RENDICONTI Lincei Matematica e Applicazioni

Massimiliano Berti

Heteroclinic solutions for perturbed second order systems

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Serie 9, Vol. 8 (1997), n.4, p. 251-262.

Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLIN_1997_9_8_4_251_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> http://www.bdim.eu/

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Accademia Nazionale dei Lincei, 1997.

Analisi matematica. - Heteroclinic solutions for perturbed second order systems. Nota (*) di Massimiliano Berti, presentata dal Corrisp. A. Ambrosetti.

Abstract. - The existence of infinitely many heteroclinic orbits implying a chaotic dynamics is proved for a class of perturbed second order Lagrangian systems possessing at least 2 hyperbolic equilibria.

Key words: Heteroclinic orbits; Homoclinic orbits; Chaotic dynamics.
Ruassunto. - Soluzioni eterocline per sistemi perturbati del secondo ordine. Viene dimostrata l'esistenza di infinite orbite eterocline per una classe di sistemi lagrangiani del secondo ordine, perturbati, aventi almeno 2 equilibri iperbolici. La dinamica è caotica.

1. Introduction

In a recent paper [2] the existence of infinitely many homoclinic orbits implying a chaotic dynamics for perturbed second order Lagrangian systems possessing an hyperbolic equilibrium is proved by means of a variational approach. The aim of the present Note is to extend these results proving the existence of infinitely many heteroclinic orbits for perturbed Lagrangian systems possessing two or more hyperbolic equilibria.

Let consider second order systems of differential equations like:

$$
\begin{equation*}
\ddot{u}+\nabla V(u)+\varepsilon \nabla_{u} W(t, u)=0 \tag{1.1}
\end{equation*}
$$

with $u \in \mathbb{R}^{n}$. Suppose that the potential V has two isolated critical points x_{1} and x_{2}. A heteroclinic solution u of (1.1) connecting x_{1} to x_{2} is a $C^{2}\left(\mathbb{R}, \mathbb{R}^{n}\right)$ function satisfying the conditions:

$$
\lim _{t \rightarrow-\infty} u(t)=x_{1}, \quad \lim _{t \rightarrow+\infty} u(t)=x_{2} \quad \text { and } \quad \lim _{|t| \rightarrow+\infty} \dot{u}(t)=0
$$

Assume than the unperturbed system $(\varepsilon=0)$ possesses a heteroclinic solution z_{0} connecting x_{1} and x_{2}. Under general assumptions we show that if the Poincaré functions:

$$
\Gamma(\theta)=-\int_{\mathrm{R}} W\left(t, z_{0}(t+\theta)\right) d t \quad \text { and } \quad \widetilde{\Gamma}(\theta)=-\int_{\mathrm{R}} W\left(t, z_{0}(-t-\theta)\right) d t
$$

have infinitely many minima or maxima sufficiently separated one each other then there exist infinitely many orbits u_{ε} winding in the phase space k times between x_{1} and x_{2}. When k is odd u_{ε} is a heteroclinic solution connecting x_{1} to x_{2} when k is even u_{ε} turns out to be a homoclinic solution to x_{i}. A sufficient condition in which these results apply is when the perturbation W is almost-periodic in time and the Poincaré functions Γ and $\widetilde{\Gamma}$ are non-constant.

Moreover, using as in [2], estimates which do not depend on k, we obtain the existence of solutions of (1.1) which turns infinitely many times between x_{1} and x_{2}. The ex-
(*) Pervenuta all'Accademia l'1 settembre 1997.
istence of these orbits implies a chaotic dynamics which can be described as in [2,6] in terms of approximate and complete Bernoulli shifts structures.

Using the same approach it is possible to study the situation in which the system possesses p hyperbolic equilibria. If in the unperturbed system they are connected by a chain of heteroclinics, we prove the existence of infinitely many connecting orbits for the perturbed system.

We assume the reader familiar with the techniques introduced in [1,2]. Since many computations and lemmas are the same as in [1,2] many of them will be omitted and we will concentrate the attention on the lemmas which differs from [1,2].

Notations. The notation C_{i} will be reserved to positive constants which have a fixed value. Moreover $o_{L}(1)$ (resp. $\left.o_{L, \varepsilon}(1)\right)$ will denote a quantity which tends to 0 as $L \rightarrow+\infty$ (resp. as $L \rightarrow+\infty$ and $\varepsilon \rightarrow 0$) independently of anything else. The expression $<a\left(z_{1}, \ldots, z_{p}\right)=O\left(b\left(z_{1}, \ldots, z_{p}\right)\right)$ » will mean that there is an absolute positive constant C such that for all $\left(z_{1}, \ldots, z_{p}\right),\left|a\left(z_{1}, \ldots, z_{p}\right)\right| \leqslant C\left|b\left(z_{1}, \ldots, z_{p}\right)\right|$.

2. Existence of simple heteroclinic solutions

In this section we look for heteroclinic solutions z_{ε} of (1.1) connecting x_{1} to x_{2} near some $z_{0}(\cdot+\theta)$ as critical points of a suitable functional f_{ε} defined on a Hilbert space E with norm $\|\cdot\|$ induced by a scalar product (\cdot, \cdot).

All our existence results will be obtained by means of a finite dimensional reduction looking for critical points of f_{ε} constrained to a finite dimensional manifold.

We prefix the following definition:
Definition 1. A submanifold $M \subset E$ is called a natural constraint for the functional f if

$$
u \in M \quad \text { and }\left(f_{\mid M}\right)^{\prime}(u)=0 \quad \text { imply that } f^{\prime}(u)=0
$$

Consider a family of $C^{2}(E, \mathbb{R})$ functionals $f_{\varepsilon}=f_{0}+\varepsilon G$ satisfying the following assumptions:

- $\left(\mathrm{h}_{1}\right) f_{0}$ has a d-dimensional manifold Z of critical points at level $b=$ $=f_{0}(Z)$;
- $\left(h_{2}\right)$ For all $z \in Z$ the second derivative $f_{0}^{\prime \prime}(z)$ is Fredholm of index 0 ;
- $\left(\mathrm{h}_{3}\right)$ For all $z \in Z, \operatorname{Ker} f_{0}^{\prime \prime}(z)=T_{z} Z$.

The following lemma, proved in [1, Lemmas 2, 4, Theorem 6], locally defines a natural constraint for f_{ε} near to Z.

Lemma 1. There exist $\varepsilon_{0}>0$ and a C^{1} function $w=w(z, \varepsilon) \in E$ such that:

- (i) $w(z, 0)=0$ and $\|w(z, \varepsilon)\|=O(\varepsilon)$;
- (ii) The manifold defined locally as $Z_{\varepsilon}=\left\{z+w(z, \varepsilon)| | \varepsilon \mid \leqslant \varepsilon_{0}\right\}$ is a natural constraint for f_{ε};
- (iii) The functional f_{ε} restricted to Z_{ε} is given by:

$$
f_{\varepsilon \mid Z_{\varepsilon}}(z)=f_{\varepsilon}(z+w(z, \varepsilon))=f_{0}(z)+\varepsilon G(z)+o(\varepsilon)=b+\varepsilon G(z)+o(\varepsilon) .
$$

By Lemma 1 and Definition 1 it follows (see [1, Theorems 6-7]) that if G has a proper minimum or maximum in a point $\bar{z} \in Z$ the functional f_{ε} possesses a critical point $\widetilde{z}+w(\widetilde{z}, \varepsilon)$ near \bar{z}.

We will apply Lemma 1 to study the existence of heteroclinics for perturbed second order systems like (1.1). We assume that:

- $\left(\mathrm{V}_{1}\right) \quad V \in C^{2}\left(\mathbb{R}^{n}, \mathbb{R}\right), V\left(x_{1}\right)=V\left(x_{2}\right)=0, \nabla V\left(x_{1}\right)=\nabla V\left(x_{2}\right)=0, D^{2} V\left(x_{1}\right)$, $D^{2} V\left(x_{2}\right)$ are negative definite matrix;
- $\left(\mathrm{W}_{1}\right) W \in C^{2}\left(\mathbb{R} \times \mathbb{R}^{n}, \mathbb{R}\right), \quad W\left(t, x_{1}\right)=W\left(t, x_{2}\right)=0, \quad \nabla_{u} W\left(t, x_{1}\right)=$ $=\nabla_{u} V\left(t, x_{2}\right)=0, \quad D_{u}^{2} W\left(t, x_{i}\right) \in L^{\infty}(\mathbb{R})$ and $D_{u}^{2} W(t, \cdot)$ is continuous uniformly with respect to t.

Because of $\left(\mathrm{V}_{1}\right)$ the points x_{1}, x_{2} are hyperbolic equilibria of the unperturbed system:

$$
\begin{equation*}
\ddot{u}+\nabla V(u)=0 . \tag{2.1}
\end{equation*}
$$

We will assume:

- $\left(\mathrm{V}_{2}\right)$ There exists a heteroclinic solution z_{0} of (2.1) connecting x_{1} and x_{2} such that the solutions $\phi \in E$ of the linearized equation: $\ddot{\phi}+D^{2} V\left(z_{0}\right) \phi=0$ form a 1 -dimensional space.

Since the unperturbed system (2.1) is autonomous all the translated $z_{\theta}(\cdot)=$ $=z_{0}(\cdot+\theta)$ are still heteroclinic solutions of (1.1) connecting x_{1} to x_{2}.

Remark 1. In the geometric language of the dynamical systems bypothesis $\left(\mathrm{V}_{2}\right)$ means that the beteroclinic z_{0} is transversal on the energy level containing the equilibria x_{i}.

Indeed since z_{0} in a beteroclinic connecting x_{1} and x_{2} and equation (2.1) is autonomous results that $\gamma_{0}=\left(z_{0}, \dot{z}_{0}\right)(\mathbb{R}) \subseteq M^{u}\left(x_{1}\right) \cap M^{s}\left(x_{2}\right)$, where $M^{u}\left(x_{1}\right)$ is the unstable manifold of x_{1} and $M^{s}\left(x_{2}\right)$ is the stable manifold to x_{2}. Hence for any $x \in \gamma_{0}$ there results that:

$$
\begin{equation*}
T_{x} \gamma_{0} \subseteq T_{x} M^{u}\left(x_{1}\right) \cap T_{x} M^{s}\left(x_{2}\right) \tag{2.2}
\end{equation*}
$$

Since the linearized equation of bypothesis $\left(\mathrm{V}_{2}\right)$ is the variational equation of (2.1) results that $\operatorname{dim}\left[\operatorname{ker} f_{0}^{\prime \prime}\left(z_{\theta}-z_{0}\right)\right]=\operatorname{dim}\left[T_{x} M^{u}\left(x_{1}\right) \cap T_{x} M^{s}\left(x_{2}\right)\right]$. Hence $\left(\mathrm{V}_{2}\right)$ exactly means that $T_{x} M^{u}\left(x_{1}\right) \cap T_{x} M^{s}\left(x_{2}\right)$ is 1-dimensional and from (2.2) that:

$$
\begin{equation*}
T_{x} \gamma_{0}=T_{x} M^{u}\left(x_{1}\right) \cap T_{x} M^{s}\left(x_{2}\right) \tag{2.3}
\end{equation*}
$$

This also implies, calling $H_{0}=\left\{(x, \dot{x}) \in \mathbb{R}^{2 n} \mid(1 / 2) \dot{x}^{2}+V(x)=V\left(x_{i}\right)\right\}$ the $(2 n-1)$-dimensional energy level that $T_{x} M^{u}\left(x_{1}\right)+T_{x} M^{s}\left(x_{2}\right)=T_{x} H_{0}$. Indeed, since $M^{u}\left(x_{1}\right)$, $M^{s}\left(x_{2}\right) \subseteq H_{0}$, we clearly bave for all $x \in \gamma_{0}$ that

$$
\begin{equation*}
T_{x} M^{u}\left(x_{1}\right)+T_{x} M^{s}\left(x_{2}\right) \subseteq T_{x} H_{0} \tag{2.4}
\end{equation*}
$$

Since $\operatorname{dim}\left(T_{x} M^{u}\left(x_{1}\right) \cap T_{x} M^{s}\left(x_{2}\right)\right)=1$, we have:
$\operatorname{dim}\left(T_{x} M^{u}\left(x_{1}\right)+T_{x} M^{s}\left(x_{2}\right)\right)=$

$$
=\operatorname{dim} T_{x} M^{u}\left(x_{1}\right)+\operatorname{dim} T_{x} M^{s}\left(x_{2}\right)-\operatorname{dim}\left(T_{x} M^{u}\left(x_{1}\right) \cap T_{x} M^{s}\left(x_{2}\right)\right)=2 n-1
$$

from which we deduce that in (2.4) equality bolds, that is that γ_{0} is transversal on H_{0}.
Since x_{1} and x_{2} are hyperbolic equilibria the heteroclinic solution z_{0} converges exponentially fast to x_{1} and x_{2} respectively as $t \rightarrow-\infty$ and as $t \rightarrow+\infty$; moreover also the derivative \dot{z}_{0} converges exponentially fast to 0 as $|t| \rightarrow+\infty$.

We will work in the Sobolev space $E=H^{1}\left(\mathbb{R}, \mathbb{R}^{n}\right)$. We consider the following functional defined on E :

$$
f_{\varepsilon}(v)=\frac{1}{2} \int_{\mathbb{R}} \dot{v}^{2}-\int_{\mathbb{R}}\left[V\left(z_{0}+v\right)+\ddot{z}_{0} v\right] d t-\varepsilon \int_{\mathbb{R}} W\left(t, z_{0}+v\right) d t .
$$

Because of $\left(\mathrm{V}_{1}\right)$ and $\left(\mathrm{W}_{1}\right)$ the functional f_{ε} is well-defined and smooth on E. A critical point v of f_{ε} is a C^{2} solution of the following system of differential equations:

$$
\ddot{v}+\nabla V\left(z_{0}+v\right)+\ddot{z}_{0}+\varepsilon \nabla_{u} W\left(t, z_{0}+v\right)=0 .
$$

Hence $u=z_{0}+v$ is a C^{2} heteroclinic solution of (1.1).
The manifold:

$$
Z=\left\{z_{\theta}-z_{0}, \theta \in \mathbb{R}\right\}
$$

is a 1 -dimensional critical manifold for f_{0} at level

$$
f_{0}\left(z_{\theta}-z_{0}\right)=b=-\int_{\mathbb{R}} V\left(z_{0}(t)\right) d t
$$

The tangent space to Z in $z_{\theta}-z_{0}$ is given by $T Z_{\left(z_{\theta}-z_{0}\right)}=\operatorname{span}\left\langle\dot{z}_{\theta}\right\rangle$.
The following lemma shows that we can apply Lemma 1 to the functional f_{ε} :
Lemma 2. Assumptions $\left(\mathrm{h}_{1}\right),\left(\mathrm{h}_{2}\right),\left(\mathrm{h}_{3}\right)$ of Lemma 1 bold for f_{ε}.
Proof. $\left(\mathrm{h}_{1}\right)$ is obvious. For all $z_{\theta}-z_{0} \in Z$ there results that $T Z_{\left(z_{\theta}-z_{0}\right)} \subseteq \operatorname{ker} f_{0}^{\prime \prime}\left(z_{\theta}-\right.$ $\left.-z_{0}\right)$; $\left(\mathrm{V}_{2}\right)$ exactly means that $\operatorname{ker} f_{0}^{\prime \prime}\left(z_{\theta}-z_{0}\right)$ is 1 -dimensional and hence we deduce $\left(h_{3}\right)$.

It remains to prove $\left(\mathrm{h}_{2}\right)$. The linear operator $f_{0}^{\prime \prime}\left(z_{\theta}-z_{0}\right): E \rightarrow E$ is defined by:

$$
\left(f_{0}^{\prime \prime}\left(z_{\theta}-z_{0}\right) y, w\right)=\int_{\mathbb{R}} \dot{y} \dot{w}-\int_{\mathbb{R}} D^{2} V\left(z_{\theta}\right) y w .
$$

Let consider a function $\gamma: \mathbb{R} \rightarrow M(n, \mathbb{R})$, the set of $n \times n$ matrices, with $\gamma(t)$ uniformly negative definite and such that $\lim _{t \rightarrow+\infty} \gamma(t)=D^{2} V\left(x_{2}\right)$ and $\lim _{t \rightarrow-\infty} \gamma(t)=D^{2} V\left(x_{1}\right)$. Hence we can write:

$$
\begin{aligned}
& \left(f_{0}^{\prime \prime}\left(z_{\theta}-z_{0}\right) y, w\right)= \\
& \quad=\int_{\mathbb{R}}[\dot{y} \dot{w}-\gamma(t) y w]-\int_{\mathbb{R}}\left[D^{2} V\left(z_{\theta}\right)-\gamma(t)\right] y w=(y, w)_{H^{1}}-\left(F^{\prime \prime}\left(z_{\theta}-z_{0}\right) y, w\right)
\end{aligned}
$$

where

$$
(y, w)_{H^{1}}=\int_{\mathrm{R}}[\dot{y} \dot{w}-\gamma(t) y w]
$$

is a scalar product in E equivalent to the standard one. We now prove that $F^{\prime \prime}\left(z_{\theta}-z_{0}\right)$ is a compact operator. Indeed we have to show that $F^{\prime \prime}\left(z_{\theta}-z_{0}\right) y_{n} \rightarrow 0$ strongly on E whenever $y_{n} \rightharpoonup 0$. We have:

$$
\left\|F^{\prime \prime}\left(z_{\theta}-z_{0}\right) y_{n}\right\|=\operatorname{Sup}_{\|w\|=1}\left|\left(F^{\prime \prime}\left(z_{\theta}-z_{0}\right) y_{n}, w\right)\right|=\operatorname{Sup}_{\|w\|=1}\left|\int_{\mathbb{R}}\left[D^{2} V\left(z_{\theta}\right)-\gamma(t)\right] y_{n} w\right| .
$$

Hence, by the Holder inequality, we get:

$$
\left\|F^{\prime \prime}\left(z_{\theta}-z_{0}\right) y_{n}\right\| \leqslant\left(\int_{\mathrm{R}}\left|D^{2} V\left(z_{\theta}\right)-\gamma(t)\right|^{2}\left|y_{n}\right|^{2}\right)^{1 / 2}
$$

The above integral tends to zero as $n \rightarrow \infty$ because $y_{n} \rightarrow 0$ in $L_{\text {loc }}^{\infty}$ and $\lim _{|t| \rightarrow \infty} D^{2} V\left(z_{\theta}(t)\right)-\gamma(t)=0$. Hence $f_{0}^{\prime \prime}\left(z_{\theta}-z_{0}\right)$ is an operator of the form $I d+$ + Compact and then it is Fredholm of index 0.

By Lemma 1-(iii) the expression of the functional f_{ε} on Z_{ε} is given by:

$$
\begin{equation*}
f_{\varepsilon}\left(z_{\theta}-z_{0}+w_{\varepsilon}\right)=f_{0}\left(z_{\theta}-z_{0}\right)-\varepsilon \int_{\mathbb{R}} W\left(t, z_{0}+\left(z_{\theta}-z_{0}\right)\right) d t+o(\varepsilon)=b+\varepsilon \Gamma(\theta)+o(\varepsilon) \tag{2.5}
\end{equation*}
$$

where

$$
\Gamma(\theta)=-\int_{\mathrm{R}} W\left(t, z_{0}(t+\theta)\right) d t
$$

is the Poincare function of the system.
Since we are considering a reversible system, if z_{0} is a heteroclinic solution of (2.1) from x_{1} to x_{2} the function $\widetilde{z}_{0}(t)=z_{0}(-t)$ is still a solution of (2.1) which is a heteroclinic from x_{2} to x_{1}.

Hence we can perform the same procedure for the heteroclinic \widetilde{z}_{0} dealing with the following functional:

$$
\widetilde{f}_{\varepsilon}(v)=\frac{1}{2} \int_{\mathbb{R}} \dot{v}^{2}-\int_{\mathbb{R}}\left[V\left(\widetilde{z}_{0}+v\right)+\ddot{z_{0}} v\right]-\varepsilon \int_{\mathbb{R}} W\left(t, \widetilde{z}_{0}+v\right) d t .
$$

As can be readily verified, from hypothesis $\left(\mathrm{V}_{2}\right)$ it follows that also the solutions $\phi \in E$ of the linearized equation: $\ddot{\phi}+D^{2} V\left(\widetilde{z_{0}}\right) \phi=0$ form a 1-dimensional space. Hence one obtains for f_{ε} a formula like (2.5) with the new Poincaré function:

$$
\widetilde{\Gamma}(\theta)=-\int_{\mathbb{R}} W\left(t, \tilde{z}_{\theta}\right) d t
$$

In conclusion we find:
Theorem 1. Let $\left(\mathrm{V}_{1}\right),\left(\mathrm{V}_{2}\right)$ and $\left(\mathrm{W}_{1}\right)$ bold. If $\Gamma($ resp. $\widetilde{\Gamma})$ bas a proper local
minimum or maximum at some $\bar{\theta}$ then for ε small (1.1) bas a beteroclinic solution z_{ε} connecting x_{1} to $x_{2}\left(\right.$ resp. x_{2} to $\left.x_{1}\right)$ near $z_{0}(\cdot+\bar{\theta})\left(\right.$ resp. $\left.\bar{z}_{0}(\cdot+\bar{\theta})\right)$.

3. Existence of infinitely many heteroclinic solutions turning k times between x_{1} and x_{2}

We now prove that it is possible to «glue» heteroclinic orbits $z_{\theta_{i}}$ and $\widetilde{z}_{\theta_{j}}$ in order to find orbits emanating at $t=-\infty$ from x_{1} turning $k=2 l+1$ times between x_{1} and x_{2} and arriving for $t \rightarrow+\infty$ to x_{2} (heteroclinic orbit to x_{1}) or turning $k=2 l$ times and being asymptotic as $t \rightarrow+\infty$ to x_{1} (homoclinic orbit). In the rest of the paper we will make the explicit computations for the heteroclinics only. In Remark 4 we will say how to obtain the homoclinic solutions; in the sequel hence k will always be an odd number, $k=2 l+1$.

3.1. The variational formulation and the «pseudo-critical» manifold.

In order to get heteroclinic solutions turning $k=2 l+1$ times between x_{1} and x_{2} we will study the behaviour of the functional f_{ε} near a suitable «pseudo-critical» manifold Z_{L} whose elements are the «candidate» pseudo-critical points z_{θ}^{L} near which we look for true-critical points of f_{ε} corresponding to heteroclinics turning k times between x_{1} and x_{2}.

In the sequel we will always assume that $L>2$ and the symbol θ will mean $\theta=$ $=\left(\theta_{1}, \ldots, \theta_{k}\right) \in \mathbb{R}^{k}$. For any $\theta=\left(\theta_{1}, \ldots, \theta_{k}\right) \in \mathbb{R}^{k}$ with $\min \left(\theta_{i+1}-\theta_{i}\right)>3 L$ we define a smooth family of functions depending on k parameters $z_{\theta_{1}}^{L}, \ldots, \theta_{k}$ such that for $i=1, \ldots, l$

$$
z_{\theta}^{L}=z_{\theta_{1}, \ldots, \theta_{k}}^{L}= \begin{cases}x_{1} & \text { if } t \in\left(-\infty,-\theta_{(2 l+1)}-L-1\right], \\ z_{\theta_{(2 i+1)}} & \text { if } t \in\left[-\theta_{(2 i+1)}-L,-\theta_{(2 i+1)}+L\right], \\ x_{2} & \text { if } t \in\left[-\theta_{(2 i+1)}+L+1,-\theta_{2 i}-L-1\right], \\ \widetilde{z}_{\theta_{2 i}} & \text { if } t \in\left[-\theta_{2 i}-L,-\theta_{2 i}+L\right], \\ x_{1} & \text { if } t \in\left[-\theta_{2 i}+L+1,-\theta_{(2 i-1)}-L-1\right], \\ z_{\theta_{1}} & \text { if } t \in\left[-\theta_{1}-L,-\theta_{1}+L\right], \\ x_{2} & \text { if } t \in\left[-\theta_{1}+L+1,+\infty\right) .\end{cases}
$$

In the complementary set

$$
\bigcup_{j=1}^{2 l+1}\left(-\theta_{j}-L-1,-\theta_{j}-L\right) \bigcup_{j=1}^{2 l+1}\left(-\theta_{j}+L,-\theta_{j}+L+1\right)
$$

such functions z_{θ}^{L} can be also taken so that are $C^{\infty}(\mathbb{R})$ and such that:

$$
\sup _{i=1, \ldots, l+1}\left\|\partial_{\theta_{(2 i-1)}} z_{\theta}^{L}-\dot{z}_{\theta_{(2 i-1)}}\right\| \rightarrow 0 \quad \text { and } \sup _{i=1, \ldots, l}\left\|\partial_{\theta_{2 i}} z_{\theta}^{L}-\dot{\tilde{z}}_{\theta_{2 i}}\right\| \rightarrow 0 \quad \text { as } L \rightarrow \infty .
$$

Clearly the family of functions z_{θ}^{L} has been chosen so that as $L \rightarrow+\infty$ they «splits» into the «sum» of $k=2 l+1$ distinct 1 -dimensional heteroclinics.

As can be readily verified the manifold:

$$
Z_{L}=\left\{z_{\theta}^{L}-z_{0} \mid \theta \in \mathbb{R}_{\left(\theta_{i+1}-\theta_{i}\right)}^{k} \min >3 L\right\}
$$

is a k-dimensional «pseudo-critical» manifold for f_{0}, that is:

$$
\begin{equation*}
\sup _{z_{\theta}^{L} \in Z_{L}}\left\|f_{0}^{\prime}\left(z_{\theta}^{L}-z_{0}\right)\right\| \rightarrow 0 \quad \text { as } L \rightarrow+\infty . \tag{3.1}
\end{equation*}
$$

The tangent space of Z_{L} at $z_{\theta}^{L}-z_{0}$ is given by $T Z_{\left(z_{\theta}^{L}-z_{0}\right)}=\operatorname{span}\left\langle\partial_{\theta_{1}}, z_{\theta}^{L}, \ldots\right.$, $\left.\partial_{\theta_{(2 l+1)}} z_{\theta}^{L}\right\rangle$.

For our purposes, differently from Lemma 1, we need here to define a natural constraint $Z_{L, \varepsilon}$ for f_{ε} close to Z_{L} in a global fashion; this is possible because from $\left(\mathrm{V}_{1}\right)$ and $\left(W_{1}\right) f_{0}^{\prime \prime}$ and $G^{\prime \prime}$ are bounded on bounded subsets of E. It is possible to prove (see [2, Lemmas 3, 4]) the following lemma:

Lemma 3. There exist $\varepsilon_{1}, \delta_{1}, L_{1}, C_{1}>0$ such that $\forall L>L_{1}$ there is a unique C^{1} function

$$
\begin{aligned}
w(L, \varepsilon, \theta)=w_{L} & (\theta)+\bar{w}_{L, \varepsilon}(\theta):\left(-\varepsilon_{1}, \varepsilon_{1}\right) \times \\
& \times\left\{\left(\theta_{1}, \ldots, \theta_{k}\right) \in \mathbb{R}^{k} \mid \min _{i}\left(\theta_{i+1}-\theta_{i}\right)>3 L\right\} \rightarrow\left\{v \in E \mid\|v\|<\delta_{1}\right\}
\end{aligned}
$$

such that:

$$
\begin{aligned}
& \text { - } \bar{w}_{L, 0}\left(\theta_{1}, \ldots, \theta_{k}\right)=0 \text { and }\left\|\bar{w}_{L, \varepsilon}\right\| \leqslant C_{1}|\varepsilon| ; \\
& \text { - } \sup _{\left\{\theta \mid \min \left(\theta_{i+1}-\theta_{i}\right)>3 L\right\}}\left\|w_{L}(\theta)\right\| \rightarrow 0 \text { as } L \rightarrow+\infty \text {; } \\
& \text { - } \left.w_{L}(\theta), \bar{w}_{L, \varepsilon}(\theta) \in T Z_{L\left(z_{\theta}^{L}-z_{0}\right.}\right) ; \\
& \text { - } f_{0}^{\prime}\left(z_{\theta}^{L}-z_{0}+w_{L}(\theta)\right) \in T Z_{L\left(z_{\theta}^{L}-z_{0}\right)} \text {. }
\end{aligned}
$$

Moreover, defining,

$$
Z_{L, \varepsilon}=\left\{z_{\theta}^{L}-z_{0}+w(L, \varepsilon, \theta) \mid \min _{i}\left(\theta_{i+1}-\theta_{i}\right)>3 L\right\} .
$$

$Z_{L, \varepsilon}$ is a natural constraint for f_{ε}.
By Lemma 3 we are led, in order to find heteroclinic solutions turning k times between x_{1} and x_{2}, to look for critical points of the functional f_{ε} restricted to the k-dimensional manifold $Z_{L, \varepsilon}$. The expression of the functional f_{ε} restricted to $Z_{L, \varepsilon}$ is given by the following lemma:

Lemma 4. Let $k=2 l+1$, for $L>L_{1}$ and $|\varepsilon|<\varepsilon_{1}, f_{\varepsilon \mid Z_{L, e}}$ has the following form:

$$
\begin{align*}
f_{\varepsilon}\left(z_{\theta}\right. & \left.-z_{0}+w(L, \varepsilon, \theta)\right)= \tag{3.2}\\
& =(k-1) a+k b+\varepsilon\left(\sum_{i=1}^{i-l+1} \Gamma\left(\theta_{(2 i-1)}\right)+\sum_{i=1}^{i=l} \widetilde{\Gamma}\left(\theta_{2 i}\right)\right)+o_{L}(1)+O\left(\varepsilon^{2}\right)
\end{align*}
$$

where $a=(1 / 2) \int_{R} \dot{z}_{0}^{2}$ is a constant.
Proof. Let $L>L_{1},|\varepsilon|<\varepsilon_{1}$ and $\min _{i}\left(\theta_{i+1}-\theta_{i}\right)>3 L$. Since $\bar{w}_{L, \varepsilon} \in T Z_{L\left(z_{\theta}-z_{0}\right)}$,
by Lemma 3, $\left(f_{0}^{\prime}\left(z_{\theta}^{L}-z_{0}+w_{L}(\theta)\right), \bar{w}_{L, \varepsilon}\right)=0$; by Lemma $3\left\|\bar{w}_{L, \varepsilon}\right\| \leqslant C_{1}|\varepsilon|$. Moreover, since by $\left(\mathrm{V}_{1}\right),\left(\mathrm{W}_{1}\right) f_{0}^{\prime \prime}$ and G^{\prime} are bounded on bounded subsets of E we can write:

$$
\begin{aligned}
& f_{\varepsilon}\left(z_{\theta}^{L}-z_{0}+w_{L}(\theta)+\bar{w}_{L, \varepsilon}(\theta)\right)=f_{0}\left(z_{\theta}^{L}-z_{0}+w_{L}+\bar{w}_{L, \varepsilon}\right)+ \\
&+\varepsilon G\left(z_{\theta}^{L}-z_{0}+w_{L}+\bar{w}_{L, \varepsilon}\right)=f_{0}\left(z_{\theta}^{L}-z_{0}+w_{L}\right)+\left(f_{0}^{\prime}\left(z_{\theta}^{L}-z_{0}+w_{L}\right), \bar{w}_{L, \varepsilon}\right)+ \\
&+O\left(\left\|\bar{w}_{L, \varepsilon}\right\|^{2}\right)+\varepsilon G\left(z_{\theta}^{L}-z_{0}\right.\left.+w_{L}\right)+\varepsilon O\left(\left\|\bar{w}_{L, \varepsilon}\right\|\right)= \\
&=f_{0}\left(z_{\theta}^{L}-z_{0}+w_{L}\right)+\varepsilon G\left(z_{\theta}^{L}-z_{0}+w_{L}\right)+O\left(\varepsilon^{2}\right) .
\end{aligned}
$$

Now, by Lemma $3\left\|w_{L}(\theta)\right\|=o_{L}(1)$, hence:

$$
\begin{aligned}
f_{0}\left(z_{\theta}^{L}-z_{0}+w_{L}(\theta)\right)=f_{0}\left(z_{\theta}^{L}-z_{0}\right) & +o_{L}(1)= \\
& =\int_{\mathbb{R}} \frac{1}{2}\left(\dot{z}_{\theta}^{L}-\dot{z}_{0}\right)^{2}-\int_{\mathbb{R}}\left[V\left(z_{\theta}^{L}\right)+\ddot{z}_{0}\left(z_{\theta}^{L}-z_{0}\right)\right]+o_{L}(1)
\end{aligned}
$$

which is equal, by an integration by parts, to:

$$
\int_{\mathrm{R}}\left[\frac{1}{2}\left(\dot{z}_{\theta}^{L}\right)^{2}-V\left(z_{\theta}^{L}\right)\right]-\frac{1}{2} \int_{\mathrm{R}} \dot{z}_{0}^{2}+o_{L}(1)
$$

By $\left(\mathrm{V}_{1}\right)$ and the «splitting» properties of z_{θ}^{L} as $L \rightarrow \infty$ we have that the above term is equal to:

$$
\begin{aligned}
& \sum_{i_{\mathbb{R}}} \int_{\mathrm{R}}\left[\frac{1}{2}\left(\dot{z}_{\theta_{i}}\right)^{2}-V\left(z_{\theta_{i}}\right)\right]+o_{L}(1)-\frac{1}{2} \int_{\mathbb{R}} \dot{z}_{0}^{2}= \\
& \\
& =k\left(\frac{1}{2} \int_{\mathbb{R}} \dot{z}_{0}^{2}+b\right)+o_{L}(\dot{1})-\frac{1}{2} \int_{\mathbb{R}} \dot{z}_{0}^{2}=(k-1) a+k b+o_{L}(1),
\end{aligned}
$$

where $a=\frac{1}{2} \int_{\mathrm{R}} \dot{z}_{0}^{2}$. In the same way, because of $\left(\mathrm{W}_{1}\right)$, and the properties of z_{θ}^{L} as $L \rightarrow+\infty$ we have:

$$
G\left(z_{\theta}^{L}-z_{0}^{L}+w_{L}(\theta)\right)=\left(\sum_{i=1}^{i=l+1} \Gamma\left(\theta_{(2 i-1)}\right)+\sum_{i=1}^{i=l} \widetilde{\Gamma}\left(\theta_{2 i}\right)\right)+o_{L}(1)
$$

This concludes the proof of Lemma 4.
By the above lemma the existence of minima for Γ and $\widetilde{\Gamma}$ sufficiently far one each other ensures the existence of critical points of f_{ε} restricted to $Z_{L, \varepsilon}$ and hence implies the existence of heteroclinics turning k times between x_{1} and x_{2}. To be more precise we make the following hypotheses on Γ and $\widetilde{\Gamma}$:

Condition 1. There are $\eta>0$ and a sequence $\left(U_{n}=\left(c_{n}, d_{n}\right)\right)_{n \in \mathbb{Z}},\left(\widetilde{U}_{n}=\left(\widetilde{c}_{n}, \widetilde{d}_{n}\right)\right)_{n \in \mathbb{Z}}$ of bounded open intervals of \mathbb{R} which satisfy:
(i) $\Gamma_{\mid U_{n}}, \widetilde{\Gamma}_{\mid \widetilde{U}_{n}}$ attain its minimum resp. at some $a_{n} \in\left(c_{n}, d_{n}\right), \widetilde{a}_{n} \in\left(\widetilde{c}_{n}, \widetilde{d}_{n}\right)$ and $\Gamma_{\mid\left\{c_{n}, d_{n}\right\}} \geqslant \Gamma\left(a_{n}\right)+\eta$, resp. $\widetilde{\Gamma}_{\mid\left\{\tilde{c}_{n}, \widetilde{d}_{n}\right\}} \geqslant \widetilde{\Gamma}\left(\widetilde{a}_{n}\right)+\eta$;
(ii) $c_{n}, \widetilde{c}_{n} \rightarrow+\infty$ as $n \rightarrow+\infty$ and $d_{n}, \tilde{d}_{n} \rightarrow-\infty$ as $n \rightarrow-\infty$.

Condition 1 is satisfied for example if Γ and $\widetilde{\Gamma}$ are non-constant periodic, quasi-periodic or almost-periodic functions. (See [2, Section 2.4]).

Hence it is possible to prove the following:
Theorem 2. Let $\left(\mathrm{V}_{1}\right),\left(\mathrm{V}_{2}\right),\left(\mathrm{W}_{1}\right)$ and condition (1) bold. For all $k=2 l+1$, for $\varepsilon \neq 0$ small enough there exists L_{ε} such that if $\min _{i=1, \ldots, l}\left({\widetilde{c_{j 2 i}}}-d_{j_{(2 i-1)}}\right)>L_{\varepsilon}$ and $\min _{i=1, \ldots, l}\left(c_{\left.j_{2 i+1}\right)}-\widetilde{d}_{j_{2 i}}\right)>L_{\varepsilon}$ then equation (1.1) has a beteroclinic solution u_{ε} located near some $z_{\theta_{1}, \ldots, \theta_{k}}^{L_{\varepsilon}}$ with $\theta_{j_{(2 i-1)}} \in U_{j_{(2 i-1)}}$ for $i=1, \ldots, l+1$ and $\theta_{j_{2 i}} \in \widetilde{U}_{j_{2 i}}$ for $i=1, \ldots, l$.

As a consequence of Theorem 2 we have the following corollary:

Corollary 1. For all $k=2 l+1$ there exists $\bar{\varepsilon}>0$ such that $\forall \varepsilon \in(-\bar{\varepsilon}, 0) \cup(0, \bar{\varepsilon})$ equation (1.1) bas infinitely many beteroclinics winding $k=2 l+1$ times between x_{1} and x_{2}.

Remark 2. Note that $L_{\varepsilon} \rightarrow+\infty$ as $\varepsilon \rightarrow 0$. Using the exponential decay property of \dot{z}_{0}, deriving from the fact that x_{1} and x_{2} are byperbolic points the distance can be estimated as $L_{\varepsilon}=-K \ln |\varepsilon|$ for some positive constant K, see Lemma 6.

Remark 3. It is also possible to obtain beteroclinic solutions of (1.1) u_{ε} turning k times between x_{1} and x_{2} located near z_{θ}^{L} where θ_{i} are all maxima of Γ and $\widetilde{\Gamma}$. Moreover with considerations like section (3.3) in [2] streghtening Condition 1 we can also find beteroclinics where θ_{i} are either near minima either near maxima of Γ and $\widetilde{\Gamma}$.

Remark 4. For proving the existence of bomoclinic solutions to x_{i} turning $k=2 l$ times between x_{1} and x_{2} it is enough to repeat the same arguments for the following functional defined on $H^{1}(\mathbb{R})$:

$$
\bar{f}_{\varepsilon}(v)=\frac{1}{2} \int_{\mathrm{R}} \dot{v}^{2}-\int_{\mathrm{R}} V\left(x_{i}+v\right)-\varepsilon \int_{\mathrm{R}} W\left(t, x_{i}+v\right) d t
$$

A critical point v of \bar{f}_{ε} gives rise to a solution $u=x_{i}+v$ of (1.1) bomoclinic to x_{i}.
However the constants L_{ε} and $\bar{\varepsilon}$ given by Theorem 2 and Corollary 1 can depend on k so that Theorem 2 cannot be directly used to obtain the existence of solutions turning infinitely many times between x_{1} and x_{2}. The bound that we obtain for $\left\|u_{\varepsilon}-z_{\theta}^{L_{\varepsilon}}\right\|$ is not independent of k. We will show, following [2], in the next section how to derive estimates independent of k by using a different norm. We shall find solutions u_{ε} close to z_{θ}^{L} only in L^{∞}-norm but not in H^{1}-norm. See also [6].

3.2. Existence of heteroclinic solutions turning infinitely many times between x_{1} and x_{2}.

In this section we show how to modify the previous lemmas in order to obtain constants ε_{1} and L_{ε} independent of k.

For any $\theta_{1}<\ldots<\theta_{k}$ we will consider the norm on E :

$$
|u|_{\theta}^{2}=\max _{i=1, \ldots, k, k} \int_{I_{i}}\left|u^{2}\right|+|\dot{u}|^{2}
$$

where

$$
I_{1}=\left(\left(-\theta_{1}-\theta_{2}\right) / 2,+\infty\right), \quad I_{i}=\left(\left(-\theta_{i+1}-\theta_{i}\right) / 2,\left(-\theta_{i}-\theta_{i-1}\right) / 2\right)
$$

and

$$
I_{k}=\left(-\infty,\left(-\theta_{k}-\theta_{k-1}\right) / 2\right) .
$$

In the sequel $\|\cdot\|$ will still denote the H^{1}-norm.
Since for every $u \in E$ we have

$$
|u|_{\theta}^{2} \leqslant\|u\|^{2} \leqslant k|u|_{\theta}^{2},
$$

the norm $|\cdot|_{\theta}$ is equivalent to the H^{1}-norm for fixed k. Moreover the following uniform bound can be easily proved: $\forall k \in \mathbb{N}, \forall\left(\theta_{1}, \ldots, \theta_{k}\right)$ with $\min _{i}\left(\theta_{i}-\theta_{i-1}\right)>1$:

$$
\|u\|_{\infty} \leqslant 2|u|_{\theta} .
$$

With the above norm the estimates become independent of k.
A modified version of Lemma 3 (see [2, Lemmas 13-15]) in which the constants can be taken independent of k can be proved.

Lemma 5. There exist $\varepsilon_{2}, \delta_{2}, L_{2}, C_{2}, C_{3}>0$ such that $\forall k, \forall L>L_{2}$ there is a unique C^{1} function

$$
\begin{aligned}
w(L, \varepsilon, \theta)=w_{L} & (\theta)+\bar{w}_{L, \varepsilon}(\theta):\left(-\varepsilon_{2}, \varepsilon_{2}\right) \times \\
& \times\left\{\left(\theta_{1}, \ldots, \theta_{k}\right) \in \mathbb{R}^{k} \mid \min _{i}\left(\theta_{i+1}-\theta_{i}\right)>3 L\right\} \rightarrow\left\{v \in E \mid\|v\| \leqslant \delta_{2}\right\}
\end{aligned}
$$

such that:

- $\bar{w}_{L, 0}(\theta)=0$ and $\left|\bar{w}_{L, \varepsilon}\right|_{\theta} \leqslant C_{2}|\varepsilon| ;$
- $\left|w_{L}(\theta)\right|_{\theta}=O\left(\exp \left(-C_{3} L\right)\right)$;
- $w_{L}(\theta), \bar{w}_{L, \varepsilon}(\theta) \in T Z_{L\left(z_{\theta}^{L}-z_{0}\right)}$;
- $f_{0}^{\prime}\left(z_{\theta}^{L}-z_{0}+w_{L}(\theta)\right) \in T Z_{L\left(z_{\theta}^{L}-z_{0}\right)}$.

Moreover, defining,

$$
Z_{L, \varepsilon}=\left\{z_{\theta}^{L}-z_{0}+w(L, \varepsilon, \theta) \mid \min _{i}\left(\theta_{i+1}-\theta_{i}\right)>3 L\right\}
$$

$Z_{L, \varepsilon}$ is a natural constraint for f_{ε}.
By Lemma 5 we are led, in order to find heteroclinic solutions turning k times between x_{1} and x_{2} and then solutions turning infinitely many times between x_{1} and x_{2}, to look for the critical points of the functional f_{ε} restricted to the k-dimensional manifold $Z_{L, \varepsilon}$. The next lemma provides a suitable expression of the functional f_{ε} restricted to $Z_{L, \varepsilon}$ (see [2, Lemma 18]):

Lemma 6. $\forall|\varepsilon|<\varepsilon_{2}, \forall L>L_{2}, \forall k$, for all $\left(\theta_{1}, \ldots, \theta_{k}\right) \in \mathbb{R}^{k}$ with $\min _{i}\left(\theta_{i+1}-\theta_{i}\right)>$
$>3 L$ there results:

$$
\begin{align*}
f_{\varepsilon}\left(z_{\theta}-z_{0}\right. & \left.+w_{L}(\theta)+\bar{w}_{L, \varepsilon}(\theta)\right)= \tag{3.3}\\
& =(k-1) a+k b+\varepsilon\left(\sum_{i=1}^{i=l+1} \Gamma\left(\theta_{(2 i-1)}\right)+\sum_{i=1}^{i=l} \widetilde{\Gamma}\left(\theta_{2 i}\right)\right)+\beta(L, \varepsilon, \theta)
\end{align*}
$$

where β bas the following property: there is a positive constant C_{4} such that, if θ_{i}^{\prime} satisfies $\theta_{i}^{\prime}-\theta_{i-1}>3 L$ and $\theta_{i+1}-\theta_{i}^{\prime}>3 L$ then

$$
\begin{array}{r}
\left|\beta\left(L, \varepsilon, \theta_{1}, \ldots, \theta_{i-1}, \theta_{i}^{\prime}, \theta_{i+1}, \ldots, \theta_{k}\right)-\beta\left(L, \varepsilon, \theta_{1}, \ldots, \theta_{i-1}, \theta_{i}, \theta_{i+1}, \ldots, \theta_{k}\right)\right|= \tag{3.4}\\
=O\left(\exp \left(-C_{4} L\right)\right)+\varepsilon o_{\varepsilon, L}(1)
\end{array}
$$

By Lemma 6 it is possible to prove (see [2, Theorem 3]) that:
Theorem 3. Let condition $\left(\mathrm{V}_{1}\right),\left(\mathrm{V}_{2}\right),\left(\mathrm{W}_{1}\right)$ and condition (1) bold. Then there exists a positive constant C_{5} such that: $\forall \omega>0$ there exists $\varepsilon_{3}>0$ such that for all $k=2 l+1$, $\forall \varepsilon \in\left(-\varepsilon_{3}, \varepsilon_{3}\right), \varepsilon \neq 0$ if $\min _{i=1, \ldots, l}\left(\widetilde{c}_{j_{2 i}}-d_{j_{(2 i-1)}}\right)>L_{\varepsilon}=-C_{5} \ln |\varepsilon|$ and $\min _{i=1, \ldots, l}\left(c_{j_{(2 i+1)}}-\right.$ $\widetilde{d}_{j_{2} i}>L_{\varepsilon}=-C_{5} \ln |\varepsilon|$ then there are $\theta_{j_{(2 i-1)}} \in U_{j_{(2 i-1)}}$ for $i=1, \ldots, l+1, \theta_{j_{2 i}} \in \widetilde{U}_{j_{2 i}}$ for $i=1, \ldots, l$, and a beteroclinic solution u_{ε} of (1.1) which satisfies:

$$
\left\|u_{\varepsilon}-z_{\theta_{i_{1}}, \ldots, \theta_{i k}}^{L_{i k}}\right\|_{L^{\infty}(\mathbb{R})} \leqslant \omega .
$$

Since L_{ε} does not depend on k by standard arguments (see $[2,6]$) it is possible to get from the above theorem the existence of solutions turning infinitely many times between x_{1} and x_{2} according to the following theorem:

Theorem 4. Let condition $\left(\mathrm{V}_{1}\right),\left(\mathrm{V}_{2}\right),\left(\mathrm{W}_{1}\right)$ and condition (1) bold. Then there exist a positive constant C_{5} such that: $\forall \omega>0$ there exists $\varepsilon_{3}>0$ such that $\forall \varepsilon \in\left(-\varepsilon_{3}, \varepsilon_{3}\right), \varepsilon \neq 0$ for any sequence of intervals with $\min _{i=1, \ldots}\left(\widetilde{c}_{j_{2 i}}-d_{j_{(2 i-1)}}\right)>L_{\varepsilon}=-C_{6} \ln |\varepsilon|$ and $\min _{i=1, \ldots}\left(c_{j_{(2 i+1)}}-\widetilde{d}_{j_{2 i}}\right)>L_{\varepsilon}=-C_{6} \ln |\varepsilon|$ then there are $\theta_{j_{(2 i-1)}} \in U_{j_{(2 i-1)}}$ and $\theta_{j_{2 i}} \in \widetilde{U}_{j_{2 i}}$ for $i=1, \ldots$ and a solution u_{ε} of (1.1) which satisfies:

$$
\left\|u_{\varepsilon}-z_{\theta}^{L_{\varepsilon}}\right\|_{L^{\infty}(\mathbb{R})} \leqslant \omega .
$$

The existence of solutions as in Theorem 4 implies a chaotic dynamic which can be described, if the perturbation is periodic, in terms of Bernoulli shift structures. If the Poincaré functions Γ and $\widetilde{\Gamma}$, possess non-degenerate critical points then a uniqueness result for the solutions given by Theorem 4 (see [2, Section 3.4]) can be proved and the dynamics of (1.1) possesses a complete Bernoulli shift structure.

Before ending we remark that the above theorems can be extended to the following situation. Assume that the potential V possesses other critical points x_{3}, \ldots, x_{N} such that $V\left(x_{i}\right)=W\left(t, x_{i}\right)=0, \nabla_{u} V\left(x_{i}\right)=\nabla_{u} W\left(t, x_{i}\right)=0$ and $D^{2} V\left(x_{i}\right)$ are negative definite matrices. Moreover assume that the unperturbed system possesses transversal heteroclinic orbits $z_{0(i, j)}$ connecting the hyperbolic equilibria x_{i} and x_{j}. Hence we can modify the above arguments in such a way that we manage to connect in the perturbed system the hyperbolic equilibria x_{i} as we wish. For this pourpose it is enough to build a manifold of «quasi-heteroclinic» solutions and to find a true critical point near to this manifold.

Acknowledgements

The author thanks A. Ambrosetti, P. Bolle and S. Bolotin for useful discussions.

References

[1] A. Ambrosetti - M. Badiale, Homoclinics: Poincaré-Melnikov type results via a variational approach. C. R. Acad. Sci. Paris, t. 323, Série I, 1996, 753-758; and Annales I.H.P., to appear.
[2] M. Berti - P. Bolle, Homoclinics and Cbaotic Behaviour for Perturbed Second Order Systems. Preprint S.N.S. n. 3.
[3] V. K. Melnikov, On the stability of the center for time periodic perturbations. Trans. Moscow Math. Soc., 12, 1963, 3-52.
[4] H. Poincaré, Les méthodes nouvelles de la mécanique céleste. Gauthiers-Villars, Paris 1889.
[5] E. Séré, Existence of infinitely many bomoclinic orbits in Hamiltonian systems. Math. Zeitschrift, 209, 1992, 27-42.
[6] E. Séré, Looking for the Bernoulli shift. Ann. Inst. H. Poincaré, Anal. Nonlin., 10, 1993, 561 590.

Scuola Normale Superiore
Piazza dei Cavalieri, 7-56126 PIsA

