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Topologia. — On a problem in effective knot theory. Nota (*) di Stefano Galatolo,
presentata dal Corrisp. E. Arbarello.

Abstract. — The following problem is investigated: «Find an elementary function F (n) : Z → Z such
that if Γ is a knot diagram with n crossings and the corresponding knot is trivial, then there is a sequence
of Reidemeister moves that proves triviality such that at each step we have less than F (n) crossings». The
problem is shown to be equivalent to a problem posed by D. Welsh in [7] and solved by geometrical
techniques (normal surfaces).

Key words: Knots; Complexities; Normal surfaces.

Riassunto. — Su un problema di teoria effettiva dei nodi. Viene analizzato il seguente problema: «Trovare
una funzione elementare F (n) : Z → Z tale che se Γ è un diagramma del nodo banale con n incroci allora
esiste una successione di mosse di Reidemeister che portano il diagramma nel diagramma banale tale che ad
ogni passo si abbiano non più di F (n) incroci». Il Problema è dimostrato essere equivalente ad un problema
posto da D. Welsh in [7] e risolto con tecniche geometriche (superfici normali).

1. Equivalent problems

Working on knots and Reidemeister moves, two problems arise naturally:

Problem 1 [7]. Find a function f (n) : Z → Z such that if Γ is a diagram with n crossings
and representing the trivial knot then there is a sequence of no more than f (n) Reidemeister moves
which demonstrates the equivalence.

Problem 2. Find a function F (n) : Z → Z such that if Γ is a knot diagram with n
crossings and the corresponding knot is trivial then there is a sequence of Reidemeister moves that
proves triviality such that at each step we have less than F (n) crossings.

Let us clarify the meaning of «find a function»: the existence of a function is a
more or less trivial fact. The existence of a recursive function is a consequence of
Haken’s algorithm to solve knots; the goal is to find an elementary function, so that
we can estimate the complexity of the problem of solving knots and the complexity
of the resulting isotopies. Our problems are not trivial, the following fig. 1 [1] shows
a diagram such that each sequence of moves leading the diagram to the trivial one,
temporarily increases the number of crossings.

The diagram of the figure is analogous to a local minimum of the functional «number
of crossings» (in a space of diagrams). From this point of view the function f is the
height of the lowest critical point we need to visit in order to go from a given point
to the absolute minimum (the circle) of this functional. It is easy to prove:

(*) Pervenuta in forma definitiva all’Accademia il 24 giugno 1998.
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Fig. 1.

Theorem 1.1. Problem 1 is equivalent to Problem 2 (1).

To solve Problems 1 and 2 we will use a similar problem posed in another framework
of knot complexity.

2. Polygonal knots

For a polygonal knot γ in R3 we define the number of edges of γ as the smallest
number m such that γ is made of m segments.

Definition 2.1. A n-rigid isotopy is a (locally flat ) isotopy Γt : S1 × I → R3 with Γ0 = γ

such that at each instant t of the isotopy, Γt has no more than n edges.

Analogous to Problem 2 in this context is:

Problem 3. Find a function G (n) : Z → Z such that if γ is a knot in R3 with n edges and
γ is isotopically trivial then there is a G (n)-rigid isotopy leading γ to a triangle.

Theorem 2.2. Problem 2 can be reduced to Problem 3 : if we find G (n) solving Problem 3
then, F (n) = G (6n)(G (6n) − 3)=2 is a solution of Problem 2.

Proof (sketch). Suppose we have a knot diagram D with n crossings, the graph
G underlying this diagram may have loops or multiple edges. Adding 2 new vertices

(1) For example we can have these estimates: if we have f (n) then F (n) < 2f (n) + n, if we have F (n)
then f (n) < 22F (n)(log 2F (n)+1).
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for each edge we obtain a graph without loops or multiple edges. Since the graph is
four-valent we will add 4n vertex. Now by Fary’s lemma [2] we know that there exists
an homeomorphism of the plane leading G to a graph with straight edges (6n edges).
This is the projection of a polygonal knot γ in R3 constructed by lifting the appropriate
vertex for each crossing. This knot is trivialized by a G (6n)-rigid isotopy. Perturbing
this isotopy by a family of rotations if necessary, we can suppose that the projection of
the isotopy is a sequence of Reidemeister moves. Since the projection of a knot with
m edges has no more than m(m − 3)=2 crossings, during this isotopy the projection of
γ will have no more than G (6n)(G (6n) − 3)=2 crossings.

To find the solution to Problem 3 we perform a geometrical construction and then
we translate our problem into a problem about 3-manifolds and surfaces.

3. Normal surfaces

Given a P.L. trivial knot γ in R3 with n edges we will construct an associated 3-
manifold M

γ to which we will apply normal surface theory to find a disc spanning the
knot and then estimate the number of faces of the disc.

Roughly speaking Mγ is constructed as follows:
a) put the knot in the interior of a cube;
b) triangulate the cube in such a way that the knot is contained in the 1-skeleton

of the triangulation;
c) consider the second derivative of the triangulation and remove the star around

the knot.
What we get is a triangulated 3-manifold homeomorphic to a 3-disc minus a regular

neighborhood of γ, which has 2 boundary components: a 2-sphere and a torus T .

Notation. In the sequel M
γ will always denote either the specific simplicial complex

given in the above construction or the underlying manifold, it being clear from the
context which object is to be understood.

Proposition 3.1. If the knot has n edges, then the construction can be performed to give a
triangulated manifold with a triangulation made of less than 106n2 3-simplices (2).

Proof (sketch). The proof is elementary, but technical and quite long. We choose a
square face Q of the cube with vertices q1; q2; q3; q4, call π the orthogonal projection
of R3 on the plane containing Q . We can suppose that γ is in general position with
respect to π, then π(γ) is a polygonal curve in Q with double points p1; :::; pk , call
y1; :::; yn the vertices of γ and g1 = π(y1); :::; gn = π(yn) their projection in Q . Let us
also call q′

1; :::; q′
4 the middle points of the four edges of the cube containing q1; :::; q4

but not contained in Q . The first step is to triangulate Q in a way such that
1) the 0-skeleton of the triangulation is the set {q1; :::; q4; p1; :::; pk; g1; :::; gn}

(2) This estimate is not supposed to be sharp, the main purpose of this paper is to show the general
construction leading to the solution of the problems introduced before.
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2) the curve π(γ) is contained in the 1-skeleton of the triangulation.
The key step to prove that such a triangulation is possible is to observe that, if α

is a simple plane P.L. curve (i.e. having no double points) with vertices v1; :::; vn then
the interior of α can be triangulated with n − 2 triangles such that the 0-skeleton of
the triangulation is the set {v1; :::; vn}.

From the above observation it is also possible to estimate the number of triangles in
the triangulation of Q : there exists a triangulation of Q satisfying 1) and 2) such that
the number of triangles is less than 18n2. From the triangulation of Q we decompose
the cube in a set of triangular prisms such that the base of each prism is a triangle
of the triangulation. Each prism will be triangulated appropriately, first we decompose
each prism P in three parts: the first part is a prism with its base on Q , the second is
the convex hull of P ∩ (γ ∪ {q′

1; :::; q′
4}), the third is a prism with its base on the face

of the cube which is opposite to Q . The convex hull of P ∩ (γ ∪ {q′
1; :::; q′

4}) can be:
either a prism or a square pyramid or a 3-simplex or a triangle. All these pieces can
be triangulated coherently and such that the knot is contained in the 1-skeleton of the
triangulation, as is suggested in the following figure.

Projection of 

Part of an edge of 

Prisms and convex 
hulls

Some edge of the
triangulation

γ

γ

Fig. 2.

The prisms are decomposed into the union of eight 3-simplices, the pyramids into
two 3-simplices so that in total we can have no more than 432n2 3-simplices. If we
make the second derivative we have no more than 248832n2 3-simplices.

If the knot is trivial there exists a P.L. disc D properly embedded in Mγ with
@D ⊂ T and @D is not boundary of a disc contained in T . Such a disc will be called
an admissible disc. We will show how to evaluate the number of faces for a suitable
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triangulation of such a disc in terms of the number of the 3-simplices of M
γ
. After the

construction we have this problem:

Problem 4. Find a function D(m) such that if m is the number of 3-simplices of M
γ , then

there exists an admissible disc consisting of D(m) triangular plane faces.

Let us explain why the solution to this problem can provide a solution to Problem
3: suppose we have found an admissible disc in M

γ
. Then @D is a curve on T with l

edges (and the number l is not greater than the number 2D(m)). Following a retraction
of the star of γ on γ we see that γ is l -rigid isotopic to @D. At this point we construct
the desired isotopy (to transform the unknot to a triangle) collapsing the triangles of
the disc (and adding a new edge to the knot for each triangle). We can solve the last
problem using normal surface theory.

Definition 3.2. Given a triangulated 3-manifold W we say that a properly embedded P.L.
surface S in W is normal iff :

1) S is in general position with respect to the triangulation ;
2) the intersection S ∩ ∆ of the surface with each 3-simplex ∆ of the triangulation is a

collection Di of discs ;
3) each Di meets the 1-skeleton of the triangulation in 3 or 4 points belonging to distinct

edges. In this case we call Di a combinatorial triangle or combinatorial square respectively.

The discs Di will be called combinatorial faces. They are «like» plane triangles or
squares but until now they are simply P.L. discs and we cannot know how many plane
faces they may have.

Before continuing our construction let us make a review of normal surface theory.
Note that for each 3-simplex of the triangulation there are 4 possible classes of combi-
natorial triangles and 3 possible classes of combinatorial squares: for each 3-simplex we
have 7 possible classes. We can try to indicate a normal surface in W by the list of its
combinatorial faces.

The intersections Di of the surface with a given 3-simplex can be indicated by a list
of 7 natural numbers, that is a point of Z7, so that if the number of 3-simplexes of the
triangulation is m, a surface can be represented by a point of Z7m. More precisely, to a
normal surface S can be associated a combinatorial object which is the list of the classes
of its combinatorial faces in this way: to S corresponds (xij )i=1;:::;7;j=1;:::;m

∈ Z7m, where

xij is the number of discs of S ∩ ∆j belonging to the class i (of the 7 possible classes

of combinatorial triangles and squares). In this way a point of Z7m can be associated
to a surface. We will consider the norm l 1 on Z7m: ||x || =

∑
|xij |. Notice that all

the coordinates of a point associated to a surface are positive and that the number of
combinatorial faces of a surface is the norm of the corresponding point in Z7m.

For the sake of simplicity from now on all the results will be stated for M
γ . Nev-

ertheless we would like to remark that they are true also for a wider class of manifolds.
The following lemma allows us to estimate the number of triangular faces by using

the number of combinatorial faces.
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Lemma 3.3. If S is a normal surface in M
γ

then S is isotopic to a normal surface S ′ such
that S and S ′ induce the same point in Z7m. Furthermore for each 3-simplex ∆ we have a
correspondence between the sets Di = S ∩ ∆ and D′

i = S ′ ∩ ∆ such that :
if Di is a combinatorial triangle then D′

i is a plane triangle, and
if Di is a combinatorial square then D′

i is a combinatorial square made of two plane triangles
with a common edge.

Lemma 3.4. Let δ be a 1-simplex of the 1-skeleton of Mγ . If the surface S intersects δ in
x1; x2; :::; xn and φ is an ambient isotopy in δ moving x1; x2; :::; xn to x ′

1; x ′
2; :::; x ′

n, then
this isotopy can be extended to an ambient isotopy in M with support in a neighborhood of δ

moving S to a surface S ′ which intersects δ in x ′
1; x ′

2; :::; x ′
n.

Combining Lemmas 3.3 and 3.4 we have:

Theorem 3.5. If two normal surfaces S and S ′ induce the same point of Z7m then S is
isotopic to S ′.

Not all the points of Z7m can be realized by an embedded surface. There are some
conditions to be satisfied:

1) S ∩∆j can contain only one class of combinatorial squares (otherwise the surface
would have self intersections).

2) Given two adjacent 3-simplices ∆i; ∆j the classes of ∆i must fit well with those
of ∆j in the following sense: let f be the common face of ∆i and ∆j . In f there are
at most 3 classes of lines allowed on the boundary of the discs Di . The condition is,
for each class lf of lines the number of the discs in ∆i with boundary of class lf must
be equal to the number of discs in ∆j with boundary of class lf .

Looking at this condition in Z7m we have that each class of lines will give us a linear
equation on the xi;j .

Theorem 3.6. Each point of Z7m satisfying conditions 1) and 2) above, can be realized by
an embedded surface.

If x; y ∈ R7m are realizable by normal surfaces, the sum x + y ∈ R7m is not always
realizable: it could happen that x + y does not satisfy condition 1, conversely by
Theorem 3.6 if x; y are realizable and x + y satisfy condition 1 then x + y is realizable
by an (embedded) normal surface. If x and y are realized by surfaces Sx; Sy then if
x + y is realizable (by Sx+y) the surface Sx+y can be constructed by a desingularization
of Sx ∪ Sy . More precisely if Sx ∩ Sy = ∅ then Sx ∪ Sy = Sx+y , else Sx ∪ Sy is (assuming
general position) a singular surface with singularities on lines ∪i{li} = Sx ∩ Sy . For each
line there are two possible desingularizations cutting the surface on li and gluing the
resulting surfaces as in the following figure.

One of the two desingularizations preserves the combinatorial structure of Sx ∪ Sy

(the point in R7m). Desingularizing Sx ∪ Sy in the appropriate way we obtain Sx+y .
Now all the ingredients are ready. We first observe the following two things: con-

dition 2) can be transformed into a linear condition. Points of N7m satisfying condition
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Fig. 3.

2) form a convex unbounded set, that is generated by a finite set, in the sense that these
points are linear combinations with positive integer coefficients of a finite set of points.
By elementary calculations using Cramer’s formula it is possible to estimate the norm
of the generators in terms of the number of simplexes as follows:

Proposition 3.7. There exists a set B of generators of the space of solutions to condition 2)
such that ’x ∈ B; ||x || < 2225m2

.

Finally we can conclude by applying the following theorems:

Theorem 3.8. If there exists an admissible disc D in Mγ then there exists an admissible
normal disc D∗.

The proof uses techniques similar to the ones used to move an incompressible surface
into normal position (see [4, pp. 29, 30; 3, pp. 48-50]).

Since our knot is isotopically trivial an admissible disc exists. Hence we now know
that we can find such a disc in the space of normal surfaces. Furthermore the following
theorem states that an admissible normal disc must belong to any set of generators.

Theorem 3.9. If in M
γ there exists an admissible normal disc D∗ then there is an admissible

normal disc D′ which is irreducible (i.e. D′ can not be written as a sum D′ = S1 + S2 with S1

and S2 non empty normal surfaces) and must therefore be in every set of generators.

This theorem can be proved using essentially the same arguments as in the proof of
Lemma 4.1 in [6].

From Theorems 3.8 and 3.9 we know that an admissible disc must be in any set
of generators, we use Proposition 3.7 to estimate the number of its combinatorial faces
and by Lemma 3.3 we can estimate the number of its plane triangular faces, solving
Problem 4.

Finally we summarize:

Theorem 3.10. A solution to Problem 4 is D(m) = 2225m2+1.
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Theorem 3.11. A solution to Problem 3 is :
G (n) = n + 21015n4

These formulas are not useful in practice because of their huge exponents. It is
worthy of note that in a higher dimension situations are even worse, as the following
result [5] states: we can consider P.L. embeddings Sn → Rn+2 with n > 2. The
complexity of an embedding will be the number of linear faces of the image of Sn. We
can imagine defining a notion of n-rigid isotopy in the same way as we did before, and
posing in Rn+2 a problem analogous to Problem 3. Nabutowsky and Weinberger prove
that in this case a function F (n), that is solution to Problem 3 in Rn+2; n > 2, cannot
be majorized by any recursive function.
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