
ATTI ACCADEMIA NAZIONALE LINCEI CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI LINCEI
MATEMATICA E APPLICAZIONI

William Alan Day, Giuseppe Saccomandi

On rates of propagation for Burgers’ equation

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche,
Matematiche e Naturali. Rendiconti Lincei. Matematica e
Applicazioni, Serie 9, Vol. 9 (1998), n.3, p. 149–156.
Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLIN_1998_9_9_3_149_0>

L’utilizzo e la stampa di questo documento digitale è consentito liberamente per mo-
tivi di ricerca e studio. Non è consentito l’utilizzo dello stesso per motivi commerciali.
Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma
bdim (Biblioteca Digitale Italiana di Matematica)

SIMAI & UMI
http://www.bdim.eu/

http://www.bdim.eu/item?id=RLIN_1998_9_9_3_149_0
http://www.bdim.eu/


Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e
Naturali. Rendiconti Lincei. Matematica e Applicazioni, Accademia Nazionale dei
Lincei, 1998.



Rend. Mat. Acc. Lincei
s. 9, v. 9:149-156 (1998)

Analisi matematica. — On rates of propagation for Burgers’ equation. Nota di William

Alan Day e Giuseppe Saccomandi, presentata (*) dal Corrisp. C. Baiocchi.

Abstract. — We give asymptotic formulae for the propagation of an initial disturbance of the Burg-
ers’ equation.
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Riassunto. — Proprietà di trasmissione per l’equazione di Burgers. Si dimostrano alcune formule asinto-
tiche che sono di interesse nello studio del problema di Cauchy per l’equazione di Burgers. Queste formule
permettono di seguire l’evoluzione dei massimi di un dato iniziale con un supporto compatto.

1. Introduction

In an important paper [1] Fichera has defended Fourier’s theory of heat propagation
against the accusation that it produces the paradox according to which heat propagates
with infinite speed. In the course of his argument Fichera drew attention to an observa-
tion of J. C. Maxwell’s to the effect that, while an infinitesimally small amount of heat
propagates at arbitrarily large speed, the bulk propagates in a characteristically diffusion-
like way, i.e. in such a way that the time taken is proportional to the square of the
distance traversed. This idea has been provided with a rigorous measure-theoretic foun-
dation by Day and Saccomandi in two other contexts: for a hyperbolic equation with
diffusive damping in [2], and for the parabolic Fokker-Planck equation with periodic
coefficients in [3].

In [4, 5], Day has provided a somewhat different justification for Maxwell’s observa-
tion by considering the initial-value problem for the linear heat equation, with an initial
disturbance which is spatially localised, and studying the time taken for the maximum
disturbance to reach a point lying at large distance from the support of the initial data.
It turns out, once again, that the time taken is asymptotically proportional to the square
of the distance from the point to the location of the initial disturbance.

Our present objective is to extend the considerations of [4, 5] to the initial-value
problem for Burgers’ equation. This equation serves as a prototype for other nonlinear
convection-diffusion equations and, from our point of view, it has the great advantage
that it can be reduced to the linear heat equation by means of the Hopf-Cole transfor-
mation (1)[6]. Although our argument is specific to Burgers’ equation and relies heavily
upon the Hopf-Cole transformation it yields insight into what may happen for more

(*) Nella seduta del 13 febbraio 1998.
(1) We point out that the Burgers’equation is not the only nonlinear equation linearizable via a suitable

transformation of variables. The hyperbolic Thomas equation [6], which arises in the study of ion exchange
processes, is also linearizable by a transformation of the Hopf-Cole type.
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general nonlinear convection-diffusion equations, for which solutions to initial-value
problems can be explicitly computed only in very special cases.

2. Preliminaries and main result

Let f (x) be any function which is non-negative and continuous for −∞ < x < ∞
and which has compact support, and let

(1) g (x) = exp
[

1
2D

∫ ∞

x

f (y)dy

]
; −∞ < x < ∞;

where D is a positive constant. Let

v(x; t ) =

∫ ∞

−∞
K (x − y; t )g (y)dy;

where

K (x; t ) =
1√

4πDt
exp

(
− x2

4Dt

)
;

so that v is a solution of the initial value problem

vt = Dvxx; −∞ < x < ∞; t > 0

v(x; 0) = g (x); −∞ < x < ∞;

for the heat equation. Furthermore, let u be obtained from v via the Hopf-Cole
transformation

(2) u = −2D
vx

v
:

Then u is a solution of Burgers’ equation

ut + uux = Duxx; −∞ < x < ∞; t > 0;

satisfying an initial condition

u(x; 0) = f (x); −∞ < x < ∞;

which corresponds to an initial disturbance which is non-negative and is confined to a
finite interval of the real line.

Our purpose is to point out certain features of the way in which the disturbance
propagates. To this end we consider a point x lying outside the support of f . At such
a point u is zero initially; thereafter, it increases to its maximum value and decays again
to zero. We denote by τ (x) the time at which the maximum is attained and, to avoid
possible ambiguity, we take this to be the first of such time; thus

u (x; τ (x)) = max
t

u(x; t );

u(x; t ) < u(x; τ (x)); 0 ≤ t < τ (x):
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The exact dependence of τ (x) upon x must be expected to be complicated but none
the less it is possible to determine the asymptotic behaviour as x → ±∞: Before we
state what this is we recall that, in the case of the heat equation,

τ (x) � x2

2D
as |x | → ∞:

For the proof of this and related results see [4, 5]. Here there is no distinction between
the asymptotic behaviours as x → −∞ and as x →+ ∞, and the asymptotic relation
expresses the characteristic diffusion-like law that the time elapsed is proportional to the
square of the distance traversed.

For Burgers’ equation the situation is more complicated. The asymptotic behaviour
is still diffusion-like in that τ (x) is ultimately proportional to x2, but the coefficient of
proportionality now depends upon the integral

∫ ∞

−∞
fdx (= Q; say):

Moreover, the behaviour as x → −∞, is different from the behaviour as x →+ ∞.

In order to state our conclusions we introduce a function

(3) Θ(σ) =
σ2 − 1

2∫∞
σ

(ρ2 − σ2) exp(−ρ2)dρ
; σ ≥ 0:
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Fig. 1. – Plot of Θ(σ) versus σ.

This is strictly increasing and has the properties:

Θ(0) = − 2√
π

; Θ

(
1√
2

)
= 0;

Θ(σ) → ∞ as σ → ∞:

We also define numbers σ+(Q; D) and σ−(Q; D) to be the unique roots of the
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equations

Θ(σ) =
exp

( Q
2D

)
− 1√

π
;

Θ(σ) = −
1 − exp

(
− Q

2D

)
√
π

;

respectively and we define the number ξ(∼= 0:59392) by requiring that

Θ(ξ) = − 1√
π

:

Theorem 1. Let

T ±(Q; D) =
1

4D[σ±(Q; D)]2 :

Then

τ (x) ∼ T ±(Q; D)x2 as x → ±∞:

Moreover

(4) T +(Q; D) <
1

2D
< T −(Q; D):

As Q → 0;

(5) T ±(Q; D) → 1
2D

;

and as Q → ∞;

(6) T +(Q; D) → 0;

(7) T −(Q; D) → 1
4Dξ2 � 0:70874

D
:

According to the inequalities (4) propagation in the positive x-direction proceeds
more rapidly than for the heat equation but propagation in the negative x-direction
proceeds less rapidly. The relation (5) says that weak disturbances propagate as for the
heat equation, as might be expected. The relations (6) and (7) tell us what happens for
strong disturbances; in particular (6) says that for sufficiently strong disturbances the
time taken to propagate to the place x , with x > 0; is arbitrarily small.

3. Proof of the asymptotic relations

The key to the proof is to derive appropriate estimates on v and vx and, hence, on
u, which show that, when x is large and positive, |x |u=2D is approximately equal to

F (σ) =
σ exp(−σ2)

√
π

exp(Q=2D)−1 +
∫∞
σ

exp(−ρ2)dρ
;
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Fig. 2. – Plot of F (σ) (line) and G (σ) (dash) versus σ for Q=D = 1:

and, when x is large and negative, |x |u=2D is approximately equal to

G (σ) =
σ exp(−σ2)

√
π

1−exp(−Q=2D) −
∫∞
σ

exp(−ρ2)dρ
;

where σ (≥ 0) is the similarity variable |x |=
√

4Dt:

Lemma 2. Let a > 0 be such that the support of f is contained within the interval [−a; a]:
Then for x > a

(8) F1(σ; x) ≤ 1
2D

|x |u(x; t ) ≤ F2(σ; x);

and for x < −a;

(9) G1(σ; x) ≤ 1
2D

|x |u(x; t ) ≤ G2(σ; x);

where

F1(σ; x) =
σ exp

[
−(1 + a=x)2σ2]

√
π

exp(Q=2D)−1 +
∫∞

(1−a=x)σ exp(−ρ2)dρ
;

F2(σ; x) =
σ exp

[
−(1 − a=x)2σ2]

√
π

exp(Q=2D)−1 +
∫∞

(1+a=x)σ exp(−ρ2)dρ
;

G1(σ; x) =
σ exp

[
−(1 − a=x)2σ2]

√
π

1−exp(−Q=2D) −
∫∞

(1−a=x)σ exp(−ρ2)dρ
;

G2(σ; x) =
σ exp

[
−(1 + a=x)2σ2]

√
π

1−exp(−Q=2D) −
∫∞

(1+a=x)σ exp(−ρ2)dρ
:

Proof. We prove only the inequality F1 ≤ |x |u=2D; the three remaining inequalities
can be established by making appropriate minor modifications to the argument. It
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follows from equation (1) that

g (x) = exp(Q=2D); x < −a;

1 ≤ g (x) ≤ exp(Q=2D); − a ≤ x ≤ a;

g (x) = 1; x > a:

Hence

v(x; t ) ≤ exp(Q=2D)
∫ a

−∞
K (x − y; t )dy +

∫ ∞

a

K (x − y; t )dy;

and in view of the fact that ∫ ∞

−∞
K (x − y; t )dy = 1;

we can rewrite this as

v(x; t ) ≤ 1 +
(
exp(Q=2D) − 1)

) ∫ a

−∞
K (x − y; t )dy:

On making the change of variable y = x −
√

4Dtρ in the integral and supposing that
x > a we arrive the inequality

(10) v(x; t ) ≤ 1 +
exp(Q=2D) − 1√

π

∫ ∞

(1−a=x)σ
exp(−ρ2)dρ; x > a:

In order to estimate vx we argue that

vx (x; t ) = exp(Q=2D)
∫ −a

−∞
Kx (x − y; t )dy +

+

∫ a

−a

Kx (x − y; t )g (y)dy +

∫ ∞

a

Kx (x − y; t )dy =

= − exp(Q=2D)K (x + a; t ) +

∫ a

−a

Kx (x − y; t )g (y)dy + K (x − a; t ):

If x > a and −a ≤ y ≤ a then

Kx (x − y; t ) = − (x − y)
2Dt

K (x − y; t ) ≤ 0;

and so ∫ a

−a

Kx (x − y; t )g (y)dy ≤
∫ a

−a

Kx (x − y; t )dy = K (x + a; t ) − K (x − a; t )

and, therefore,

vx (x; t ) ≤ −
(
exp(Q=2D) − 1

)
K (x + a; t );

that is to say

(11) −vx (x; t ) ≥
(
exp(Q=2D) − 1

)
σ exp

(
−(1 + a=x)2σ2)

√
π|x | ; x > a:
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The desired inequality now follows from equation (2) and the estimates (10) and
(11).

We are now in position to complete the proof of the asymptotic relation

τ (x) ∼ T +(Q; D)x2 as x → ∞:

For any fixed large positive x , the graphs of F1(σ; x); F2(σ; x); and F (σ); versus σ

take the value 0 when σ = 0: As σ increases, each increases monotonely to its maximum
value and thereafter decreases monotonely to 0 as σ → ∞: Moreover F1;2(σ; x) → F (σ)
when x → ∞: On noting that the integral on the right-hand side of equation (3) is
equal to (

1
2
− σ2

)∫ ∞

σ

exp(−ρ2)dρ +
1
2
σ exp(−σ2);

we see that, in fact, F (σ) attains its maximum at σ = σ+(Q; D): Moreover, there are
unique numbers φ(x) and ψ(x) such that 0 < φ < ψ and

F2(φ; x) = F2(ψ; x) = max
σ

F1(σ; x):

These numbers have the property that φ(x) → σ+ and ψ(x) → σ+ as x → ∞ and, in
view of the inequalities (8), it must be that

φ(x) ≤ |x |√
4Dτ (x)

≤ ψ(x):

Hence

τ (x) ∼ x2

4D[σ+(Q; D)]2 as x → ∞

and this is the required relation.
The asymptotic relation

τ (x) ∼ T −(Q; D)x2 as x → −∞

follows from the inequalities (9) by a similar argument on noting that G (σ) attains its
unique maximum at σ−(Q; D):

The remaining assertions of the theorem follows immediately from the definition of
σ±(Q; D) and the properties of the function Θ(σ):

This paper is dedicated to the memory of Professor Gaetano Fichera.
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