Rendiconti Lincei

 Matematica E Applicazioni
Bertram Huppert

A remark on a Theorem of J. G. Thompson

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Serie 9, Vol. 9 (1998), n.3, p. 145-148.

Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLIN_1998_9_9_3_145_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> http://www.bdim.eu/

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Accademia Nazionale dei Lincei, 1998.

Teoria dei gruppi. - A remark on a Theorem of J. G. Thompson. Nota di Bertram Huppert, presentata (*) dal Socio G. Zappa.

Abstract. - An important theorem by J. G. Thompson says that a finite group G is p-nilpotent if the prime p divides all degrees (larger than 1) of irreducible characters of G. Unlike many other cases, this theorem does not allow a similar statement for conjugacy classes. For we construct solvable groups of arbitrary p-lenght, in which the lenght of any conjugacy class of non central elements is divisible by p.

Key words: Lenght of conjugacy classes; p-lenght.

Riassunto. - Osservazionesu un Teorema diJ. G. Thompson. Un importante teorema di J. G. Thompson afferma che un gruppo finito G è p-nilpotente se il primo p divide tutti i gradi (maggiori di 1) dei caratteri irriducibili di G. A differenza di vari altri casi, questo teorema non dà luogo ad una affermazione simile per le classi di coniugio. Infatti noi costruiamo un gruppo risolubile di p-lunghezza arbitraria in cui la lunghezza di una classe di coniugio di elementi non centrali è divisibile per p.

In 1970 J. G. Thompson [1] proved the following theorem:
Theorem. Let G be a finite group and p a prime. Suppose that for every complex irreducible character χ of G of degree larger than $1, \chi(1)$ is divisible by p. Then G is p-nilpotent, which means that G has a normal p-complement.

In recent years several similarities between theorems about character degrees and lengths of conjugacy classes have been observed. Hence it seems natural to consider groups with the following property:
(p) Let p be a prime. Suppose that for every noncentral element g of G the length

$$
\left|g^{G}\right|=\left|G: C_{G}(g)\right|
$$

of the conjugacy class g^{G} of g is divisible by p.
In particular, it seems natural to consider the p-length of groups with property (p). The main result is negative: There are solvable groups with property (p) of arbitrary large p-length.

In Example 1 we shall construct groups with property (p) of p-length 2 . By a wreath product construction we shall then obtain examples of arbitrary p-length.

Lemma. Suppose that N is a normal p-subgroup of G such that

$$
C_{G}(N)=Z(N)=Z(G) .
$$

Then G has property (p).
(*) Nella seduta del 24 aprile 1998.

Proof. Suppose $g \in G$ and $p \nmid\left|g^{G}\right|$. Then $C_{G}(g)$ contains some Sylow- p-subgroup of G, so $N \leq C_{G}(g)$. This proves

$$
g \in C_{G}(N)=Z(G),
$$

hence $\left|g^{G}\right|=1$.
Example 1.
a) The group $G L(2,3)$ has 2 -length 2 . It has a normal subgroup N of order 8 such that

$$
C_{G}(N)=Z(N)=Z(G) .
$$

Hence $G L(2,3)$ has property (2) by the Lemma.
b) For $p>2$ we construct similar groups in the following way: Let $K=G F(p)$ and $L=G F\left(p^{2 p}\right)$. We take $a \in G F\left(p^{2}\right)^{\times}$such that $a^{p}=-a$, hence $a^{p^{2}}=a$ and $a^{p^{p}}=-a$. The set $P=L \times K$ becomes a p-group of order $p^{2 p+1}$ by

$$
\left(x_{1}, y_{1}\right)\left(x_{2}, y_{2}\right)=\left(x_{1}+x_{2}, y_{1}+y_{2}+\operatorname{trax} x_{1} x_{2}^{p^{p}}\right),
$$

where $t r$ is the trace of L over K. One easily checks that this is a group operation on P and

$$
P^{\prime}=Z(P)=\{(0, y) \mid y \in K\}
$$

has order p. So P is an extraspecial p-group.
Take $c \in L^{\times}$such that ord $c=p^{p}+1$. Then by

$$
(x, y)^{\alpha}=(c x, y) \quad \text { and } \quad(x, y)^{\beta}=\left(x^{p^{2}}, y\right)
$$

we define automorphisms α and β of P. (Observe that $a^{p^{2}}=a$). Then

$$
\alpha^{p^{p}+1}=\beta^{p}=1, \quad \beta^{-1} \alpha \beta=\alpha^{p^{2}} .
$$

We form the semidirect product

$$
H=P\langle\alpha, \beta\rangle
$$

of order $p^{2 p+2}\left(p^{p}+1\right)$. Then H obviously has p-length 2 . As

$$
C_{H}(P)=Z(P)=Z(H)
$$

so by the Lemma H has property (p).
Theorem. There do exist solvable groups with property (p) of arbitrary large p-length.
Proof. Let already a solvable group G_{k} be constructed such that G_{k} has property (p) and $\ell_{p}\left(G_{k}\right) \geq k$. Take the group H as in Example 1 such that H has property (p) and $\ell_{p}(H)=2$. Let Q be a p-complement of H and represent H faithfully as a transitive permutation group on the $|H: Q|=p^{2 p+2} \doteqdot m$ cosets of Q in H. Any Sylow-p-subgroup of H is then regularly represented. Form the wreath product

$$
G_{k+1}=G_{k} \backslash H=B H,
$$

where

$$
B=T_{1} \times \ldots \times T_{m}
$$

is the basic subgroup, $T_{i} \simeq G_{k}$ and H permutes the T_{i}.
(1) G_{k+1} has property (p) :

Suppose at first that $g \notin B$. As $G_{k+1} / B \simeq H$ has property (p), so either p divides

$$
\left|(g B)^{G_{k+1} / B}\right|
$$

which divides $\left|g^{G_{k+1}}\right|$ or

$$
g B \in Z\left(G_{k+1} / B\right)
$$

In the second case $g=g_{0} h$, where $g_{0} \in B, h \in Z(H)$. Suppose $p \nmid\left|g^{G_{k+1}}\right|$. Then some Sylow- p-subgroup $P=P_{1} \times \ldots \times P_{m}$ of B is in $C_{G_{k+1}}(g)$, where $E \neq P_{i} \in S y l_{p} T_{i}$. Therefore

$$
P_{i}^{h^{-1}}=P_{i}^{g_{0}} \leq T_{i}
$$

Hence the permutation induced by h on the T_{i} is trivial. But if $1 \neq h \in Z(H)$ then h has no fixed point on $\{1, \ldots, m\}$. Hence $h=1$ and $g=g_{0} \in B$, a contradiction.

Now suppose $g \in B$. If $g \notin Z(B)$, then as G_{k} and B have property (p), we obtain $p\left|\left|g^{B}\right|\right.$. But $B \triangleleft G_{k+1}$, so $| g^{B} \mid$ divides $\left|g^{G_{k+1}}\right|$.

There remains the case that

$$
g=g_{1} \ldots g_{m} \in Z(B)
$$

where $g_{i} \in Z\left(T_{i}\right)$. Then $C_{G}(g)$ permutes only those T_{i} with equal factors g_{i}. If not all the g_{i} are equal, none of the transitive Sylow- p-subgroup of H lies in $C_{H}(g)$, so p divides $\left|g^{G_{k+1}}\right|$. If $g=g_{1} \ldots g_{m}$ and $g_{1}=\ldots=g_{m}$, then $g \in Z\left(G_{k+1}\right)$.
(2) We claim that $\ell_{p}\left(G_{k+1}\right) \geq k+1$. We have

$$
\ell_{p}(B)=\ell_{p}\left(G_{k}\right) \geq k
$$

Let $P_{k-1}(B)$ be the uniquely determined maximal normal subgroup of B of p-length $k-1$. As $\ell_{p}(B) \geq k$, so

$$
P_{k-1}(B)=P_{k-1}\left(T_{1}\right) \times \ldots \times P_{k-1}\left(T_{m}\right)<B
$$

Now

$$
\left[P_{k-1}\left(G_{k+1}\right), B\right] \leq P_{k-1}\left(G_{k+1}\right) \cap B=P_{k-1}(B) .
$$

Hence $P_{k-1}\left(G_{k+1}\right)$ centralizes $B / P_{k-1}(B)$, hence does not permute the T_{i}. So

$$
P_{k-1}\left(G_{k+1}\right)=P_{k-1}(B) \leq B
$$

But

$$
\ell_{p}\left(G_{k+1} / P_{k-1}\left(G_{k+1}\right)\right) \geq \ell_{p}\left(G_{k+1} / B\right)=2
$$

and therefore

$$
\ell_{p}\left(G_{k+1}\right) \geq k+1 .
$$

(If we start the construction with G_{2} the group of Example 1, then $\ell_{p}\left(G_{k}\right)=k$).
Remark. There are also insolvable groups with property (p).
a) The simplest case we obtain by extending a nonabelian group P of exponent p and order p^{3} by $S L(2, p)$, so that $P^{\prime}=Z(G)$. If $p>3$, then G is not solvable.
b) For $p \geq 3$ similar examples can be obtained by extending an extraspecial group P of exponent p and order $p^{2 m+1}(m>1)$ by the symplectic group $S p(2 m, p)$.
c) For $p=2$ we extend each of the extraspecial 2 -groups P of order $2^{2 m+1}(m>1)$ by the corresponding orthogonal group $O(2 m, 2)$. (Here both of the orthogonal groups have to be used, according to the choice of P).

This paper is dedicated to Karl Heinrich Hofmann on his 65 Birthday.

References

[1] J. G. Thомpson, Normal p-complements and irreducible characters. J. Algebra, 14, 1970, 129-134.

Pervenuta il 24 aprile 1998.

