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Calcolo delle variazioni. — Barriers for a class of geometric evolution problems. Nota
di Giovannt BeLierming e Marteo Novaca, presentata (*) dal Socio E. Magenes.

AsstrACT. — We present some general results on minimal batriers in the sense of De Giorgi for geo-
metric evolution problems. We also compare minimal barriers with viscosity solutions for fully nonlinear ge-
ometric problems of the form u, + F(¢, x, Vu, V?4) = 0. If F is not degenerate elliptic, it turns out that we
obtain the same minimal barriers if we replace F with F*, which is defined as the smallest degenerate ellip-
tic function above F.

Key worps: Barriers; Nonlinear partial differential equations of parabolic type; Mean curvature flow;
Viscosity solutions.

RiassuNTO. — Barriere per una classe di problemi geometrici di evoluzione. Vengono presentati alcuni ri-
sultati di carattere generale sulle minime barriere nel senso di De Giorgi per evoluzioni geometriche di in-
siemi. Vengono anche confrontate le minime barriere con le evoluzioni ottenute usando le soluzioni nel sen-
so della viscosita, per problemi geometrici completamente non lineari della forma #,+ F(z, x, Vu, V%) =0.
Se F non ¢ ellittica degenere, si osserva che si ottengono le stesse minime barriere se, al posto di F, si consi-
dera la funzione F*, definita come la pitt piccola funzione ellittica degenere maggiore o uguale a F.

0. InTrRODUCTION

In [8] De Giorgi introduced a notion of weak solution, called minimal barrier, for a
wide class of evolution problems. An interesting example that falls within this general
definition is the mean curvature flow; in this case, since singularities may appear at a fi-
nite time even starting from smooth compact data, it is particularly important to have a
(possibly unique) notion of weak evolution. In the literature there are many different
generalized approaches to geometric evolutions; in particular we mention the pioneris-
tic work of Brakke in the context of geometric measure theory, the viscosity approach
of Evans-Spruck [10], Chen-Giga-Goto [5], Giga-Goto-Ishii-Sato [11], the method of
the distance function of Soner[16], the variational approach of Almgren-Taylot-
Wang [1] and its generalization by means of the minimizing movements of De Gior-
gi [7], the elliptic regularization method [14] and the set-theoretic subsolutions of II-
manen [13], the minimal barriers [8] and the penalization method on higher derivatives
of De Giorgi[9].

The aim of this Noze is twofold. Firstly in Sect. 3 we present some general proper-
ties of minimal barriers for geometric evolutions: in particular, concerning geometric
fully nonlinear parabolic problems of the form

(0.1) % +F(t,x, Vu, Viu) =0,
we study under which conditions on F the disjoint sets property and the joint sets prop-
erty hold (see Definition 4.1). Moreover, denoting by Fr the family of all smooth local

geometric supersolutions of (0.1) (see Definition 2.8), and denoting by MUE, F¢) the

(*) Nella seduta del 7 febbraio 1997.
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minimal barrier starting from an open set E ¢ R” (see Definition 2.2), we observe (The-
orem 3.2) that IUE, Fr) = M(E, Fp+), where F* is defined as the smallest degener-
ate elliptic function greater than or equal to F (see (1.1)). Secondly, in Sect. 5 we show
(see Theorems 5.2, 5.3) that minimal barriers are equivalent to viscosity solutions for
geometric problems of the form (0.1) under the assumptions on F made by Giga-Goto-
Ishii-Sato in [11]. More generally, it turns out that the minimal barrier corresponds to
the maximal between all viscosity subsolutions assuming a given initial datum (Corol-
lary 5.3). All proofs will appear in [2,3]. ‘

1. NoraTioN

In the following we let I:= [#,, + [, for a fixed #, € R; in Sect. 5 we will take
ty = 0. We denote by P(R”) the family of all subsets of R?, # = 1. If C is a subset of R”
such that C # R” and C # @, we set d¢ (x) : = dist(x, C) — dist(x, R*\C), and for any
0>0

C, :={xeR’:dist(x,R"\C) > o}, o = {xeR":dist(x, C) <g}.

Given a map ¢: | > P(R”), where ] CR is a convex set, if ¢(¢) # R” and ¢(z) = 0
for any e ] we let dy: ] X R” = R be the function defined as

dy (2, x) = dist (x, ¢(2)) — dist (x, R”\p(2)) = dy(,) (x).

Given ¢, ¢,: = P(R"), by ¢p1C @, (resp. ¢ = ¢,) we mean ¢ (¢) C P, (¢#)
(resp. ¢1(¢) = ¢,(¢)) for any te].

Given a function v: | X R” — R we denote by v, (resp. v*) the lower (resp. upper)
semicontinuous envelope of v.

Forxe R"and R>0 we set By (x):={y e R": [y —x| <R} and§" " ':={xeR":
|x] =1}. I ¢, c, € R, we let ¢; A\ ¢, = min(cy, ¢;) and ¢; V ¢, = max(cy, ¢,). We de-
note by Sym (#) the space of all symmetric real (# X #)-matrices. Given p € R”\{0},
we set P,:=1d —p ®p/|p|*>. We also set J, :=I X R” X (R"\{0}) X Sym ().

Given a function F: J,— R, we denote by F,, (resp. F*) the lower (resp. upper)
semicontinuous envelope of F.

For any (¢,x,p,X) €],, we define

Fc(t:x>p)X):= _P(t:x> -p, _X))
(1.1) F*(t,x,p,X):=sup{F(t,x,p,Y): Y = X},
F~(¢t,%,p,X):=inf{F(t,x,p,Y): Y < X}.

We say that F is locally Lipschitz in X if for any (¢,x,p) e I X R” X (R”\{0}) the func-
tion F(¢,x,p, *) is locally Lipschitz.

We recall that F is geometric [5, (1.2)] if F(¢, x, Ap, AX + ap @ p) = AF(¢, x, p, X),
for any 1 >0, 0eR, (¢,x,p,X)€].

For all definitions and results concerning viscosity solutions we refer to [6] and ref-
erences therein. In the appendix we list some assumptions used in the paper, following
the notation of [11].
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2. DEFINITIONS OF BARRIERS AND MINIMAL BARRIERS

Definitions 2.1, 2.2 are a particular case of the definitions proposed in [8].

Derinrmion 2.1 (barriers). Let F be a family of functions with the following property:
for any f € F there exist a, b € R, a < b, such that f: [a, b] — P(R”). A function ¢ is a bar-
rier with respect to F if and only if there exists a convex set L C I such that ¢: L — P(R")
and the following property holds: if f: [a, b] ¢ L — P(R") belongs to Fand fla) C ¢p(a) then
Ab) c @(b). We denote by B(F) the family of all barriers ¢ such that L = I (that is, barriers
on the whole of I).

DerinrrioN 2.2 (minimal barrier). Let E C R” be a given set. The minimal barrier
ME, &F, ty): I > P(R") (with origin in E at time t,) with respect to the family F at any
time t el is defined by
(2.1) M(E, F, 1,)(2):= {p@): p: 1— PR"), p € B(F), p(¢y) 2E}.

DEermniTION 2.3 (maximal inner barrier). Let E C R” be a given set. The maximal inner
barrier N(E, &, ty): I = P(R”) (with origin in E at time t,) with respect to the family F at
any time t €l is defined by
22) N, F, 1)) := U{pt): p: I #R"), p € B(F), p(¢,) CE},
where B(F) is as in Deﬁnztzon 2.1 with the set inclusion C replaced by 2.

The connections between IM(E, &, t,) and N(E, &F, ;) are explained in Theorem
4.3.

The following regularization was introduced in[4] and turns out to be very

useful.
DerintmioN 2.4 (regularizations of barriers). Ler ECR”. If t € I we set

M, (E, F, to)(¢ U JTUE; , F10)(e), T (E, & 1)t ﬂ JTUES , & 10)(),

Ny (E, & 1)t U JNES, F0)0),  N*(E, & 1,)(0):= ﬂON(E;,mo)(t).
0>

Once we have a unique evolution of any subset E of R”, we have a unique evolution
of any initial function #,.

Dernimion 2.5, Let uo: R"—>R be a given function. The two functions
My 5> My, 50 I X R* >R U{x 0} are defined by
{:muo 7 (2, x)'=inf{ﬂ.eR'fm{u0</1} F, t,)(t) 3x},

(23) ﬁ”o 37(1‘ x 1nf {A,ER 37( ({u0<l} 5 t() )BX}.

Besides the concept of batrier, we can also consider the concept of local
barrier.

DEeriNrTioN 2.6 (local barriers). A function ¢ is a local barrier with respect to F if and
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only if there exists a convex set L CI such that ¢: L — P(R”) and the following property
holds: for any x € R” there exists R > 0 (depending on ¢ and x) so that if f: [a, bl c L —
— P(R”) belongs to Fand fla) C ¢p(a) N By (x), then fb) C ¢p(b). We denote by By, (F) the
Jamily of all local barriers ¢ such that L = I (that s, local barriers on the whole of I).

DEerinTION 2.7 (local minimal barrier). Let E C R” be a given set. The local minimal
barrier My (E, F, ty): I — P(R”) (with origin in E at time t,) with respect to the family F
at any time t €l is defined by

Mioe (E, F, 1)(2) := 1 {p(2): p: I > PR"), ¢ € Bioe (F), p(t) 2E} .

Note that a similar definition to Definition 2.6 can be given by localizing also with
respect to time. The connection between barriers and local barriers is explained in The-
orem 3.1.

The definitions of barriers for geometric evolutions described by a function F for
problems of the form (0.1) are a particular case of the previous definitions, by choosing
a suitable family F, and read as follows. Let F: J,— R be an arbitrary function.

Derinition 2.8. Let a,b e R, a < b, [a, b1 CI and let f: [a, b] — P(R"). We write
f e Fr (and we say that f is a smooth local geometric supersolution of (0.1)) if and only if the
Jollowing conditions hold: f(¢t) is closed and If(¢) is compact for any t € [a, b, there exists
an open set A CR" such that dre C” ([a,b] X A), If¢) CA for any t€la,b], and

od
(2.4) 7tf(f,x)+F(;,x,Vd/(t,x),vzzif(t,x))ao, tela,bl, xe of(2).

We write f € Tz (resp. f€ Ir , f€ Fg ) if the strict inequality (resp. the inequality <, the
equality) holds in (2.4).

It turns out that, if F is bounded on compact subsets of J,, then B(F¢) coincides
with the class of all barriers with respect to the subfamily of &y consisting of all
f: [a, b] — P(R”) such that f € Fr and f(¢) is compact for any ¢ € [4, 5]. Notice also that
R\, (E, Fr, ty) =N* (R*\E, Ff, , to), and R*\I* (E, Fg, ) =N (R*\E, Tz, , t).

3. GENERAL RESULTS ON BARRIERS

The following lemma shows some general properties of the minimal barrier, such
as comparison and semigroup property. If 7 € R, by IMU(E, &, T) we mean the minimal
barrier constructed by taking barriers on the interval [z, 4+ [ containing E at the
time 7.

Lemma 3.1. Let ECR”. Then the following properties hold.
(1) MUE, F,t,) exists and is unique;
(2) M(E, F, t;) € B(F);
(3) E;CE;=ME,, F, ty) CME;, F, ty);
(4) ME, F, 1))ty = E;
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(5) # fila,b1cl— PR"), fe F, then
(3.1) f(t) cm(f(a), F,a)2), tela,bl;
(6) FcG=IM(E, T, t,) cM(E, G, #);
(7) assume that the family F satisfies the following property: given f:[a, bl cl—

—> PR"),fe F,tela,bl,thenfli, n, Flu, € F. Then M(E, F, t,) verifies the semigroup
property, i.e., M(E, F, t)(t;) = MM(E, F, to)(t,), F, t1)(t,) if ty <t < t,.

The following proposition shows in particular that the minimal barrier coincides
with the smooth evolution of (0.1) whenever the latter exists (see (3.2)).

ProrosrrioN 3.1. Assume that F does not depend on x, is geometric, uniformly elliptic
and of class @ . Then for any E ¢ R" we have ME, ¢ ) = ME, Fr). Moreover for any
fila,blcl— PR"), fe Fr, we have

(3.2) : £(2) = m(f(a), Fp,a)t), tela,b].

For simplicity of notation, from now on we drop the dependence on ¢, of the mini-
mal barrier.

Under suitable assumptions on F, the families F and F7 give raise to the same
minimal barriers, as explained in the following useful remark.

REMARK 3.1. Assume that F: (R"\{0}) X Sym(#) — R is continuous and locally Lips-
chitz in X. Then for any E CR" we bave M, (E, Tz ) = M, (E, Fg), M*(E, F7) =
= M*(E, Fr), and the same holds for local minimal barriers.

The following result shows the connection between barriers and local barriers.

TueoreM 3.1. Assume that F: (R”\{0}) X Sym(n) — R is continuous and locally
Lipschitz in X. Then B (F7) = B(F7). In particular, for any ECR" we have
W(E’ ‘7}?) = Moc (E’ 5/1? )

The following theorem provides a sort of canonical representation for minimal bar-
riers when F is not degenerate elliptic (Z.e., for evolutions without comparison princi-
ple), and it is one of the main results of this Note.

THEOREM 3.2. Assume that F: (R"\{0}) X Sym (n) — R is continuous, locally Lips-
chitzin Xand F* < + w0 in (R"\{0}) X Sym(n). Then B(Fz ) = B(Fz+). In particu-
lar, for any E C R" we have M(E, F7 ) = M(E, Fz+).

4. THE DISJOINT SETS PROPERTY AND THE JOINT SETS PROPERTY
The following properties play an important role in the theory of minimal
barriers.

Derinrmion- 4.1, Let F, G: (R*\{0}) X Sym(#) — R be two functions, and let Fr,
F be the corresponding families of smooth local geometric supersolutions. We say that the
disjoint sets property with respect to (Fp, Fg) holds if, for any ECR”, we have
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M, (E, Fp) N M* (R*\E, Fg) = B. We say that the joint sets property with respect to
(Fr, Fg) holds if, for any ECR”, we have I, (E, Fr) U M* (R"\E, F5) =R".

The following theorem characterizes the disjoint sets property and the joint sets
property in terms of the functions F and G describing the evolution.

TreoreM 4.1. Assume that F, G: (R"\{0}) X Sym(n) — R are continuous and local-
ly Lipschitz in X. Assume that F* < + © and G* < + ® in (R"\{0}) X Sym(») and
that F*, G* are continuous. The following two statements hold.

(i) The disjoint sets property with respect to (Fp, Fg) holds if and only if
G* <(F*),.

(ii) The joint sets property with respect to (Fp, Fe) holds if and omly if
G*=(F*),.

The following theorem was proved in [4] in the case of driven motion by mean
curvature.

TreoREM 4.2. Assume that F: (R”\{0}) X Sym(n) — R is continuous and degenerate
elliptic. Then, for any E CR" we have

M, (E, Fr) = R\I* (R"\E, F&.), 9*(E, Fz) = R\, (R"\E, F,).

The following result shows the connection between minimal barriers and maximal
inner barriers.

THEOREM 4.3. Assume that F: (R*\{0}) X Sym(n) — R is continuous and degenerate
elliptic. Then for any E CR” we have

N*(E,QTE):W*(E,(?/F), N*(E,z?f):JK*(E,STF)

5. COMPARISON BETWEEN THE MINIMAL BARRIER AND THE LEVEL SET FLOW

From now on we take I = [0, + o[ (Ze., #, = 0) and all barriers we consider are
barriers on [0, + ®©[. The following theorem is proved in[11, Theorem 4.9].

TueoREM 5.1. Assume that F: ]y — R is geometric and satisfies either (F1)-(F4), (F8),
or (F1), (F3), (F4), (F9), (F10) (see the Appendix). Let vy: R” — R be a continuous func-
tion which is constant outside a bounded subset of R” . Then there exists a unique continuous
viscosity solution (constant outside a bounded subset of R*) of (0.1) with v(0,x) =
= vy (x).

Theorems 5.2 and 5.3 clarify the relations between minimal barriers and viscosity
subsolutions for geometric evolutions.

THEOREM 5.2. Assume that F: ]y — R is geometric and satisfies (F1), (F3), (F4), (F6'),
(F7), (F9), (F10). Let u and v be, respectively, a viscosity sub- and supersolution of (0.1) in
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10, + o[ X R". Then for any A€ R we have

(5.1) {xeR":u*(,x) <A} € B(Fr),
(5.2) {xeR":u*(,x) <A} e B(Fr);
(5.3) {xeR":v,(,x) > 1} e B(Fy,),
(5.4) {xeR":v,(,x) =1} e B(Fz).

Moreover (5.1), (5.2) still hold if we assume that F* in place of F satisfies all previous as-
sumptions (and we replace (0.1) with (5.7) below).

The next theorem is a sort of converse of Theorem 5.2.

TaEOREM 5.3. Let u, v: [0, + o[ X R” — R be functions such that u* < + © (resp.
ve> — ) in [0, + [ X R". Assume that F: J,— R is geometric, lower (resp. upper)
semicontinuous and satisfies (F4). Suppose that for any 1 e R

(5.5) {xeR":u*(-,x) <A} e B(FF ),
(5.6) (rep. {x e R": v, (-,x) > A} € B(FE)) .

If F satisfies (F2), (F8') then u (resp. v) is a viscosity subsolution (resp. supersolution) of
(0.1) 2 10, + o[ X R". IfF* (resp. F ™) satisfies (F4), (F8') then u (resp. v) is a viscosity
subsolution (resp. supersolution) of

(5.7) %;- +F*(t,%x,Vu, V’u) =0
(5.8) (resp. %‘;— + F~(¢,x, Vu, Vu) = 0)

in 10, + o[ X R".

The following result shows the connection between minimal barriers and the con-
tinuous viscosity solution whenever the latter exists and is unique, and generalizes a re-

sult of [4].

CoroLLARY 5.1. Assume that F: ], — R is geometric and satisfies (F1), (F3), (F4),
(F6'), (F7), (F9), (F10). Let E C R” be a bounded set and denote with v: [0, + o[ X
X R* — R the unique uniformly comtinuous viscosity solution of (0.1) with v(0,x) =
=vy(x):=(=1)Vdg(x) A 1. Then for any t € [0, + o[ we have

(5.9) Iy (E, Fz )¢t) = M, (E, Fp)(t) = {x e R”: (¢, x) < 0},

(5.10) M+ (E, FF )z) = M* (E, Fp)(t) = {x e R": v(¢,x) < 0},

hence I, 5, =v. Moreover if F =F, then * (E, Fp)\IM, (E, Fr) € B(Fr).
The following results generalize Corollary 5.1.

CoOROLLARY 5.2. Assume that F: Jy— R is geometric, lower semicontinuous and satisfies
(F4). Assume that F™ satisfies (F1), (F3), (F4), (F6'), (F7), (F9), (F10). Then
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for any bounded set ECR" and any tel0, + o[ we bave 311“ (E Fp)(t) =
=M, (E, 7 )(¢) = {x e R": v(tx) <0}, M*(E, Fp)(¢) = M*(E, Fz )(¢) = {x e R":
v(t,x) < 0}, where v is the unique uniformly continuous viscosity :olutzon of (5.7) and
v(0,x) =vy(x):= (= 1) Vdg(x) N\ 1. In particular, thanks to Corollary 5.1, we have
My (E, TFg) = My (E, F+), M* (E, Fg) = I* (E, Fp+) (compare with Theorem 3.2).

CoROLLARY 5.3. Assume that F: Jo— R is geometric and satisfies (F1), (F3), (F4),
(F6'), (F7), (F9), (F10). Let uy: R” — R be a given function such that ui < + ® in R”.
Define S,, := {v: v is a viscosity subsolution of (0.1) in 10, + ©[ X R", v*(0,x) =
= ug (x)}. If ug is upper semicontinuous then M, 5, = M, 5z = sup{v: v e S, }. In the
general case we have M, 5, = M, 7 =sup{v:veS,}.

ReMark 5.1. A similar assertion to Corollary 5.3 (under the same bypotheses) holds
Jor supersolutions. Precisely, if uy is lower semicontinuous (resp. arbitrary) such that
to,> —© in R we have that, for any (t,x)e[0, +©[XR", the function
sup{u: M({uyg > u}, Fp)2) ax} (resp. sup{u: M, {ug > u}, F)(t) 3x}) coincides
with the infimum of u(t,x), where u varies over all viscosity supersolutions of (0.1) in
10, + w0 [ X R” such that u .. (0, x) = ug(x) (resp. u 4 (0,x) = uy, (x)) and same assertions
with Fr replaced by Tz .

The following remark shows the connections between the minimal barrier and the
viscosity evolution without growth conditions on F (see [15,12]) and for unbounded
sets E.

RemARk 5.2. Assume that F: (R”\{0}) X Sym (n) — R s geometric and satisfies (F1),
(F2). Let u and v be, respectively, a viscosity sub- and supersolution of

S+ F(Vu, V2u) = 0

in 0, + o[ X R”, in the sense of [15, Definition 1.2]. Then (5.1)-(5.4) hold. Moreover, if
u:[0, + o[ X R”" — R is a function such that u* < + © in [0, + © [ X R" and satisfies
(5.5) for any A € R, then u is a viscosity subsolution of (5.11) in 10, + [ X R". Finally,
Corollary 5.1 still bholds, even if E is unbounded.

(5.11)

In particular we have the following result.

CoroLLARY 5.4. Assume that F: (R"\{0}) X Sym(#n) — R is geometric and satisfies
(F1), (F2). Let EC R" and let v: [0, + o[ X R" — R be the unique uniformly continuous
viscosity solution of (5.11) with v(0,x) = vy (x):=dg(x)(in the sense of [15, Definition
1.21). Then for any tel0, + o[ we have (5.9) and (5.10). In particular
I (E, Fp) )\, (E, Fp)(#) = {x e R": v(¢,x) = 0} and I, 5, =v

6. APPENDIX

We list here some assumptions used in this Noze. We follow the notation of [11, pp.
462-463]; we omit those properties in [11] which are not useful in our context.
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(F1)
(F2)

(F3)
(F4)
(Fe)

(F6')

(¥7)

(F8)

(F8')

(F9)

(F10)

F: J,— R is continuous;

F is degenerate elliptic, ze., F(¢,x,p, X) = F(¢,x, p, Y) for any (¢, x,p, X) € J,,
Y eSym(n), Y = X,

—o <F,(x,0,0)=F*(¢,x,0,0) < + 0 for all te[0, + »[, xe R";
for every R > 0, sup{|F(¢,x,p, X)|: |p|, |X| <R, (t,x,p,X) €]y} < +0;
for every R > 0 > 0 there is a constant ¢ = cg , such that

|F(¢,%,p,X) = Ft,x,q, V)| < c(|p —q| + |X = Y])
for all e [0, + ©[, xeR", 0 < |p|, |¢| <R, |X|, |Y] <R;
for every R > ¢ > 0 there is a constant ¢ = cg , such that
|F(¢,x,p,X) — F(t,x,q9,X)| <c|p — q|
for any e [0, + ©[, xe R", 0 < |p|, |¢] <R, |X| €R;
there are 9o > 0 and a modulus ¢, such that
F*(t,x,p,X) —F*(¢,x,0,0) < o,(|p] +|X]),
F.(t,x,p,X) = F,(t,x,0,0) = —0o.(|p| +|X]|),
provided € [0, + »[, xeR", |p|, |X]| <00;
there is a modulus o, such that

|F(t,%,p,X) = Ft,9,p, X)| < |x —y| [p|o2(1 + |x —])
for ye R, (¢,x,p,X) € ]y;

for any R = 0 there is a modulus o such that

|F(t,%,p,X) = Ft,y,p, X)| < |x —y| Ip|og (1 + |x = y])
for yeR", (¢,%,p,X) €]y, |X| <R;

there is a modulus ¢, such that
F*(t:xa O: O)_F*(t7y> 0! 0)2 _02(|x_y|)

for any £€ [0, + ©[, x,y e R;

_”(Id o)s(x O)SV(Id —Id)
0 Id 0 Y -Id Id

with 4, v= 0. Let R = 2vV u and let ¢ > 0; then

suppose that

Fo(t,x,p,X) —F*(t,9,p, =Y) = —|x —y| |p|o(1 + |[x —y| + v|x —y|?)

for (¢,x) € [0, + ©[ X R", ¢ < |p| <R, with some modulus 0 =Gy , inde-
pendent of ¢, x, y, X, Y, u, v.
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