F2). Let E ç Rn and let v. [0, + oo [ x Rn —> 1? be the unique uniformly continuous 
viscosity solution of (5.11) with v(0,x) = v0(x) := dE(x)(in the sense of [15, Definition 
1.2]). Then for any te[0, + oo [ we have (5.9) and (5.10). In particular 
mck (E, &F)(t)\9K* (E, &F)(t) = {x e Rn : v(t, x) = 0} and 3ilV0} &F = v. 

6. APPENDIX 

We list here some assumptions used in this Note. We follow the notation of [11, pp. 
462-463]; we omit those properties in [11] which are not useful in our context. 
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(FI) F: J0-*R is continuous; 

(F2) Fis degenerate elliptic, i.e., F{t,x,p,X) ^ F(t,x,p, Y) for any (t,x,p,X) ej0, 
YsSym{n), Y^X; 

(F3) -oo <F*(f,*, 0, 0)=F*(t,x, 0, 0 ) < +oo for all f e [ 0 , + » [ , x e J T ; 

(F4) for every R > 0 , sap{\F(t,x,p,X)\: \p\, \X\ s= R, (t,x,p,X) ej0} < +00 ; 

(F6) for every R > Q > 0 there is a constant c = cR>Q such that 

|F(/ ,*,>,x)-F(/ ,*,^y)|^c(| />-? | + | x - y | ) 
for a l l * e [ 0 , +<*[,x<=R", Q^ \p\, \q\ ^ R, \X\, \Y\ ^ R; 

(F6') for every R > Q > 0 there is a constant c = cRg such that 

\F(t,x,p,X)-FU,x,q,X)\**c\p-q\ 

for any f e [ 0 , + » [ , x e R " , g ^ | p | , |<?| =S R, |X| =S R; 

(F7) there are Q0 > 0 and a modulus CTJ such that 

F*(t,x,p,X)-F*(t,x, 0, 0) $ ffid^l + | X | ) , 

F,( / ,*, />,X) - F * ( / , * , 0, 0) Ss -oAÌPÌ + | X | ) , 

provided / e [0, + 00 [, x <= R", |p |, |X| =S Q0; 

(F8) there is a modulus o2 such that 

|F(/,x,/>,X) ~F(t,y,p,X)\ *£ \x-y\ \p\a2(l + \x-y\) 

for y eR", (t, x, p, X) s J0 ; 

(F8') for any R > 0 there is a modulus aR such that 

\F(t,x,p,X) - F(t,y,p,X)\^\x -y\ \p\aR(l + \x -y\) 

toryeR", {t,x,p, X) s / 0 , |X| =S R; 

(F9) there is a modulus a2 such that 

F , ( / , x , 0, 0) - F * ( / , y , 0, 0) Ï* - a 2 ( | x - y | ) 

for any / e [0, + 00 [? x, y e JR" ; 

(FIO) suppose that 

/Id 0 \ < / X 0\< ( Id - I d \ 

-*(o idPlo yj$ v(-id id) 
with //, v ^ 0. Let R ^ 2v V/* and let g > 0; then 

F*( / ,x ,p ,X) - F * (',?,/>, - 7 ) ^ - | x - y | | p | ô ( l + \x-y\ + v\x-y\2) 

for (*, x) G [0, + o o [ x ^ , £ ^ \p\ ^ R, with some modulus â = âRjQ inde­
pendent of t, x, y, X, Y, /u, v. 
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