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Analisi matematica. — Regularity results for infinite dimensional diffusions. A Malliavin
calculus approach. Nota di Stefano Bonaccorsi e Marco Fuhrman, presentata (*) dal
Corrisp. G. Da Prato.

Abstract. — We prove some smoothing properties for the transition semigroup associated to a nonlinear
stochastic equation in a Hilbert space. The proof introduces some tools from the Malliavin calculus and is
based on a integration by parts formula.

Key words: Transition semigroups; Strong Feller property; Logarithmic derivative; Malliavin calculus.

Riassunto. — Risultati di regolarità per diffusioni infinito-dimensionali. Una applicazione del calcolo di
Malliavin. Si dimostrano certe proprietà di regolarità per il semigruppo di transizione di una diffusione in
dimensione infinita. La dimostrazione introduce tecniche del calcolo di Malliavin e si basa su una formula
di integrazione per parti.

1. Introduction

Let X (t; x) be the solution of the stochastic differential equation

(1)

{
dX (t ) =

(
AX (t ) + RF (X (t ))

)
dt + R dW (t )

X (0) = x ∈ H;

in a real separable Hilbert space H . W is a U -valued cylindrical Wiener process on a
probability space (Ω;F;P) endowed with a filtration Ft , t ≥ 0. We fix the following
condition on the coefficients in problem (1).

Hypothesis 1. The operator A is the infinitesimal generator of a C0 semigroup S (t ),
t ≥ 0, on H . R ∈ L(U; H ), the space of linear bounded operators from U to H .

The mapping F : H → U is Lipschitz continuous: there exists L > 0 such that

|F (x) − F (y)| ≤ L|x − y|; x; y ∈ H:

The operators Q t , defined by

Q t x =

∫ t

0
S (s)RR∗S (s)∗x ds; x ∈ H; t ≥ 0;

are trace class.

Given the conditions in Hypothesis 1, for every x ∈ H there exists a unique mild
solution X (t; x) of equation (1), i.e. a predictable process in H satisfying, for t ≥ 0,

(2) X (t; x) = S (t )x +

∫ t

0
S (t − s)RF (X (s; x)) ds +

∫ t

0
S (t − s)R dW (s); P− a:s:

(*) Nella seduta del 12 marzo 1999.
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and such that sup
t∈[0;T ]

E|X (t; x)|p < ∞, for any p ∈ [1;∞) and T > 0; X is unique up

to modification (see [2, Theorem 9.1]). For simplicity, we will sometimes write X (t )
or Xt instead of X (t; x).

If, in addition, there exists α > 0 such that

(3) Trace
∫ t

0
s−αS (s)RR∗S (s)∗ ds < ∞;

then X has a continuous version.
We denote by Z the Gaussian process associated with the case F = 0: Z (t; x) =

= S (t )x + W R
A (t ), where W R

A (t ) =
t∫

0
S (t − r)R dW (r) is called stochastic convolution.

We remark that Q t is the covariance operator of W R
A (t ).

We will present two main results. First, under the condition that F has a continuous
and bounded Fréchet derivative, we will show that an integration by parts formula
holds for the law of the H -valued random variable Xt , t > 0 being fixed. This is
proved in Section 3, by an application of the Malliavin calculus; a short review of basic
definitions of the Malliavin calculus is given in Section 2, where we also show that Xt

has a Malliavin derivative.
Second, we are interested in conditions implying the strong Feller property of the

transition semigroup of the Markov process X (compare the definition in Section 4).
It is known that Z is strongly Feller if and only if, for any t > 0, Im S (t ) ⊂ Im Q 1=2

t ,
where Im denotes the image of an operator. Under the same condition we can prove
that the strong Feller property holds for X as well, as a consequence of an estimate
on the Fréchet derivative of the transition semigroup that may have an interest in itself
(Section 4).

Notice that, although the results are already known (cf. [4]), the proof presented here
is new and much simpler. In particular, the proof of the integration by parts formula
clearly relates properties of the Malliavin derivative of Xt to controllability property of
an appropriate control system, and may lead to further extensions.

The results of this paper have been developed while the second author was visit-
ing the University of Trento and have been included in the PhD thesis of the first
author [1]. The authors wish to thank Luciano Tubaro for the interesting discussions.

2. Some tools from the Malliavin calculus

We need to recall some facts on the Malliavin calculus. Our approach is the same
as in [5, 6].

We take a Hilbert space E (below E = H or E = R), we fix T > 0 and, for
g ∈ L2([0; T ]; U ), we define W (g ) =

∫ T

0 〈g (s); dW (s)〉. We denote by S the set of
functions of the form

φ = f (W (g1); W (g2); : : : ; W (gn));

where n ∈ N, g1; : : : ; gn ∈ L2([0; T ]; U ), f is a continuously differentiable real func-



regularity results for infinite dimensional diffusions : : : 37

tion on Rn, such that f and its partial derivatives @i f have polynomial growth.
Now consider the set SE of all functions F : Ω → E of the form

F =
n∑

i=1

eiφi;

where n ∈ N, ei ∈ E , φi ∈ S. SE is a subspace of L2(Ω; E ), the space of E -valued
random variables with square summable norm (similar notation is used below). We
define an operator D on SE setting

DsF =
n∑

i=1

@i f (W (g1); W (g2); : : : ; W (gn)) ei ⊗ gi(s); s ∈ [0; T ]:

We recall that the Hilbert space tensor product E ⊗U can be identified with the space
L2(U; E ) of Hilbert-Schmidt operators from U to E . With this agreement, D is an
operator from SE ⊂ L2(Ω; E ) to the space L2(Ω × [0; T ]; L2(U; E )), the latter being
endowed with the norm

‖Φ‖2
L2(Ω×[0;T ];L2(U;E )) = E

∫ T

0
‖Φ(s)‖2

L2(U;E ) ds:

It is know that D is closable. Still denoting by D its closure, and denoting by D1;2(E )
its domain, D is an operator

D : D1;2(E ) ⊂ L2(Ω; E ) → L2(Ω × [0; T ]; L2(U; E )):

It is easy to see that the stochastic convolution W R
A (t ) belongs to D1;2(H ) and we

have DsW
R

A (t ) = S (t − s)R , for s < t , whereas DsW
R

A (t ) = 0 for s > t .
We recall that, if F ∈ D1;2(E ) is Ft -adapted, then DsF = 0 P-a.s. for s ∈ (t; T ].
When E = R, we write L2(Ω) and D1;2 instead of L2(Ω;R) and D1;2(R), and we

identify L2(U;R) with U , so that

D : D1;2 ⊂ L2(Ω) → L2(Ω × [0; T ]; U ):

We denote by

δ : dom δ ⊂ L2(Ω × [0; t ]; U ) → L2(Ω)

the adjoint operator of D. δ is called Skorohod integral and satisfies by definition the
equality

(4) E

[∫ T

0
〈DsF; k(s)〉U ds

]
= E

[
F δ(k)

]
; F ∈ D1;2; k ∈ dom δ:

We recall that if k is an adapted process in L2(Ω × [0; T ]; U ), then k ∈ dom δ and

δ(k) =

∫ T

0
〈k(s); dW (s)〉:

A chain rule for the Malliavin derivative holds: if F ∈ D1;2(H ), ϕ : H → R is
bounded and continuous together with its Fréchet derivative, then ϕ(F ) ∈ D1;2 and
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Dϕ(F ) = ϕ′(F )DF , i.e. for a.e. (ω; s) ∈ Ω× [0; T ], Dsϕ(F ) is the element of U such
that

〈Dsϕ(F ); u〉 = 〈ϕ′(F ); [DsF ] · u〉; u ∈ U:

Similar statements hold true for ϕ taking values in a Hilbert space.
Below we are interested in proving the existence of the Malliavin derivative of Xt ,

for t fixed. We need the following.

Hypothesis 2. We assume that F : H → H has first Fréchet derivative F ′ bounded and
continuous. Using Hypothesis 1 we get that sup

x∈H

∥∥ d
dx F (x)

∥∥ ≤ L.

Proposition 1. Under the conditions in Hypotheses 1 and 2, for every t ≥ 0 the random
variable Xt belongs to D1;2(H ) and its Malliavin derivative DXt satisfies the following
equation: for a.e. s ∈ [0; t ], P-a.s.,

(5) DsXt = S (t − s)R +

∫ t

s

S (t − r)RF ′(X (r))DsXr dr:

Proof. Let us fix T > 0. For an arbitrary H -valued process Y let us denote

Γ(Y )t = S (t )x +

∫ t

0
S (t − r)F (Yr ) dr + W R

A (t ); t ∈ [0; T ]:

Let us define inductively X 0
t = 0, X n+1

t = Γ(X n)t , t ∈ [0; T ]. Then it is known that X n

converges to the solution of the equation (2), more precisely that ‖X n
t −Xt‖L2(Ω;H )→ 0

as n → ∞, uniformly in t . We will prove inductively that X n
t ∈ D1;2(H ) and

sup
t∈[0;T ]

ψn(t ) ≤ K , where K is a constant independent of n and ψn is defined as

ψn(t ) := E
∫ t

0
‖DsX

n
t ‖

2
L2(U;H )ds:

The inductive statement being trivial for X 0, let us assume that it holds for X n. By
the chain rule and a previous remark, for a.e. s ≤ t ,

Ds

(
S (t − r)F (X n

r )
)

= S (t − r)F ′(X n
r )DsX

n
r ; DsW

R
A (t ) = S (t − s)R:

Then it is easy to prove that X n+1
t ∈ D1;2(H ) and for a.e. s ∈ [0; t ], P-a.s.,

DsX
n+1

t = S (t − s)R +

∫ t

s

S (t − r)F ′(X n
r )DsX

n
r dr:

It follows that

(6)
‖DsX

n+1
t ‖L2(U;H ) ≤ ‖S (t−s)R‖L2(U;H ) +

∫ t

s

‖S (t−r)F ′(X n
r )‖L(H;H )‖DsX

n
r ‖L2(U;H ) dr ≤

≤ ‖S (t − s)R‖L2(U;H ) + C1

∫ t

s

‖DsX
n

r ‖L2(U;H ) dr;

where C1 := sup
t∈[0;T ]

‖S (t − r)‖L(H;H ) sup
x∈H

‖F ′(x)‖L(H;H ) < ∞. Squaring both sides of (6),
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integrating with respect to s over [0; t ] and taking into account that
∫ t

0
‖S (t − s)R‖2

L2(U;H ) ds =

∫ t

0
Trace S (t − s)RR∗S (t − s)∗ ds = Trace Q t ≤ Trace Q T

a standard calculation leads to
∫ t

0
‖DsX

n+1
t ‖2

L2(U;H ) ds ≤ 2 Trace Q T + 2C 2
1 T

∫ t

0

∫ r

0
‖DsX

n
r ‖

2
L2(U;H ) ds dr:

Taking expectation of both sides we arrive at ψn+1(t ) ≤ K1 + K2

t∫
0
ψn(r)dr , where

K1; K2 are independent of n. It follows that ψn(t ) ≤ K1eK2t ≤ K , where K is a
constant independent of n.

Now we have proved that ‖DX n
t ‖D1;2(H ) is bounded uniformly in t and n. Since

X n
t → Xt in L2(Ω; H ), uniformly in t , a standard argument based on the closedness of

the operator D shows that Xt ∈ D1;2(H ) and supt∈[0;T ] ‖DXt‖D1;2(H ) < ∞. It is then
possible to apply D to both sides of the equality (2), and this gives (5).

Remark 2. There exists a continuous version of the process DsXt , t ≥ s ≥ 0, with
values in L(U; H ). Indeed, let us fix a version of the process X , and let us fix ω ∈ Ω.
Then it is easy to see that there exists a unique continuous L(U; H )-valued function
Yts such that

Yts = S (t − s)R +

∫ t

s

S (t − r)RF ′(X (ω; r))Yrs dr; t ≥ s ≥ 0:

Clearly, Y depends on ω and comparing with (5) we see that for every t ≥ 0 we have
DsXt = Yts , for a.e. s ∈ [0; t ], P-a.s.

3. Integration by parts and logarithmic derivatives

We are now ready to state one of our main results. It will be refined below in
Proposition 6. In the following C m

b (H ), m = 0; 1; : : : , denotes the set of real functions
on H that are bounded and continuous together with their Fréchet derivatives up to
the order m.

Proposition 3. Under the conditions in Hypotheses 1 and 2, for each t > 0 and h ∈
∈ Im Q 1=2

t there exists a U -valued process k(s), s ∈ [0; t ], adapted and mean square
integrable, such that the following identity holds for every ϕ ∈ C 1

b (H ):

(7) E
(
ϕ(X (t ))

∫ t

0
〈k(s); dW (s)〉

)
= E〈ϕ′(X (t )); h〉:

As a first step in the proof of Proposition 3 we prove the following result.

Lemma 4. For arbitrary t ∈ (0; T ] and h ∈ Im Q 1=2
t there exists a square integrable

adapted process k(s); s ∈ [0; t ], such that:

(8)
∫ t

0
[DsXt ] · k(s) ds = h:
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If h ∈ Im Q t then we can take

(9) k(s) = R∗S (t − s)∗Q−1
t h − F ′(X (s))Q sS (t − r)∗Q−1

t h; s ∈ [0; t ]:

Proof. Let us fix ω ∈ Ω. By Remark 2 we can assume that DsXt is a continuous
function with values in L(U; H ), defined for t ≥ s ≥ 0. Let us define

y(s) =

∫ s

0
[Dr Xs] · k(r)dr; s ∈ [0; t ]:

Then, applying both sides of the equality (5) to k(r) and integrating over [0; s], we
obtain

y(s) =

∫ s

0
S (s − r)Rk(r)dr +

∫ s

0
S (s − r)RF ′(X (r))y(r)dr; s ∈ [0; t ]:

We will say that y is the mild solution of the

(10)

{ d
ds

y(s) = Ay(s) + RF ′(X (s))y(s) + Rk(s)

y(0) = 0 :

We are looking for k ∈ L2([0; t ]; U ) such that (8) holds. So we are considering (10)
as a control system and our aim is to prove that every h ∈ Im Q 1=2

t is a reachable state.
Let us consider the following auxiliary control system:

(11)

{ d
ds

z(s) = Az(s) + Ru(s)

z(0) = 0 :

Its mild solution is defined to be the function

z(s) =

∫ s

0
S (s − r)Ru(r)dr s ∈ [0; t ];

and the function u is allowed to range over all controls u ∈ L2([0; t ]; U ).
Now we claim that, if z is the solution corresponding to a control u then there

exists a control k such that z(·) = y(·). Indeed, if we take k(·) = u(·) − F ′(X (·))z(·),
then

y(s) =

∫ s

0
S (s − r)Ru(r) dr +

∫ s

0
S (s − r)RF ′(X (r))[y(r) − z(r)] dr;

y(s) − z(s) =

∫ s

0
S (s − r)RF ′(X (r))[y(r) − z(r)] dr:

By Gronwall’s lemma, y(s) = z(s) for 0 ≤ s ≤ t , and the claim is proved.
However, for the linear autonomous control system (11) it is well known (see e.g.

[2, Appendix B.3]) that its reachable set at time t coincides with Im Q 1=2
t , i.e.

Im Q 1=2
t =

{
h : ∃u ∈ L2([0; t ]; U ) and z(t ) = h

}
:

Now for h ∈ Im Q 1=2
t take a control u such that for the corresponding solution we

have z(t ) = h: We set

(12) k(s) = u(s) − F ′(X (s))z(s); s ∈ [0; t ];
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and for the corresponding solution y we have y(t ) = z(t ) = h, as shown before, so that
(8) holds.

Clearly, k depends on the ω chosen at the beginning. Since u (resp. z) is a square
integrable (resp. continuous) deterministic function, it follows immediately from (12)
that k is a square integrable process adapted to the filtration.

Finally, if h ∈ Im Q t we can give an explicit formula for the control u:

u(s) = R∗S (t − s)∗Q−1
t h; s ∈ [0; t ]:

It follows that

z(s) =

∫ s

0
S (s − r)RR∗S (t − r)∗Q−1

t h dr = Q sS (t − s)∗Q−1
t h:

We can now give the proof of Proposition 3. Notice that the chain rule for the
Malliavin derivative operator implies that, for any process k ∈ L2(Ω × [0; T ]; U ):

(13) 〈Dsϕ(X (t )); k(s)〉 = 〈ϕ′(X (t )); [DsX (t )] · k(s)〉

Integrating both sides in s ∈ [0; t ] and taking the expectation in (13) we obtain

E
∫ t

0
〈Dsϕ(X (t )); k(s)〉 ds = E 〈ϕ′(X (t ));

∫ t

0
[DsX (t )] · k(s) ds〉:

Now we take for k the process given by the previous lemma. Since k is a square
integrable adapted process, it belongs to the domain of the Skorohod integral and we
obtain

E
[
〈ϕ′(X (t )); h〉

]
= E

∫ t

0
〈Dsϕ(X (t )); k(s)〉 ds =

= E [ϕ(X (t ))δ(k)] = E
[
ϕ(X (t ))

∫ t

0
〈k(s); dW (s)〉

]
:

Our next aim is to give a more explicit expression to the stochastic integral appearing
in Proposition 3. To this end we first need a lemma.

Lemma 5. For t ≥ s ≥ 0, we have Im e (t−s)AQ 1=2
s ⊂ Im Q 1=2

t and

‖Q−1=2
t e (t−s)AQ 1=2

s ‖ ≤ 1:

Proof. By well known arguments (see e.g. [2, appendix B]) it suffices to prove

‖Q 1=2
s e (t−s)A∗

x‖ ≤ ‖Q 1=2
t x‖; s ∈ [0; t ]; x ∈ H:

i.e. e (t−s)AQ se
(t−s)A∗ ≤ Q t . This follows from the definition of Q t , since

e (t−s)AQ se
(t−s)A∗

=

∫ t

t−s

erARR∗erA∗
dr = Q t − Q t−s ≤ Q t :
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To proceed further, let us consider again the stochastic convolution W R
A (t ). Since

Q t is its covariance operator, then for any h ∈ Im Q 1=2
t we get

E[〈W R
A (t ); Q−1=2

t h〉2] = ‖h‖2:

This means that the map h → 〈W R
A (t ); Q−1=2

t h〉 can be extended to an isometry of H
into L2(Ω). In the following, this extension will be denoted 〈W R

A (t ); Q−1=2
t [·]〉.

Proposition 6. Under the conditions in Hypotheses 1 and 2, for each t > 0 and h ∈ Im Q 1=2
t

the following identity holds for every ϕ ∈ C 1
b (H ):

E 〈ϕ′(X (t )); h〉 = E
(
ϕ(X (t ))〈W R

A (t ); Q−1=2
t [Q−1=2

t h]〉
)

+

−E
(
ϕ(X (t ))

∫ t

0
〈F ′(X (s))Q 1=2

s

(
Q−1=2

t S (t − s)Q 1=2
s

)∗
Q−1=2

t h; dW (s)〉
)

:

Proof. Let us take a sequence hn ∈ Im Q t such that Q−1=2
t hn → Q−1=2

t h. Then by
Proposition 3 and (9) we have

E〈ϕ′(X (t )); hn〉 = E
(
ϕ(X (t ))〈W R

A (t ); Q−1
t hn〉

)
+

−E
(
ϕ(X (t ))

∫ t

0
〈F ′(X (s))Q sS (t − s)∗Q−1

t hn; dW (s)〉
)

:

Now we let n → ∞. Using the notation introduced before,

〈W R
A (t ); Q−1

t hn〉 = 〈W R
A (t ); Q−1=2

t [Q−1=2
t hn]〉 → 〈W R

A (t ); Q−1=2
t [Q−1=2

t h]〉;

in L2(Ω), since 〈W R
A (t ); Q−1=2

t [·]〉 is an isometry.
Then we have, by Lemma 5,

Q sS (t − s)∗Q−1
t hn = Q 1=2

s

(
Q−1=2

t S (t − s)Q 1=2
s

)∗
Q−1=2

t hn;

and we obtain

E
∣∣∣∣
∫ t

0
〈F ′(X (s))Q sS (t − s)∗Q−1

t hn; dW (s)〉 +

−
∫ t

0
〈F ′(X (s))Q 1=2

s

(
Q−1=2

t S (t − s)Q 1=2
s

)∗
Q−1=2

t h; dW (s)〉
∣∣∣∣
2

=

= E
∫ t

0
‖F ′(X (s))Q 1=2

s

(
Q−1=2

t S (t − s)Q 1=2
s

)∗
(Q−1=2

t hn − Q−1=2
t h)‖2ds → 0:

As a consequence of the previous proposition we can draw some conclusions about
the existence and summability properties of a logarithmic derivative of the law νt of the
H -valued random variable X (t ). We recall that a probability measure µ on H is said
to have a logarithmic derivative in the direction h ∈ H if there exists βh ∈ L1(H; dµ)
such that ∫

H

〈ϕ′(y); h〉µ(dy) =

∫

H

ϕ(y)βh(y)µ(dy);

for every ϕ ∈ C 1
b (H ).
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Proposition 7. Under the conditions in Hypotheses 1 and 2, for every t > 0 and h ∈
∈ Im Q 1=2

t the measure νt has a logarithmic derivative βh in the direction h. Moreover,
βh ∈ Lp(H; dνt ) for every p ∈ [1;∞).

Proof. Let us consider the random variable

Z = 〈W R
A (t ); Q−1=2

t [Q−1=2
t h]〉−

∫ t

0
〈F ′(X (s))Q 1=2

s

(
Q−1=2

t S (t−s)Q 1=2
s

)∗
Q−1=2

t h; dW (s)〉;

and let us define βh(y) = E (Z |X (t ) = y), i.e. the conditional expectation of Z given
X (t ) = y. By the Burkholder-Davis-Gundy inequalities the stochastic integral above is
in Lp(Ω) for every p ∈ [1;∞). Since 〈W R

A (t ); Q−1=2
t [Q−1=2

t h]〉 is gaussian, it follows
that βh is well defined and βh ∈ Lp(H; dνt ) for every p ∈ [1;∞). Finally we have, by
Proposition 6,
∫

H

〈ϕ′(y); h〉 νt (dy) = E 〈ϕ′(X (t )); h〉 = E (ϕ(X (t )) Z ) =

= E
(
ϕ(X (t ))βh(X (t ))

)
=

∫

H

ϕ(y)βh(y)µ(dy);

which shows that βh is indeed the logarithmic derivative of νt .

4. The strong Feller property

We denote by Pt ; t ≥ 0, the transition semigroup associated to (1):

(14) Ptϕ(x) = E[ϕ(X (t; x))]; ϕ ∈ Bb(H );

where Bb(H ) denotes the set of real Borel bounded functions on H . We recall that a
Markovian semigroup Pt , t ≥ 0, is said to be a strongly Feller semigroup if, for arbitrary
ϕ ∈ Bb(H ) and t > 0, Ptϕ ∈ Cb(H ).

In order to prove the strong Feller property for the semigroup Pt , we are looking
for an estimate of the Fréchet derivative d

dx Ptϕ of the form

(15)
∣∣∣∣

d
dx

Ptϕ(x)
∣∣∣∣ ≤ Ct sup

z∈H
|ϕ(z)|; t > 0; x ∈ H

for a constant Ct > 0 and valid for all smooth functions ϕ, say for ϕ ∈ C 2
b (H ). It is

known (see [2]) that inequality (15) ensures the strong Feller property for the process.
Moreover it is known that the strong Feller property for Z is equivalent to the following
condition.

Hypothesis 3. For any t > 0, Im S (t ) ⊂ Im Q 1=2
t .

We are now ready to prove the main result of this section.

Theorem 8. Suppose that the conditions in Hypotheses 1, 2, 3, and (3), hold. Then the
transition semigroup Pt related to equation (1) is strongly Feller.
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Proof. In order to prove the theorem it is sufficient to consider the special case
ϕ ∈ C 2

b (H ). Actually, it follows from [3, Lemma 7.1.5] that the following conditions
are equivalent:

1) ’ϕ ∈ C 2
b (H ), ’x; y ∈ H : |Ptϕ(x) − Ptϕ(y)| ≤ c‖ϕ‖0|x − y|;

2) ’ϕ ∈ Bb(H ), ’x; y ∈ H : |Ptϕ(x) − Ptϕ(y)| ≤ c‖ϕ‖0|x − y|.
We introduce Girsanov’s transform. For any x ∈ H the process

Φ(t; x) = exp
(∫ t

0
〈F (Z (s; x)); dW (s)〉 − 1

2

∫ t

0
‖F (Z (s; x))‖2 ds

)
; t > 0;

is a martingale, and under the probability Φ(t; x) · P, the process

L(s) = W (s) −
∫ s

0
F (Z (r; x)) dr; s ∈ [0; t ];

is a Wiener process. In particular, for any bounded measurable mapping ϕ : H → R:

(Ptϕ)(x) = E[ϕ(X (t; x))] = E[Φ(t; x)ϕ(Z (t; x))]:

Below we denote by d
dx the Fréchet derivative operator. Since d

dx Z (t; x) · h = etAh and

〈dΦ

dx
(t; x); h〉 = Φ(t; x)

(∫ t

0
〈dF

dx
(Z (s; x))esAh; dW (s)〉 +

−
∫ t

0
〈dF

dx
(Z (s; x))esAh; F (Z (s; x))〉 ds

)
=

= Φ(t; x)
∫ t

0
〈dF

dx
(Z (s; x))esAh; dL(s)〉;

we obtain

〈 d
dx

Ptϕ(x); h〉 = E
[
Φ(t; x)〈dϕ

dx
(Z (t; x));

d
dx

Z (t; x) · h〉
]

+

+ E
[
〈dΦ

dx
(t; x); h〉ϕ(Z (t; x))

]
=

= E
[
Φ(t; x)〈dϕ

dx
(Z (t; x)); etAh〉

]
+

+ E
[
Φ(t; x)

∫ t

0
〈dF

dx
(Z (s; x))esAh; dL(s)〉ϕ(Z (t; x))

]
=

= E
[
〈dϕ

dx
(X (t; x)); etAh〉

]
+

+ E
[∫ t

0
〈dF

dx
(X (s; x))esAh; dW (s)〉ϕ(X (t; x))

]
:

Hence, from Proposition 6 one gets, for any h ∈ H ,

〈 d
dx

Ptϕ(x); h〉 = E
[
ϕ(X (t; x))〈W R

A (t ); Q−1=2
t [Q−1=2

t e tAh]〉
]

+

+E
[
ϕ(X (t; x))

∫ t

0
〈dF

dx
(X (s; x))

(
esAh − Q 1=2

s

(
Q−1=2

t e (t−s)AQ 1=2
s

)∗
Q−1=2

t e tAh
)
; dW (s)〉

]
:
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The desired inequality (15) follows:
∣∣∣∣〈

d
dx

Ptϕ(x); h〉
∣∣∣∣ ≤ ‖ϕ‖0 |h|

(∥∥Q−1=2
t e tA

∥∥ +

+ 2L
∥∥Q−1=2

t e tA
∥∥
(∫ t

0
‖Q 1=2

s ‖2 ds

)1=2

+ 2L

(∫ t

0
‖esA‖2 ds

)1=2
)

In this last part we show how to dispense with Hypothesis 2. The proof will
follows the ideas in [7]. Since the constant Ct appearing in estimate (15) depends only
on the Lipschitz constant L of the non-linear term F (x), we may assume that F is only
measurable and Lipschitz continuous. In [7] it is shown how to construct a sequence
of good approximations Fn(x), converging to F (x) such that Fn fulfills Hypothesis 2
and the estimate (15) holds true with the same constant for all n. The desired result
follows easily.
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