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Equazioni a derivate parziali. — On the Cauchy problem for a class of parabolic equations
with variable density. Nota (*) di Shoshana Kamin, Robert Kersner e Alberto Tesei,
presentata dal Corrisp. A. Tesei.

Abstract. — The well-posedness of the Cauchy problem for a class of parabolic equations with variable
density is investigated. Necessary and sufficient conditions for existence and uniqueness in the class of
bounded solutions are proved. If these conditions fail, sufficient conditions are given to ensure well-
posedness in the class of bounded solutions which satisfy suitable constraints at infinity.

Key words: Cauchy problem; Well-posedness; Conditions at infinity.

Riassunto. — Sul problema di Cauchy per una classe di equazioni paraboliche con densità variabile. Si
studia la buona posizione del problema di Cauchy per una classe di equazioni paraboliche con densità
variabile. Si ricavano condizioni necessarie e sufficienti per l’esistenza e l’unicità nella classe delle soluzioni
limitate. Se tali condizioni non sono verificate, si danno condizioni sufficienti a garantire la buona posizione
del problema nella classe delle soluzioni limitate che all’infinito soddisfano opportune restrizioni.

1. Introduction

In this paper we investigate existence and uniqueness of nonnegative solutions to the
following Cauchy problem:

(P )
{

ρut = {a[G (u)]x}x in R× (0; T ] =: S

u = u0 in R× {0} :

Here ρ (referred to as density) and a are positive functions of the space variable, u0 is
nonnegative; concerning G , a typical choice is G (u) = um; m ≥ 1. Precise assumptions
will be made in the following (see Section 2).

The motivation of our study comes from the problem:

(1.1)
{

ρ ut = ∆[G (u)] in RN × (0; T ]

u = u0 in RN × {0} ;

which arises in situations of physical interest (see [16]). If ρ and u0 are radially sym-
metric, radially symmetric solutions of (1.1) satisfy the equation:

(1.2) ρ ut =
1

rN−1 {rN−1[G (u)]r}r

(where r := |x |), which is a particular case of the differential equation in (P ).

(*) Pervenuta in forma definitiva all’Accademia il 16 luglio 1998.
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An interesting feature of problem (1.1) is that it can be ill-posed in the set of
bounded solutions, depending on the behaviour of ρ as |x | → ∞ and on the space
dimension N . In fact, it turns out to be well-posed in the class of bounded solutions
for any smooth, positive ρ if N ≤ 2. On the other hand, if N ≥ 3 and ρ → 0
sufficiently fast as |x | → ∞ (depending on N ), some conditions at infinity are needed to
restore well-posedness (see [6-8, 16]). We expect that a similar ill-posedness arises for
problem (P ), depending on the behaviour of both ρ and a as |x | → ∞.

It is well known that the Cauchy problem for linear parabolic equations is ill-posed,
if the coefficients of the equation do not satisfy suitable growth conditions as |x | → ∞
(e.g., see [15]). After the pioneering papers by Holmgren [14], Täcklind [25], Tikhonov
[26] and Widder [27] concerning the classes of well-posedness for the heat equation,
the same question was raised for general parabolic equations and systems by Petrowsky
(see [20]). Several results obtained in this direction are accounted for in [17] (see also
[1, 4, 5, 11, 15, 19, 21, 23, 24, 28]). Results concerning existence, uniqueness and
smoothing properties of solutions to parabolic equations with unbounded coefficients
in RN have been recently obtained in [18].

As it is known, probability methods are successfully applied to investigate linear
partial differential equations. For the present case, interesting results concerning problem
(P ) with G (u) = u have been obtained in the framework of the probabilistic theory of
diffusion processes (see [9]; see also [10, 12, 13, 22]).

In this paper we prove necessary and sufficient conditions for the well-posedness
of problem (P ) in the class of bounded solutions (see Corollary 2.1). When these
conditions are not satisfied, the lack of uniqueness in this class is established by proving
existence in some more restricted class of solutions to (P ). Such a class is defined as
consisting of bounded solutions of (P ), which satisfy some additional conditions, namely

∫ T

0
G (u(x; t )) dt → 0 as |x | → ∞ :

A constraint like the one above can be regarded as a condition at infinity, which is needed
to restore the well-posedness of the Cauchy problem (P ).

The conditions we give for the well-posedness of (P ) (either in the class of bounded
solutions or in some more restricted class) depend on the behaviour as |x | → ∞ of
solutions both to the ordinary differential equation

(1.3) (ay ′)′ = −ρ in R

and to the associated homogeneous differential equation, namely:

(1.4) (a y ′)′ = 0 in R :

Our conditions generalize those given in [9] for (P ) in the linear case G (u) = u
(see Remark 2.1); they also suggest possible extensions of the present results to space
dimension N > 1 (in this respect, see Section 6 for a discussion of the case with radial
symmetry).
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2. Mathematical framework and results

The following assumption will be made throughout the paper:

(H0)





(i) ρ ∈ C (R); a ∈ C 1(R); ρ > 0; a > 0 ;

(ii) G ∈ C 1([0;∞)) ∩ C 2+σ((0;∞)) ;

G (0) = 0; G ′(s) > 0 forany s > 0 ;

G ′ increasing in (0; δ) if G ′(0) = 0 ;

(iii) u0 ∈ L∞(R) ∩ C (R); u0 ≥ 0 :

By a weak solution of problem (P ) we mean a function u = u(x; t ) continuous and
nonnegative in S such that:

(2.1)

∫ τ

0

∫ x2

x1

{ρ u ψt + G (u) [aψx ]x} dx dt =

∫ x2

x1

ρ[u(x; τ )ψ(x; τ ) − u0(x)ψ(x; 0)] dx +

+

∫ τ

0
[a(x2)G (u(x2; t ))ψx (x2; t ) − a(x1)G (u(x1; t ))ψx (x1; t )] dt

for any bounded rectangle V := (x1; x2)×(0; τ ) ⊆ S and any ψ ∈ C 2;1(V );ψ ≥ 0 such
that ψ(x1; t ) = ψ(x2; t ) = 0 for any t ∈ [0; τ ]. Weak supersolutions (subsolutions) of
(P ) are defined replacing “=” by “≤” (“≥”, respectively) in (2.1).

In the following we only consider weak solutions and super-, subsolutions.

Denote by B the set of bounded solutions of problem (P ). Set also:

BZ :=

{
u ∈ B |

∫ T

0
G (u(x; t )) dt −→

|x|→∞
0

}
:

Concerning existence of solutions of problem (P ), the following result will be proved.

Theorem 2.1. (i) There exists a solution u ∈ B of problem (P ).

(ii) Let any solution of equation (1:3) be bounded in R. Then there exists a solution u ∈ BZ
of problem (P ).

Concerning uniqueness in the above classes, the following result holds.

Theorem 2.2. (i) Let there exist a solution y of equation (1:3) such that |y| → ∞ as
|x | → ∞. Then there exists at most one solution u ∈ B of problem (P ).

(ii) There exists at most one solution u ∈ BZ of problem (P ).

Similar results hold if we allow a different behaviour of solutions of (P ) as x → ∞
or as x → −∞. In fact, define:

BZ+ :=

{
u ∈ B |

∫ T

0
G (u(x; t )) dt −→

x→∞
0

}
;

BZ− :=

{
u ∈ B |

∫ T

0
G (u(x; t ))dt −→

x→−∞
0

}
:
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The following existence result can be proved.

Theorem 2.3. (i) Suppose that for any solution y of equation (1:3) there holds :

lim
x→∞

|y| < ∞:

Then there exists a solution u ∈ BZ+ of problem (P ).

(ii) Suppose that for any solution y of equation (1:3) there holds :

lim
x→−∞

|y| < ∞:

Then there exists a solution u ∈ BZ− of problem (P ).

Concerning uniqueness in the classes BZ+, BZ−, the following result holds.

Theorem 2.4. (i) Suppose that for any solution y of equation (1:3) there holds :

lim
x→∞

|y| < ∞:

Moreover, let there exist a solution of (1:3) such that

lim
x→−∞

|y| = ∞:

Then there exists at most one solution u ∈ BZ+ of problem (P ).

(ii) Suppose that for any solution y of equation (1:3) there holds :

lim
x→−∞

|y| < ∞:

Moreover, let there exist a solution of (1:3) such that

lim
x→∞

|y| = ∞:

Then there exists at most one solution u ∈ BZ− of problem (P ).

In connection with the above statements, let us notice that any solution of (1.3)
has a limit if either x → ∞ or x → −∞. Also observe that the existence of solutions
of problem (P ) in any class BZ, BZ

+
, BZ− (for any initial data satisfying (H )-(iii))

implies nonuniqueness in the class B. Using this remark the following result can be
proved.

Theorem 2.5. Let there exist a solution of equation (1:3) bounded from below. Then the
solution of problem (P ) in the class B is not unique.

Corollary 2.1. The following statements are equivalent :

(i) there exists a solution y of equation (1:3) such that |y| → ∞ as |x | → ∞ ;

(ii) there exists only one solution u ∈ B of problem (P ).
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Remark 2.1. Since the solutions of equation (1.3) are explicitly known, assumptions
concerning their behaviour at |x | = ∞ may be formulated in terms of the following
integrals:

I +

ρ :=
∫ ∞

0
[a(ξ)]−1

∫ ξ

0
ρ(η) dη d ξ ;

I −
ρ :=

∫ 0

−∞
[a(ξ)]−1

∫ 0

ξ

ρ(η) dη d ξ:

For instance, since

y
+

(x) := −
∫ x

0
[a(ξ)]−1

∫ ξ

0
ρ(η) dη d ξ

is a solution of (1.3), the integral I +

ρ
is bounded if any solution of (1.3) converges to

a finite limit as x → ∞; similarly for I −
ρ . There is a similar connection between the

integrals:

I +
a :=

∫ ∞

0
[a(ξ)]−1 d ξ ;

I −
a :=

∫ 0

−∞
[a(ξ)]−1 d ξ

and the solutions of the homogeneous differential equation (1.4).

As it is easily seen, there holds:

(2.2)
{

I +
ρ < ∞ ⇒ I +

a < ∞ ;

I −
ρ < ∞ ⇒ I −

a < ∞ :

3. Proof of existence results

Let us prove Theorem 2.1.

Proof of Theorem 2.1. (i) For any R > 0 consider the problem:

(P )R





ρut = {a[G (u)]x}x in (−R; R) × (0; T ] =: Q R

u = 0 in {−R; R} × (0; T ]

u = u0 in (−R; R) × {0} ;

where u0 ≥ 0.
By a solution of (P )R we mean any continuous, nonnegative function u in Q R such

that equality (2.1) holds in any rectangle V with V ⊆ Q R and moreover u(−R; t ) =

= u(R; t ) = 0 for any t ∈ (0; T ]. Subsolutions and supersolutions of (P )R are simi-
larly defined. Existence, uniqueness and comparison results for (P )R can be proved as
in [2, 3].

Denote by uR the unique solution of problem (P )R . By comparison we have

(3.1) 0 ≤ uR ≤ ‖u0‖∞ =: M in Q R :
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Let R → ∞. By usual arguments a sequence {uRn
} exists, which converges uniformly

in any bounded subset of S to a solution of problem (P ), namely

(3.2) u := lim
Rn→∞

u
Rn

:

Since uR ≥ 0 for any R , by construction there holds

0 ≤ u ≤ M in S :

This proves the claim.
(ii) Consider the solution u ∈ B of problem (P ) constructed in (i) above. Let us

prove that u ∈ BZ if I −
ρ < ∞, I +

ρ
< ∞.

Set

(3.3) z0(x) := C0

∫ ∞

x

[a(ξ)]−1
∫ ξ

1
ρ(η) dη d ξ (x ≥ 1) ;

where

C0 := max

{
M;

G (M ) T∫∞
1 [a(ξ)]−1 ∫ ξ

1 ρ(η) dη d ξ

}
:

Since by assumption I +

ρ
< ∞, the function z0 tends to zero as x → ∞. Moreover, it is

a supersolution of the problem:

(3.4)
{

(a v′)′ = −Mρ in (1; R)

v(1) = G (M ) T ; v(R) = 0;

where R > 1.
Set

vR (x; t ) :=
∫ t

0
G (uR (x; τ )) d τ ((x; t ) ∈ Q R )

(uR being the solution of problem (P )R ) and

v(x; t ) :=
∫ t

0
G (u(x; τ )) d τ ((x; t ) ∈ S ):

Since the convergence (3.2) is uniform in any compact domain, we have

(3.5) lim
Rn→∞

v
Rn

= v in S :

By inequality (3.1) there holds

0 ≤ vR ≤ G (M ) T in Q R :

From the first equation in (P )R we obtain:

(3.6) [a (vR )x ]x = ρu
R
− ρu0 ≥ −Mρ in Q R

due to (3.1), the above inequality being satisfied in the weak sense.

Hence the function v
R

is a subsolution of problem (3.4) for any fixed t ∈ (0; T ).
It follows that

(3.7) 0 ≤ vR (x; t ) ≤ z0(x) for any (x; t ) ∈ (1; R) × (0; T ) :
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Passing to the limit as R → ∞ in (3.7) we obtain:

0 ≤ v(x; t ) ≤ z0(x) for any (x; t ) ∈ (1;∞) × (0; T ) :

Since the function z0 tends to zero as x → ∞, we conclude that

lim
x→∞

∫ T

0
G (u(x; t )) dt = 0 :

Due to the assumption I −
ρ < ∞, it is similarly proved that

lim
x→−∞

∫ T

0
G (u(x; t )) dt = 0 ;

hence the conclusion follows.

Remark 3.1. Observe that the solution constructed in the proof of Theorem 2.1 is
minimal among all nonnegative, nontrivial solutions of problem (P ).

The proof of Theorem 2.3 is similar to (ii) above, thus we omit it.

4. Proof of uniqueness results

Let u be any solution of problem (P ) in the class B; denote by u the minimal
solution of (P ) in this class (see Remark 3.1). Then

u − u ≥ 0 in S ;

the conclusion of Theorem 2.2 will follow if we prove that

u = u in S :

For this purpose it suffices to prove the equality

(4.1)
∫ T

0

∫

R
[G (u) − G (u)]F dx dt = 0

for any test function F = F (x) ∈ C ∞
0 (R), F ≥ 0, as it is easily seen.

Without loss of generality we can assume supp F ⊆ (−1; 1). Consider the solution
of the problem:

(4.2)
{

(aψ′)′ = −F in (−R; R)

ψ(−R) = ψ(R) = 0 ;

where R > 1.

From (P ) we obtain:
{

ρ(u − u)t = {a[G (u) − G (u)]x}x in S

u − u = 0 in R× {0} :
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Using equality (2.1) with x1 = −R , x2 = R , and ψ given by (4.2), we obtain:

(4.3)

∫ R

−R

ρ[u(x; τ ) − u(x; τ )]ψ dx +

∫ τ

0

∫ R

−R

[G (u) − G (u)] F dx dt =

= −
∫ τ

0
[a{G (u) − G (u)}ψ′]R

−R dt :

Since F ≥ 0, ψ ≥ 0 (see Lemma 4.1 below) and u ≥ u, from the above equality
with τ = T we obtain:

∫ T

0

∫

R
[G (u) − G (u)] F dx dt ≤ lim

R→∞

∣∣∣∣∣

∫ T

0
[a{G (u) − G (u)}ψ′]R

−R dt

∣∣∣∣∣ :

Hence the equality (4.1) will follow, if we prove that

(4.4) lim
R→∞

∣∣∣∣∣

∫ T

0

[
a{G (u) − G (u)}ψ′]R

−R
dt

∣∣∣∣∣ = 0 :

To this purpose we need some properties of the solution of problem (4.2). According
to Remark 2.1, they are related to properties of the integrals I +

ρ
, I −

ρ and I +
a , I −

a .

Set

H (x) :=
∫ x

−R

F (ξ) d ξ (x ∈ (−R; R));

H0 :=
∫ 1

−1
F (ξ) d ξ :

Since supp F ⊆ (−1; 1) and R > 1, we have:

(4.5)





(i) H = 0 in (−R;−1) ;

(ii) 0 ≤ H ≤ H0 in [−1; 1] ;

(iii) H = H0 in (1; R) :

The solution of problem (4.2) is

(4.6) ψ(x) ≡ ψR (x) :=
∫ x

−R

{cR − H (ξ)}[a(ξ)]−1 d ξ (x ∈ (−R; R));

where

(4.7) cR :=

∫ R

−R
H (ξ) [a(ξ)]−1 d ξ
∫ R

−R
[a(ξ)]−1 d ξ

:

We always set ψ ≡ ψR in the sequel. Let us note the following result.

Lemma 4.1. Let ψ be the function (4.6). Then :

(i) 0 ≤ ψ ≤ H0

∫ R

−R

[a(ξ)]−1 d ξ in [−R; R] ;
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(ii) for any R > 0

(4.8) max{a(−R)|ψ′(−R)|; a(R)|ψ′(R)|} ≤ H0 :

Proof. (i) Since F ≥ 0, the nonnegativity of ψ follows by the maximum principle.
By (4.5) and (4.7) we also have

(4.9) |cR − H | ≤ H0 in [−R; R] ;

in particular, the second inequality in (i) follows.
(ii) Integrating the first equation in (4.2) we have:

(4.10) a(R)ψ′(R) − a(−R)ψ′(−R) = −H0 :

Since ψ′(R) ≤ 0;ψ′(−R) ≥ 0, the conclusion follows.

Observe that by (4.5) and (4.7) we have:

(4.11) cR =

∫ 1
−1 H (ξ)[a(ξ)]−1 d ξ + H0

∫ R

1 [a(ξ)]−1 d ξ
∫ 1
−R

[a(ξ)]−1 d ξ +
∫ R

1 [a(ξ)]−1 d ξ
:

It follows from (4.11) that the limit

(4.12) c := lim
R→∞

cR

exists; moreover, there holds:

(4.13)





(i) I −
a < ∞; I +

a < ∞ ⇒ c ∈ (0; H0);

(ii) I −
a = ∞; I +

a < ∞ ⇒ c = 0;

(iii) I −
a < ∞; I +

a = ∞ ⇒ c = H0 :

Lemma 4.2. Let ψ be the function (4.6).

(i) Let I +

a < ∞, I +

ρ = ∞. Then for any fixed R1 > 0

(4.14)
∫ R

R1

ρψ dx → ∞ as R → ∞ :

(ii) Let I −
a < ∞, I −

ρ = ∞. Then for any fixed R1 > 0

(4.15)
∫ −R1

−R

ρψ dx → ∞ as R → ∞ :

Proof. By (4.5)-(4.6) we have:

(4.16) ψ(x) =

{
cR

∫ x

−R
[a(ξ)]−1 d ξ if x ∈ (−R;−1)

(H0 − cR )
∫ R

x
[a(ξ)]−1 d ξ if x ∈ (1; R) :

It suffices to consider R1 ≥ 1. From the second equality in (4.16) we obtain:
∫ R

R1

ρ(x)ψ(x) dx = (H0 − cR )
∫ R

R1

ρ(x)
∫ R

x

[a(ξ)]−1 d ξ dx =

= (H0 − cR )
∫ R

R1

[a(ξ)]−1
∫ ξ

R1

ρ(x) dx d ξ → ∞ as R → ∞ :
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In fact,

H0 − cR → H0 − c > 0 as R → ∞

by (4.13) (i)-(ii). Moreover,
∫ R

R1

[a(ξ)]−1
∫ ξ

R1

ρ(x) dx d ξ → ∞ as R → ∞

since I +
a < ∞ and I +

ρ = ∞; this proves (4.16). The proof of (4.15) is similar, using
the first equality in (4.16) and (4.13). Then the conclusion follows.

If any solution of (1.3) is bounded, the same holds for (1.4). Hence to prove
Theorem 2.2 only the following cases must be considered:

(α) there exists a solution y of (1.3) such that |y| → ∞ as |x | → ∞ and any solution
of (1.4) is bounded;

(β) there exists a solution y of (1.3) such that |y| → ∞ as |x | → ∞ and there exist
unbounded solutions of (1.4);

(γ) any solution of (1.3) (hence of (1.4)) is bounded.

The proof of Theorem 2.2 will be given investigating each of the above cases (α)-(γ).
Concerning (α) we can prove the following result.

Proposition 4.1. Let there exists a solution y of (1:3) such that |y| → ∞ as |x | → ∞ ;
moreover, let any solution of (1:4) be bounded. Then there exists at most one solution u ∈ B of
problem (P ).

Remark 4.1. Under the conditions of Proposition 4.1 both integrals I −
ρ ; I +

ρ
are

infinite, while both I −
a and I +

a are finite.

Proof of Proposition 4.1. Define for any x ∈ R

(4.17) W (x) :=
∫ T

0
{G (u(x; τ )) − G (u(x; τ ))} d τ ;

observe that

(4.18) W (x) ≤ L

∫ T

0
[u(x; τ ) − u(x; τ )] d τ ;

where

L := max
u∈[0;M ]

G ′(u) :

Let us first prove that

(4.19) lim
x→∞

W (x) = 0 ; lim
x→−∞

W (x) = 0 :

By absurd, suppose that

lim
x→∞

W (x) = γ > 0 :
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Then there exists R1 > 1 such that

(4.20) W (x) ≥ γ=2 for any x > R1 :

Let (4.20) hold. Observe that by (4.3)

(4.21)

∫ T

0

∫ R

−R

ρ[u(x; τ ) − u(x; τ )]ψ dx d τ ≤

≤
∣∣∣∣∣

∫ T

0

∫ τ

0

[
a{G (u) − G (u)}ψ′]R

−R
dt d τ

∣∣∣∣∣ ≤ 2H0G (M ) T 2

for any R > 1; here use of inequality (4.8) has been made. On the other hand, from
(4.18) and (4.20) we obtain:

(4.22)
∫ T

0

∫ R

−R

ρ[u(x; τ ) − u(x; τ )]ψ dx d τ ≥ 1
L

∫ R

R1

ρψW dx ≥ γ

2L

∫ R

R1

ρψ dx

(R > R1). Then by (4.21)-(4.22) there holds:
∫ R

R1

ρψ dx ≤ 4
γ

H0G (M )LT 2

for any R > R1, in contrast with Lemma 4.2(i). The second equality in (4.19) is proved
similarly; hence the claim follows.

According to (4.19), there exist two sequences R ′
n → ∞; R ′′

n → ∞ such that

(4.23) lim
R′′

n →∞
W (R ′′

n ) = 0 = lim
R′

n→∞
W (−R ′

n) :

Let ψ ≡ ψn be the solution of the problem
{

(aψ′)′ = −F in (−R ′
n; R ′′

n )

ψ(−R ′
n) = ψ(R ′′

n ) = 0 :

A result analogous to Lemma 4.1(ii) holds for ψ defined above; hence we have
∣∣∣∣∣

∫ T

0

[
a{G (u) − G (u)}ψ′]R′′

n

−R′
n

dt

∣∣∣∣∣ ≤ H0{W (−R ′
n) + W (R ′′

n )}:

Repeating the argument used for (4.4) and using (4.23) we obtain the equality (4.1);
then the conclusion follows.

Let us now turn to case (β).

Proposition 4.2. Let there exists a solution y of (1:3) such that |y| → ∞ as |x | → ∞ ;
moreover, let there exist unbounded solutions of (1:4). Then there exists at most one solution
u ∈ B of problem (P ).

Remark 4.2. Under the conditions of Proposition 4.2 either

(a) I −
a = ∞, I +

a < ∞, or

(b) I −
a < ∞, I +

a = ∞ or
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(c) I −
a = ∞, I +

a = ∞ .

In all cases both integrals I −
ρ , I +

ρ
are infinite.

To prove the above proposition we show that equality (4.4) holds (with u, u, ψ as
above). For this purpose we need some additional properties of the function ψ.

Lemma 4.3. (i) Let I −
a = ∞, I +

a < ∞. Then

lim
R→∞

a(−R)ψ′(−R) = 0 :

(ii) Let I −
a < ∞, I +

a = ∞. Then

lim
R→∞

a(R)ψ′(R) = 0 :

Proof. (i) By (4.5)-(i) and (4.6) we have

a(−R)ψ′(−R) = cR for any R > 1 :

Then the claim follows by (4.13)-(ii).

(ii) By (4.5)-(iii) and (4.10)

a(R)ψ′(R) = cR − H0 for any R > 1 :

Hence the conclusion by (4.13)-(iii).

Lemma 4.4. Let I −
a = ∞, I +

a = ∞ . Then for any R1 > 1

(4.24) ψ → ∞ uniformly in [−R1;−1] ∪ [1; R1] as R → ∞ :

Proof. By the second equality in (4.16) and (4.11) we have:

ψ(R1) =
H0

∫ 1
−R

[a(ξ)]−1 d ξ −
∫ 1
−1 H (ξ)[a(ξ)]−1 d ξ

∫ 1
−R

[a(ξ)]−1 d ξ +
∫ R

1 [a(ξ)]−1 d ξ

∫ R

R1

[a(ξ)]−1 d ξ ;

whence

ψ(R1) → ∞ as R → ∞ :

Since ψ is decreasing in (1; R1), the divergence of ψ in this interval follows immediately.
The proof for the interval (−R1;−1) is similar, thus the conclusion follows.

Proof of Proposition 4.2. (a) Let I −
a = ∞ and I +

a < ∞, I +

ρ
= ∞. From (4.18) we

obtain:

(4.25)

lim
R→∞

∣∣∣∣∣

∫ T

0

[
a{G (u) − G (u)}ψ′]R

−R
dt

∣∣∣∣∣ ≤

≤ lim
R→∞

{W (R)a(R)
∣∣ψ′(R)

∣∣ + W (−R)a(−R)
∣∣ψ′(−R)

∣∣} ≤

≤ H0 lim
R→∞

W (R) + 2G (M ) T lim
R→∞

a(−R)|ψ′(−R)| = H0 lim
R→∞

W (R)
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due to inequality (4.8) and Lemma 4.3(i). Since I +

a < ∞ and I +
ρ

= ∞, we may use
Lemma 4.2(i) as in the proof of Proposition 4.1 (see (4.19)) to prove that

lim
R→∞

W (R) = 0 :

Then by (4.25) the claim follows.

(b) Let I −
a < ∞, I −

ρ = ∞ and I +
a = ∞. The proof is the same as in (a), using

inequality (4.8), Lemma 4.3(ii) and the following statement:

lim
R→∞

W (−R) = 0 if I −
a < ∞; I −

ρ = ∞ :

The details are omitted.

(c) Let I −
a = ∞, I +

a = ∞. The proof in this case is the same as for Proposition 4.1,
since Lemma 4.4 applies and the statement (4.24) implies (4.14)-(4.15). Then the
conclusion follows as before.

Concerning case (γ) we have the following result.

Proposition 4.3. Let any solution of (1:3) be bounded. Then there exists only one solution
u ∈ BZ of problem (P ).

Proof. Due to Theorem 2.1(ii) the class BZ is nonempty. Let u be any solution
of problem (P ) in the class BZ, u the minimal solution of (P ) in this class (see the
proof of Theorem 2.1(ii) and Remark 3.1). By inequality (4.8) and the definition of
class BZ there holds:

lim
R→∞

∣∣∣∣∣

∫ T

0
[a{G (u) − G (u)}ψ′]R

−R
dt

∣∣∣∣∣ ≤ H0 lim
R→∞

{W (R) + W (−R)} = 0 ;

then by (4.4) the conclusion follows.

Now the proof of Theorem 2.2 follows by Propositions 4.1-4.3. The same arguments
can be used to prove Theorem 2.4.

Proof of Theorem 2.4. We only prove the statement (i), the proof of (ii) being
similar.

It follows from the assumptions that I −
ρ

= ∞, I +
ρ

< ∞. Let us consider the
following cases:

(a) I −
a = ∞, I +

ρ < ∞;

(b) I −
a < ∞, I −

ρ = ∞ and I +
ρ

< ∞.

(a) Let W be defined by (4.17), where u is any solution of (P ) in the class BZ
+

and u denotes the minimal solution of (P ) in the same class (see Remark 3.1). By
definition of class BZ

+
there holds:

(4.26) lim
R→∞

W (R) = 0 :
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From (4.18) we obtain:

lim
R→∞

∣∣∣∣∣

∫ T

0
[a{G (u)−G (u)}ψ′]R

−R dt

∣∣∣∣∣≤H0 lim
R→∞

W (R) + 2G (M ) T lim
R→∞

a(−R)|ψ′(−R)|=0;

due to (4.26) and Lemma 4.3(i). Then the equality (4.4) follows, whence the result in
this case.

(b) We have:

lim
R→∞

∣∣∣∣∣

∫ T

0
[a{G (u)−G (u)}ψ′]R

−R
dt

∣∣∣∣∣≤H0{ lim
R→∞

W (−R) + lim
R→∞

W (R)}=H0 lim
R→∞

W (−R);

due to (4.26). As in the proof of (4.19), using Lemma 4.2(ii) it is shown that the right-
hand side of the above inequality is zero; then by (4.4) the conclusion follows.

Let us now prove Theorem 2.5.

Proof of Theorem 2.5. Since no solution of equation (1.3) has a local minimum,
either

inf
x∈R

y(x) = lim
x→∞

y(x);
or

inf
x∈R

y(x) = lim
x→−∞

y(x):

Since y is bounded from below, at least one of the above limits is finite. Suppose for
instance:

lim
x→∞

y(x) = l ∈ R;

then y1 := C (y − l ) (with C > 0 suitably chosen) can be used as in the proof of
Theorem 2.1(ii) to prove that there exists a solution of problem (P ) in the class BZ+.
Similarly, if limx→−∞ y(x) is finite, there exists a solution of problem (P ) in the class
BZ−. Hence the conclusion follows.

Let us finally prove Corollary 2.1.

Proof of Corollary 2.1. (i) ⇒ (ii): follows by Theorems 2.1(i) and 2.2(i).

(ii) ⇒ (i): if I +
ρ were finite, any solution of equation (1.3) would be bounded as

x → ∞; hence by Theorem 2.3(i) there would exist a solution of (P ) in the class BZ+.
However, this contradicts the uniqueness in the class B. Similarly it is proved that
I −
ρ = ∞; hence the conclusion follows.

5. Sufficient conditions

The following results can be proved.

Theorem 5.1. Let

(H 1) lim
|x|→∞

x
a′(x)
a(x)

< 1 :

Then there exists only one solution u ∈ B of problem (P ).
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Theorem 5.2. Let the following assumptions be satisfied :

(H 2) lim
|x|→∞

x
a′(x)
a(x)

> 1 ;

(H 3) lim
|x|→∞

a(x) a′′(x)
[a′(x)]2 > 0 ;

(H 4)
ρ

a′ ∈ L1(R) :

Then there exists only one solution u ∈ BZ of problem (P ).

Similar results hold for the classes BZ+, BZ−. To prove Theorems 5.1-5.2, let us
observe preliminarly that:

(a) if (H1) holds, then I −
a = ∞, I +

a = ∞ ;

(b) if (H2) holds, then I −
a < ∞, I +

a < ∞

(the elementary proofs of these statements are omitted). We also need the following
lemma.

Lemma 5.1. Let assumptions (H2)-(H4) be satisfied. Then I −
ρ < ∞, I +

ρ
< ∞.

Proof. It is easily seen that

(5.1) I +

ρ =

∫ ∞

0
ρ(η)

∫ ∞

η

[a(ξ)]−1 d ξ dη :

By statement (b) above
∫ ∞

x

[a(ξ)]−1 d ξ → 0 as x → ∞ ;

moreover, the assumption (H2) implies

1
a′(x)

→ 0 as x → ∞ :

Set

γ := lim
x→∞

a(x) a′′(x)
[a′(x)]2 ;

by assumption (H3)+ and de l’Hôpital’s rule we have:

lim
x→∞

∫∞
x

[a(ξ)]−1 d ξ
1

a′(x)

= lim
x→∞

1
a(x) a′′(x)
[a′(x)]2

=
1
γ

:

Hence there exists L > 0 such that
∫ ∞

x

[a(ξ)]−1 d ξ ≤ 2
γ

1
a′(x)

for any x > L :
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Then from (5.1) we obtain:

I +
ρ

≤
∫ L

0
ρ(η)

∫ ∞

η

[a(ξ)]−1 d ξ dη +
2
γ

∫ ∞

L

ρ(η)
a′(η)

dη < ∞ ;

due to assumption (H4). The proof that I −
ρ

< ∞ is similar, thus it is omitted.

Let us now prove Theorems 5.1 and 5.2.

Proof of Theorem 5.1. Due to the above statement (a) and to (2.2), there exist
unbounded solutions of both equations (1.3)-(1.4) as |x | → ∞. Then uniqueness in
the class B follows by Proposition 4.2, while existence in the same class is given by
Theorem 2.1(i); hence the conclusion follows.

Proof of Theorem 5.2. Due to Lemma 5.1 and to (2.2), any solution of (1.3), thus
of (1.4) is bounded in R. Then the conclusion follows by Proposition 4.3.

In connection with the above results, an interesting relation between problem (P )
and the first order hyperbolic Cauchy problem:

(HP )
{

ρut = a′ (G (u))x in R× (0; T )

u = u0 in R× {0}
can be pointed out. If the function ρ

a′ is integrable, introducing the new variable

y :=
∫

ρ

a′ dx

reduces (HP ) to an initial value problem on a bounded domain. The latter in general is
not well posed, unless boundary conditions are given, which in the original variable read
as conditions at infinity. For instance, if (H2) holds, then x a′(x) > 0 for any |x | large
enough and conditions at infinity are needed to make (HP ) well posed. According to
Theorem 5.2 the situation for (P ) is analogous, provided that condition (H3) is satisfied.

6. Radial case

In this section we study nonnegative solutions of the Cauchy problem:

(PN )
{

ρut = div{a ∇[G (u)]} in RN × (0; T ]

u = u0 in RN × {0}
(N ≥ 1), assuming that the functions ρ, a, u0 are radially symmetric. We suppose that
(H0) (with obvious modifications concerning ρ, a, u0) is satisfied.

We always consider weak solutions of (PN ) in the following. As before, we denote
by B the set of bounded solutions of problem (PN ). Now we set:

BZ :=

{
u ∈ B |

∫ T

0
max
|x|=r

G (u(x; t )) dt −→
r→∞

0

}
:

Observe that solutions of (PN ) with radial symmetry satisfy the equation:

(6.1) ρ ut =
1

rN−1 {a rN−1[G (u)]r}r
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(where r := |x |; x ∈ RN ), which reduces to (1.2) when a ≡ 1.

The counterparts of equations (1.3)-(1.4) are

(6.2) (a rN−1 y ′)′ = −ρrN−1 in (0;∞) ;

respectively

(6.3) (a rN−1 y ′)′ = 0 in (0;∞) :

As in the case N = 1, assumptions concerning the behaviour at r = ∞ of solutions to
(6.2)-(6.3) can be formulated in terms of the following integrals:

Ia;N :=
∫ ∞

0
[a(r)]−1r−(N−1) dr ;

respectively

Iρ;N :=
∫ ∞

0
[a(r)]−1r−(N−1)

∫ r

0
ρ(s)sN−1 ds dr ;

these reduce to I +
a , I +

ρ in the case N = 1. Observe that as in (2.2):

Iρ;N < ∞ ⇒ Ia;N < ∞ :

The following results are similar to those valid if N = 1.

Theorem 6.1. (i) There exists a radial solution u ∈ B of problem (PN ).
(ii) Let any solution of equation (6:2) be bounded in (0;∞). Then there exists a radial

solution u ∈ BZ of problem (PN ).

Theorem 6.2. (i) Let there exists a solution y of equation (6:2) such that |y| → ∞ as
r → ∞. Then there exists at most one solution u ∈ B of problem (PN ).

(ii) There exists at most one solution u ∈ BZ of problem (PN ).

Corollary 6.1. The following statements are equivalent :

(i) there exists a solution y of equation (6:2) such that |y| → ∞ as r → ∞ ;

(ii) there exists only one solution u ∈ B of problem (PN ).

Theorem 6.3. Let there exists a solution of equation (6:2) bounded from below. Then the
solution of problem (PN ) in the class B is not unique.

The proofs are also similar to those given in Sections 3 and 4, hence they are
omitted.

Let us consider the following assumptions, analogous to those introduced in Sec-
tion 5:

(R1) lim
r→∞

r
a′(r)
a(r)

< 2 − N ;
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lim
r→∞

r
a′(r)
a(r)

> 2 − N ;(R2)

lim
r→∞

(a′r)2 + (N − 1)a2 − a′′ar2

[a′r + (N − 1)a]2 < 1 ;(R3)

rρ
a′r + (N − 1)a

∈ L1(0;∞) :(R4)

The following results are proved like Theorems 5.1, 5.2.

Theorem 6.4. Let (R1) be satisfied. Then there exists only one solution u ∈ B of problem
(PN ).

Theorem 6.5. Let (R2)-(R4) be satisfied. Then there exists only one solution u ∈ BZ of
problem (PN ).

Let us finally discuss some examples on the strength of the above results.

Example 6.1. Consider problem (PN ) with ρ ≡ 1, a ≡ 1. It is easily seen that
I
ρ;N = ∞ for any N ≥ 1; hence there exists a solution of (6.2), which diverges as

r → ∞. According to Corollary 6.1 there is a unique solution of problem (PN ) in the
class B for any N ≥ 1, in agreement with previous results.

Example 6.2. Let a ≡ 1. In this case both conditions (R2)-(R3) reduce to the
inequality N > 2, while (R4) reads:

(6.4)
∫ ∞

0
r ρ(r) dr < ∞ :

If these conditions are satisfied, Theorem 6.5 applies, in agreement with the results in
[8]. Observe that conditions (R2)-(R3) are not satisfied if N = 2; in fact, in this case
there is uniqueness in the class B (see [6] and the following example).

Example 6.3. Let
a′(r)
a(r)

= − λ

rα (α;λ > 0) :

Then the assumption (R1) is satisfied if either

α < 1 and λ > 0

or

α = 1 and λ > N − 2 :

In both cases Theorem 6.4 holds; hence problem (PN ) with a coefficient a satisfying
either condition above is well posed in the class B. In particular, this is the case for
N ≥ 3, at variance from the case a ≡ 1 if (6.4) holds.
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