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Calcolo delle probabilità. — On sequentially weakly Feller solutions to SPDE’s. Nota di
Bohdan Maslowski e Jan Seidler, presentata (*) dal Corrisp. G. Da Prato.

Abstract. — A rather general class of stochastic evolution equations in Hilbert spaces whose transition
semigroups are Feller with respect to the weak topology is found, and consequences for existence of invariant
measures are discussed.

Key words: Stochastic partial differential equations; Weakly Feller processes; Invariant measures.

Riassunto. — Su soluzioni debolmente sequenzialmente Feller di equazioni stocastiche alle derivate parziali.
Viene presentata un’ampia classe di equazioni di evoluzione stocastiche in spazi di Hilbert i cui semigruppi
di transizione hanno la proprietà di Feller rispetto alla topologia debole; vengono inoltre discusse alcune
conseguenze per l’esistenza di misure invarianti.

1. Introduction

Let H be a separable Hilbert space; we will denote by Hw this space when considered
as a locally convex space endowed with the weak topology. Let P be a transition prob-
ability of a homogeneous Markov process in H , we denote by (Pt ) the corresponding
transition semigroup on the space of real bounded Borel functions on H (note that H
and Hw have the same Borel sets due to separability), and by (P∗

t ) the dual semigroup
acting on finite Borel measures on H .

The classical Krylov-Bogolyubov method of establishing existence of an invariant
measure for P requires, first, to prove that P is Feller, and, second, to find a Borel
probability measure ν on H and T0 ≥ 0 such that the set of measures

M = {µT ; T ≥ T0}; µT ≡ 1
T

∫ T

0
P∗

t ν(·) dt;

is tight. Balls in H are weakly compact, so it is often straightforward to establish that
M is tight as a set of measures on Hw (this is implied e.g. by the boundedness in
probability of the underlying Markov process). It remains, however, to prove that (Pt )
is weakly Feller, that is, that the operators Pt map the space C b(Hw) of all real bounded
weakly continuous functions on H into itself.

A particular class of SPDE’s defining weakly Feller transition semigroups was inves-
tigated by A. Ichikawa (see [7, Theorem 3.1]); he considered equations whose nonlinear
terms depend only on a projection of the solution to a finitely dimensional subspace
and have finite-dimensional ranges. Markov processes Feller with respect to the weak
topology are also discussed in [9], however, without specific applications to stochastic
partial differential equations.

(*) Nella seduta del 12 marzo 1999.
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In this paper we find a rather general class of semilinear stochastic evolution equa-
tions whose transition semigroups map bounded weakly continuous functions into
weakly sequentially continuous ones; let us call such semigroups sequentially weakly
Feller. In Section 2, we start with proving that any Ornstein-Uhlenbeck process is
sequentially weakly Feller and that the same assertion holds for the Markov process
defined by a semilinear stochastic equation

dX =
(
AX + f (X )

)
dt + σ(X )Q 1=2 dW

provided A generates a compact semigroup and the nonlinear terms f , σ are Lipschitz
continuous. Next, we show that the assumptions on the drift can be relaxed considerably
by means of the Girsanov theorem, the compactness of the semigroup generated by A
again playing an important rôle. (In the paper [11], a similar approach is used to
establish the strong Feller property).

Finally, in Section 3 the sequential weak Feller property is shown to be sufficient for
employing the Krylov-Bogolyubov procedure and some examples to which our results
are applicable are provided. In particular, we arrive at an alternative proof of the well
known result on existence of invariant measures due to G. Da Prato, D. Ga̧tarek and
J. Zabczyk (cf. Example 3.1) as well as at some new existence results (see Example 3.2).

2. Sequentially weakly Feller solutions

At first, let us consider a linear equation

(2.1) dZ = AZ dt + Q 1=2 dW

in a real separable Hilbert space H , where W is a standard cylindrical Wiener process on
H , Q ∈ L (H ) nonnegative and self-adjoint, and A : Dom(A) −→ H is an infinitesimal
generator of a C0-semigroup (eAt ) on H . We assume

(A1) For any T ≥ 0
∫ T

0

∥∥eAt Q 1=2
∥∥2

HS
ds < ∞

holds, ‖ · ‖HS denoting the norm in the space of Hilbert-Schmidt operators in H .

Take an arbitrary probability space (Ω; F ; P) carrying a standard cylindrical Wiener
process W on H . Then (A1) implies that, for any y ∈ H , there exists a unique mild
solution Z y to (2.1) satisfying Z y(0) = y. We denote by (Rt ) the transition semigroup
defined by (2.1), that is

Rtϕ(y) =

∫

Ω

ϕ(Z y(t )) d P

for any t ≥ 0, y ∈ H and all bounded Borel functions ϕ : H −→ R. In what
follows S b(Hw) will stand for the set of all real bounded weakly sequentially continuous
functions on H .

Proposition 2.1. Assume (A1), then Rt

(
S b(Hw)

)
⊆ S b(Hw) for any t ≥ 0.
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Remark 2.1. This result is essentially due to Ichikawa (see [6, Lemma 3.1; 7, Remark
3.1]; cf. also [14], where an analogous problem is considered in the discrete-time case),
we include it here for completeness.

Proof. Let (xn) be an arbitrary weakly convergent sequence in H , let x be its weak
limit. Since

Z xn (t ) − Z x (t ) = eAt (xn − x) P-almost surely;

we obtain that
〈
Z xn (t ) − Z x (t ); y

〉
=

〈
xn − x; eA∗t y

〉
−→
n→∞

0 P-almost surely

for every y ∈ H , which implies

(2.2) lim
n→∞

ϕ(Z xn (t )) = ϕ(Z x (t )) P-almost surely

for any ϕ ∈ S b(Hw) and by the dominated convergence theorem

lim
n→∞

Rtϕ(xn) = Rtϕ(x):

The last equality shows that Rtϕ ∈ S b(Hw).

Now we turn to the semilinear problem

(2.3) dX =
(
AX + f (X )

)
dt + σ(X )Q 1=2 dW

in the space H , where H , A have the same meaning as in the equation (2.1), W is
a standard cylindrical Wiener process in another real separable Hilbert space Υ, and
Q ∈ L (Υ) is a nonnegative self-adjoint operator. We assume

(A2) The mappings f : H −→ H and σ : H −→ L (Rng Q 1=2; H ) are Borel and there
exist a constant K < ∞ and a function k ∈ L1

loc([0;∞[), k ≥ 0 such that

‖f (x) − f (y)‖ ≤ K ‖x − y‖;
∥∥eAtσ(x)Q 1=2

∥∥2

HS
≤ k(t )

(
1 + ‖x‖2);(2.4)

∥∥eAt [σ(x) − σ(y)]Q 1=2
∥∥2

HS
≤ k(t )‖x − y‖2(2.5)

for every t ≥ 0, x; y ∈ H .

Here the space Rng Q 1=2 is equipped with its natural Hilbert structure (see [4, §4.2])
and ‖S‖HS denotes now the Hilbert-Schmidt norm of an operator S ∈ L (Υ; H ).

Remark 2.2. Note that (2.4), (2.5) are always satisfied in two important particular
cases: if σ is a Lipschitz continuous L (Rng Q 1=2; H )-valued function and either Q is
nuclear, or Q is arbitrary but

∫ T

0
‖eAt‖2

HS dt < ∞

for some T > 0. For equations with additive noise, (2.4) and (2.5) reduce to (A1).
Let us fix an arbitrary probability space (Ω; F ; P) and a standard cylindrical Wiener

process W on Υ defined on Ω. For any y ∈ H there exists a unique mild solution X y
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of (2.3) on Ω such that X y(0) = y. (This follows e.g. by a straightforward generalization
of Theorem 1 in [12]). Let (Pt ) be the transition semigroup of the Markov process
solving (2.3),

Ptϕ(y) =

∫

Ω

ϕ(X y(t )) d P; t ≥ 0; y ∈ H; ϕ : H −→ R bounded Borel.

The space of all real bounded continuous (in the norm topology) functions on H will
be denoted by C b(H ).

Theorem 2.2. Let the assumption (A2) be satisfied. Let the semigroup (eAt ) be compact.
Then Pt

(
C b(H )

)
⊆ S b(Hw) for any t > 0.

Proof. Let us take arbitrary ϕ ∈ C b(H ) and yn; y ∈ H , yn → y weakly; our goal is
to prove that

(2.6) lim
n→∞

Ptϕ(yn) = Ptϕ(y); t > 0:

Fix a T > 0 arbitrarily. Using (A2) we obtain

E‖X yn (t ) − X y(t )‖2 ≤ 3
∥∥eAt (yn − y)

∥∥2
+ 3t

∫ t

0
E
∥∥eA(t−s)[f (X yn (s)) − f (X y(s))

]∥∥2
ds +

+ 3
∫ t

0
E
∥∥eA(t−s)[σ(X yn (s)) − σ(X y(s))

]
Q 1=2

∥∥2

HS
ds ≤

≤ 3
∥∥eAt (yn − y)

∥∥2
+ C

∫ t

0

(
1 + k(t − s)

)
E‖X yn (s) − X y(s)‖2 ds;

where C denotes a constant dependent only on T , K and ‖eAt‖. For brevity, set

ψn(t ) = 3
∥∥eAt (yn − y)

∥∥2
; π(t ) = C

(
1 + k(t )

)
; t ≥ 0:

Applying the generalized Gronwall lemma (see e.g. [2, Corollary 8.11]) we get

E‖X yn (t ) − X y(t )‖2 ≤ ψn(t ) +
∞∑

j=1

(Πjψn)(t ); 0 ≤ t ≤ T;

Π being a Volterra integral operator with the kernel π, that is,

Πh(v) =

∫ v

0
π(v − s)h(s) ds; v ≥ 0; h ∈ L1

loc(R+
):

Since the semigroup (eAt ) is compact,

lim
n→∞

ψn(t ) = 0 for any t > 0;

and it is not difficult to show that

lim
n→∞

E‖X yn (t ) − X y(t )‖2 = 0 for any 0 < t ≤ T :

By a standard argument this implies

(2.7) ϕ(X yn (t )) P−→
n→∞

ϕ(X y(t ))
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and we complete the proof by invoking the dominated convergence theorem.
As a following step we show that, roughly speaking, the Girsanov transform preserves

the sequential weak Feller property. Let us consider a pair of equations

dZ =
(
AZ + g (Z )

)
dt + σ(Z )Q 1=2 dW;(2.8)

dX =
(
AX + f (X )

)
dt + σ(X )Q 1=2 dW;(2.9)

where H , A, Q , W are the same as in (2.3), and f; g : H −→ H , σ : H −→
−→ L (Rng Q 1=2; H ) are Borel mappings. We assume

(A3) 1) There exists a probability space (Ω; F ; P) carrying a standard cylindrical Wiener
process W on Υ and, for any y ∈ H , a mild solution Z y to (2.8) satisfying Z y(0) = y.

2) For any y ∈ H there exists a martingale solution
(
(Θy; G y; py); (G y

t ); W y; (X y(t ))
)

to
(2.9) with X y(0) = y.

3) Weak uniqueness holds for both (2.8) and (2.9).

The assumption (A3) implies that (2.8), (2.9) define Markov processes; let us denote
by (Pt ) the transition semigroup corresponding to the equation (2.9),

Ptϕ(y) =

∫

Θy

ϕ(X y(t )) dpy; t ≥ 0; y ∈ H; ϕ : H −→ R bounded Borel:

Theorem 2.3. Let the assumption (A3) be satisfied, let there exist a Borel function u : H −→
−→ Υ such that f (·) = g (·) + σ(·)Q 1=2u(·). Set

U (y; t ) = exp
(∫ t

0

〈
u(Z y(s)); ·

〉
dW (s) − 1

2

∫ t

0

∥∥u(Z y(s))
∥∥2

ds

)

for t ≥ 0, y ∈ H . Suppose that
(a) EU (y; t ) = 1 for any t ≥ 0 and y ∈ H ,
(b) for any t ≥ 0 and any yn; y ∈ H such that yn −→ y weakly

U (yn; t ) P−→
n→∞

U (y; t ):

If, moreover,

(2.10) ϕ(Z yn (t )) P−→
n→∞

ϕ(Z y(t ))

for all ϕ ∈ S b(Hw), t ≥ 0 and any yn; y ∈ H such that yn −→ y weakly, then Ptϕ ∈ S b(Hw)
for any ϕ ∈ S b(Hw) and t ≥ 0.

Remark 2.3. Note that processes considered in Proposition 2.1 and Theorem 2.2
are not only sequentially weakly Feller but they satisfy also (2.10), cf. formulae (2.2),
(2.7).

Remark 2.4. In fact we prove a more general result: if E is a set of bounded Borel
functions on H such that (2.10) holds for any ϕ ∈ E and a t ≥ 0 then Pt (E ) ⊆ S b(Hw).
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Proof. Fix t > 0, ϕ ∈ S b(Hw), and yn ∈ H , yn → y weakly. We aim at proving

lim
n→∞

Ptϕ(yn) = Ptϕ(y):

Let us define probability measures P̃n, P̃ on (Ω; F ) by d P̃n = U (yn; t ) d P, d P̃ =

= U (y; t ) d P. Obviously

lim
n→∞

ϕ(Z yn (t )) = ϕ(Z y(t )) in L1(P)

by (2.10). Assumptions (a), (b) and nonnegativity of U (yn; t ) imply

lim
n→∞

U (yn; t ) = U (y; t ) in L1(P).

Denoting by ‖·‖∞ the natural sup-norm on S b(Hw) we obtain by the Girsanov theorem

∣∣Ptϕ(yn) − Ptϕ(y)
∣∣ =

∣∣∣∣
∫

Ω

ϕ(Z yn (t )) d P̃n −
∫

Ω

ϕ(Z y(t )) d P̃
∣∣∣∣ ≤

≤
∫

Ω

∣∣{U (yn; t ) − U (y; t )}ϕ(Z yn (t ))
∣∣ d P +

+

∫

Ω

∣∣U (y; t ){ϕ(Z yn (t )) − ϕ(Z y(t ))}
∣∣ d P ≤

≤ ‖ϕ‖∞
∫

Ω

∣∣U (yn; t ) − U (y; t )
∣∣ d P +

+ K

∫

Ω

∣∣ϕ(Z yn (t )) − ϕ(Z y(t ))
∣∣ d P + 2‖ϕ‖∞

∫

{U (y;t )>K }
U (y; t ) d P

for any constant K > 0 and our claim follows easily.

Our next goal is to show that the hypotheses of Theorem 2.3 might be satisfied
under reasonable assumptions upon A and the nonlinear terms f , σ.

First, note that if

(2.11) lim
n→∞

∫ T

0

∫

Ω

∥∥u(Z yn (t )) − u(Z y(t ))
∥∥2

Υ
d P dt = 0

for arbitrary T ≥ 0 and yn; y ∈ H such that yn → y weakly, then (b) follows. If the
function u is continuous and of a linear growth, then (2.11) is a consequence of

(2.12) lim
n→∞

∫ T

0

∫

Ω

∥∥Z yn (t ) − Z y(t )
∥∥2

d P dt = 0

(see e.g. [10, Theorem 3.1]). This simple observation will be useful in the following
examples.

Example 2.1. Let us consider an equation with additive noise

(2.13) dX =
(
AX + f (X )

)
dt + Q 1=2 dW

assuming that H = Υ and (A1) is satisfied, the semigroup (eAt ) is compact, Rng(f ) ⊆
⊆ Rng Q 1=2, and the function Q−1=2f : H −→ H is continuous and obeys the linear
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growth condition, i.e.

(2.14) ‖Q−1=2f (x)‖ ≤ K
(
1 + ‖x‖

)

for a K < ∞ and any x ∈ H . Let weak uniqueness hold for (2.13). Then Pt

(
S b(Hw)

)
⊆

⊆ S b(Hw) for any t ≥ 0, where (Pt ) is the transition semigroup defined by the equation
(2.13).

Indeed, one can show easily that (2.12) holds for solutions of the equation

dZ = AZ dt + Q 1=2 dW;

since for all T > 0 and any weakly convergent sequence yn → y

lim
n→∞

∫ T

0

∫

Ω

∥∥Z yn (t ) − Z y(t )
∥∥2

d P dt = lim
n→∞

∫ T

0

∥∥eAt (yn − y)
∥∥2

dt = 0

by compactness of the semigroup (eAt ). Setting u = Q−1=2f and using (2.14) we can
see that assumptions of Theorem 2.3 are satisfied.

Example 2.2. As our second example we will investigate the equation (2.9) in the
particular case of a non-degenerate diffusion term; namely, we consider the problem

(2.15) dX =
(
AX + f (X )

)
dt + σ(X ) dW

supposing that σ : H −→ L (Υ; H ) is a Lipschitz continuous function such that σ(z)
is an invertible operator for any z ∈ H and

sup
z∈H

‖σ−1(z)‖ < ∞:

Assume further ∫ T

0

∥∥eAt
∥∥2

HS
dt < ∞; T > 0;

then the semigroup (eAt ) is obviously compact and (the proof of) Theorem 2.2 shows
that (2.12) holds for solutions of the equation

dZ = AZ dt + σ(Z ) dW:

Let f : H −→ H be a bounded continuous function (so weak uniqueness holds for
(2.15)). With the choice u = σ−1f all assumptions of Theorem 2.3 are satisfied. Taking
into account Remark 2.4 we find that Pt (C b(H )) ⊆ S b(Hw) for all t > 0.

3. Invariant measures

We shall close this Note by showing that the sequential weak Feller property of a
transition semigroup is sufficient for the application of the Krylov-Bogolyubov procedure
of deriving existence of an invariant measure from boundedness in probability. Let P
be a homogeneous transition probability in H such that P (·; ·; Γ) : R

+
×H −→ R is a

Borel function for every Borel set Γ in H . Denote by (Pt ) the corresponding transition
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semigroup on the space of all real bounded Borel functions on H , and by (P∗
t ) the

adjoint semigroup.

Proposition 3.1. Suppose that the semigroup (Pt ) is sequentially weakly Feller, that is,
Pt

(
C b(Hw)

)
⊆ S b(Hw). Assume that we can find a Borel probability measure ν on H and

T0 ≥ 0 such that for any ε > 0 there exists R > 0 satisfying

(3.1) sup
T ≥T0

1
T

∫ T

0
P∗

t ν
(
{‖x‖ > R}

)
dt < ε:

Then there exists an invariant probability measure for P .

Remark 3.1. In the proof we will need the following simple observation: a bounded
function ψ : H −→ R belongs to S b(Hw) if and only if its restriction ψ|B to any
(closed) ball B ⊂ H is weakly continuous on B. Indeed, it suffices to realize that
weakly convergent sequences are bounded and weak topology in any ball is metrizable.

Proof of Proposition 3.1. For any n ∈ N define a Borel probability measure µn on
H by

µn =
1
n

∫ n

0
P∗

s ν(·) ds:

According to (3.1), the set M = {µn; n ≥ T0} is tight as a set of measures on Hw ,
as balls are weakly compact. Since weak compacts in H are metrizable, the set M
is relatively sequentially compact in the narrow topology of the space of finite Borel
measures on Hw by [8, Theorem 6]. Thus there exist a Borel probability measure µ̃ on
H and a subsequence {µnk

} of {µn}n≥T0
such that µnk

−→ µ̃ narrowly, that is
∫

H

ϑ dµnk
−→
k→∞

∫

H

ϑ d µ̃ ’ ϑ ∈ C b(Hw):

We aim at proving that µ̃ is an invariant measure, which will follow from

(3.2)
∫

H

ϕ d µ̃ =

∫

H

Ptϕ d µ̃ ’ t ≥ 0 ’ ϕ ∈ C b(Hw):

We cannot use the standard proof of (3.2) directly, as we do not know a priori whether
∫

H

Ptϕ d µ̃ = lim
k→∞

∫

H

Ptϕ dµnk

the function Ptϕ being only sequentially continuous. Therefore, towards the proof of
(3.2) let us fix ε > 0, t > 0 and ϕ ∈ C b(Hw) arbitrarily. By (3.1) we can find a ball
B = {x ; ‖x‖ ≤ R} in H such that

inf
k≥1

µnk
(B) ≥ 1 − ε;

so also µ̃(B) ≥ 1 − ε by the portmanteau theorem. Ptϕ is weakly continuous on the
weakly compact set B, hence there exists g ∈ C b(Hw) such that g = Ptϕ on B and
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‖g‖∞ = ‖Ptϕ‖∞ ≤ ‖ϕ‖∞. Obviously
∣∣∣∣
∫

H

Ptϕ d µ̃−
∫

H

g d µ̃

∣∣∣∣ =

∣∣∣∣
∫

H\B

Ptϕ d µ̃−
∫

H\B

g d µ̃

∣∣∣∣ ≤ 2‖ϕ‖∞ µ̃(H \ B) ≤ 2ε‖ϕ‖∞;

and ∣∣∣∣
∫

H

Ptϕ dµnk
−
∫

H

g dµnk

∣∣∣∣ ≤ 2ε‖ϕ‖∞; k ∈ N:

Moreover, as well known,
∣∣∣∣
∫

H

(
ϕ−Ptϕ

)
dµnk

∣∣∣∣=
∣∣∣∣

1
nk

∫ nk

0

∫

H

(
ϕ−Ptϕ

)
dP∗

s ν ds

∣∣∣∣=
∣∣∣∣

1
nk

∫ nk

0

∫

H

(
Psϕ−Pt+sϕ

)
dν ds

∣∣∣∣=

=

∣∣∣∣
∫

H

1
nk

[∫ nk

0
Psϕ ds −

∫ nk+t

t

Psϕ ds

]
dν

∣∣∣∣ ≤
2t
nk

‖ϕ‖∞:

Altogether,
∣∣∣∣
∫

H

ϕ d µ̃−
∫

H

Ptϕ d µ̃

∣∣∣∣ ≤ 2ε‖ϕ‖∞ +

∣∣∣∣
∫

H

ϕ d µ̃−
∫

H

g d µ̃

∣∣∣∣ =

= 2ε‖ϕ‖∞ + lim
k→∞

∣∣∣∣
∫

H

ϕ dµnk
−
∫

H

g dµnk

∣∣∣∣ ≤

≤ 4ε‖ϕ‖∞ + lim sup
k→∞

∣∣∣∣
∫

H

ϕ dµnk
−
∫

H

Ptϕ dµnk

∣∣∣∣ ≤

≤ 4ε‖ϕ‖∞ + lim
k→∞

2t
nk

= 4ε‖ϕ‖∞;

and our claim follows as ε > 0 was arbitrary.

Example 3.1. Let us consider the equation (2.3) assuming that the hypotheses of
Theorem 2.2 are satisfied. Let there exist a mild solution X of (2.3), defined on some
probability space (Ω; F ; P), such that

(3.3) ∃T0 ≥ 0 ’ ε > 0 ∃R < ∞ sup
T ≥T0

1
T

∫ T

0
P
{
‖X (t )‖ > R

}
dt < ε:

Then there exists an invariant measure for (2.3). This result was obtained in [3, The-
orems 4 and 6] (cf. also [5, Theorem 6.1.2]) by a rather different method.

Example 3.2. Let us consider the equation (2.13) under the assumptions of Example
2.1. If there exists a solution X to (2.13) satisfying (3.3) then there exists an invariant
measure for this equation. Similar statement hold true for the problem (2.15) under
the assumptions of Example 2.2. These results seem to be new; they are closely related
to but distinct from Theorem 5.2 in [1].

Example 3.3. I. Vrkoč constructed in [13] a bounded Lipschitz function f in a
Hilbert space H such that all solutions of the differential equation

(3.4) ẋ = f (x)
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are bounded, nevertheless, there is no invariant measure for (3.4). Accordingly, the
transition semigroup defined by (3.4) cannot be sequentially weakly Feller.
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