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Geometria algebrica. — Corestriction of central simple algebras and families of Mumford-
type. Nota di Federica Galluzzi, presentata (*) dal Corrisp. C. Procesi.

Abstract. — Let M be a family of Mumford-type, that is, a family of polarized complex abelian
fourfolds as introduced by Mumford in [9]. This family is defined starting from a quaternion algebra A over
a real cubic number field and imposing a condition to the corestriction of such A: In this paper, under some
extra conditions on the algebra A; we make this condition explicit and in this way we are able to describe
the polarization and the complex structures of the fibers. Then, we look at the non simple CM-fibers and
we give a method to construct a family of Mumford-type starting from such a fiber.

Key words: Abelian varieties; CM-type; Corestriction.

Riassunto. — Corestrizione di algebre semplici centrali e famiglie di tipo Mumford. Si prendono in
considerazione le famiglie di varietà abeliane complesse di dimensione quattro definite da Mumford in [9].
Per la costruzione di queste famiglie si parte da un’algebra di quaternioni A con centro su un campo cubico
totalmente reale che abbia corestrizione isomorfa a un’algebra di matrici. In questo lavoro, imponendo
delle condizioni aggiuntive sull’algebra A; si sviluppa questa richiesta sulla corestrizione e si riescono cos̀ı a
fornire esempi espliciti di tali famiglie. Si studiano poi delle fibre di tipo CM e infine si dà un metodo per
costruire una famiglia di tipo Mumford a partire da una data fibra di tipo CM.

Introduction

A family of Mumford-type is a 1-dimensional family of polarized abelian fourfolds
as defined by Mumford in [9].

The generic fibers of these families gave the first example of abelian varieties not char-
acterized by their endomorphism algebra and having a “small’’ Mumford-Tate group.
More precisely, their Mumford-Tate group is smaller than the one of the generic abelian
fourfold. Kuga proved the Hodge Conjecture for such varieties in [6, 2.2.2] and Hazama
showed that there are exceptional classes in H 4(X × X ); if X denotes such a variety
(see [3, 5.2]). The Hodge Conjecture for a product of varieties of Mumford-type is
still unknown. Nevertheless, their Hodge structure can be investigated studying the
representations of their Mumford-Tate groups (see [2, 3]).

In this paper we present, for the first time, explicit examples of such families. To do
this, we have to look at the original definition of Mumford trying to make it explicit.

We write an abelian variety of complex dimension g as (V; Λ; J; E ); where V ∼=
Q2g and Λ; J; E are the lattice, the complex structure and the polarization respectively.

The construction of the family starts from a quaternion algebra A over a real cubic
field such that the corestriction of A is isomorphic to M8(Q) (for definition of core-
striction see Section 2.5). This is just the condition we want to understand in order to
produce explicit examples of families af Mumford-type.

(*) Nella seduta del 14 maggio 1999.



192 f. galluzzi

We assume some extra conditions on the algebra A: In this way we can give the data
(V; Λ; J; E ) for a fiber in a familiy of Mumford-type. Then, we construct families with
a certain given fourfold of CM-type as a fiber (see Section 5 for definition of varieties
of CM-type). This is a natural request since families of Mumford-type are characterized
by having such fibers (see [9, Theorem 3]).

Finally, we give a family of Mumford-type having as a CM-fiber the variety Y ×C
where Y is the Jacobian of the hyperelliptic curve defined by y2 = x7 − 1 and C is an
elliptic curve of CM-type with Endo(C ) = Q(

√
−7):

These results could be a starting point for studying the geometry of such varieties
in details. For example, is still unknown if a general abelian variety of Mumford-type
can be isogenous to a jacobian.

The paper is organized as follows.
In Section 1 we give notations and definitions about complex abelian varieties and

we recall the details of Mumford’s construction. In Section 2 we introduce quaternion
and cyclic algebras and we define the corestriction. If K is a Galois number field and
A is central simple algebra over K; the corestriction CorK=Q(A) over Q is defined as

the Q-subalgebra of A⊗3 of invariants

CorK=Q(A) = (A⊗3)Gal(K=Q)

under a certain action of the Galois group Gal(K=Q) (for the definition of this action
see Section 2.7). The corestriction CorK=Q(A) is a central simple algebra over Q: The
example of Mumford starts from a quaternion algebra A over a totally real cubic number
field K and it is based on the following hypothesis on CorK=Q(A):

CorK=Q(A) ∼= M8(Q):

In Section 3, under some mild restrictions on the algebra A, we will give V ∼= Q8

as the subspace of L8 fixed by a certain action of CorK=Q(A); where L is a quadratic
extension of K contained in A :

Theorem 3.1. There exist a matrix R ∈ M8(L) and an endomorphism τ ∈ End(M8(L))
such that
i) CorK=Q(A) ∼= {M ∈ M8(L) : Rτ (M )R−1 = M };

ii) there exists an isomorphism Ψ : CorK=Q(A)
∼=−→ EndQ(V ); where V is the Q-subspace of

L8 of dimension 8 given by:

V := {x ∈ L8 : Rτ (x) = x}:

To prove this result we first use the fact that A embeds, as a K -algebra, in M2(L)
(see Proposition 2.9). Thus, A⊗3 ,→ M2(L)⊗3: We then define an action of Gal(L=Q)
on M2(L)⊗3 such that

(M2(L)⊗3)Gal(L=Q) ∼= CorK=Q(A) (see Lemma 3.5):

Finally, we give an explicit isomorphism (see Lemma 3.6) M2(L)⊗3 ∼= M8(L) proving
i) and ii) of 3.1.
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Thanks to this result, in Section 4 we can give explicitly (V; Λ; J; E ) for a general
fiber of the family.

In Section 5 we find a non simple CM-fiber X isogenous to a product Y × C
where Y; C are a simple threefold and an elliptic curve of CM-type respectively. This
result suggests how to construct explicit examples. We prove in fact that if one gives
a simple abelian threefold Y of CM-type and an elliptic curve C also of CM-type,
with some assumptions on the CM-field of Y; then it is possible to construct a family
of Mumford-type with Y × C as a fiber (Theorem 5.5). Finally, in Section 5.5 we
construct a family of Mumford-type having as a CM-fiber the variety Y × C where Y
is the Jacobian of the hyperelliptic curve defined by y2 = x7 − 1 and C is an elliptic
curve of CM-type with Endo(C ) = Q(

√
−7):

1. Families of Mumford-type

1.1. Complex abelian varieties .

A complex polarized abelian varieties of dimension g is X = (V; Λ; J; E ) where V is
a Q-vector space of dimension 2g; Λ is a lattice in V; J is the complex multiplication,
that is, an R-linear endomorphism of VR := V ⊗Q R; such that J 2 = −I: Finally, E :
V × V −→ Q is a symplectic form satisfying the Riemann’s conditions:

E (Jx; Jy) = E (x; y) ; E (x; Jx) ≥ 0 :

We observe that to give J is equivalent to give a homomorphism of real algebraic groups
h : S1 → GL(VR); since we can put h(i)(v) := J (v); ’v ∈ VR:

1.2. Families of Mumford-type.

We recall now the construction of Mumford. Let A be a quaternion algebra over a
totally real cubic number field K such that its corestriction CorK=Q(A) satisfies

M1) CorK=Q(A) ∼= M8(Q);

(see Section 2.5 for the definition of corestriction). The Q-vector space V ∼= Q8 is
defined by the condition

EndQ(V ) ∼= M8(Q):

For Λ we take any lattice V: To define J and E we first ask the algebra A to verify

M2) A ⊗Q R ∼= H⊕H⊕ M (2;R):

Let consider now the algebraic group

G := {x ∈ A∗ : N (x) = 1};

where N is the canonical norm of the algebra A (see Definition 2.2). From M2)
follows that G (R) ∼= SU (2) × SU (2) × SL(2;R). The representation

α : G −→ GL(V ); x �−→ x ⊗ x ⊗ x
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becomes over R:

SU (2) × SU (2) × SL(2;R) → SO(4) × SL(2;R)

and leaves invariant a unique (up to scalars) symplectic form E on VR: Finally, let us
consider the map

h0 : S1 −→ G (R) ∼= SU (2) × SU (2) × SL(2;R)

eiθ �−→
(

I; I;

(
cos θ sin θ

− sin θ cos θ

))
:

The composition

h : S1 −→ Sp(VR; E ) ⊂ GL(VR); h := α ◦ h0

gives the complex multiplication.
Mumford defines a family from (V; Λ; h; E ) in the following way. Let K 0 be the

connected component of the centralizer of h(i) in G (R):

K 0 = {g ∈ G (R) : α(g ) h(i) = h(i)α(g )}0:

We obtain the map

X = G 0(R)=K 0 −→ Sp(VR)=Uh

x = gK 0 �−→ α(g )(h(i)Uh)α(g )−1

where

Uh = {φ ∈ Sp(VR; E ) : φ h(i) = h(i)φ}:

Thus to any point x = gK 0 in the bounded symmetric domain G 0(R)=K 0; we can
associate a polarized abelian variety

Xx := (V; Λ;α(g )hα(g )−1; E ):

Moreover, if Γ ⊂ G is an arithmetic subgroup preserving Λ, then γ ∈ Γ induces an
isomorphism Xx

∼= X
γx; where the action γx is the one induced by G: The quotient

Γ=X is a smooth quasi projective algebraic variety and we have a family of abelian
varieties M = {Xx : x ∈ Γ\G 0(R)=K 0} which can be glued in an analytic space fibered
over Γ\G 0(R)=K 0; (see [9, 8, 6]).

2. Quaternion algebras and corestriction

In this section we recall some basic facts about quaternion algebras and we get some
results which allow us to understand better the construction of Mumford.

2.1. Quaternion algebras.

Definition 2.1. Let K be a number field, a quaternion algebra over K is a central simple
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algebra with centre K such that

A = K ⊕ K ε1 ⊕ K ε2 ⊕ K ε3 with





ε2
1 = d;

ε2
2 = e;

ε3 = ε1ε2 = −ε2ε1

d; e ∈ K:

We denote it by A = (d; e)K : If L = K (ε1) and x ∈ L then A = L ⊕ Lε2 with
xε2 = ε2x where “-’’ indicates the non trivial K -automorphism of L:

Definition 2.2. The algebra A has a canonical involution

ι : A −→ A; a = a0 + a1ε1 + a2ε2 + a3ε3 �−→ ι(a) = a0 − a1ε1 − a2ε2 − a3ε3

which defines a norm map

N : A −→ K; a �−→ a ι(a):

A quaternion algebra can be a skew field or a matrix algebra: there is the following
[1, Theorem 1-5, p. 22]:

Theorem 2.3. For
√

d =∈ K the quaternion algebra A = (d; e)K is a skew field if and only
if the equation

dx2 + ey2 − z2 = 0

has no non-trivial solutions in K . If A = (d; e)K is not a skew field, then is isomorphic to
M2(K ).

Example 2.4. If K = R; then A = (d; e)K
∼=

{ H if d; e < 0

M2(R) otherwise:

2.2. Cyclic algebras.

We recall now some definitions and results about cyclic algebras. We will use these
results later in proving certain isomorphisms between central simple algebras and matrix
algebras.

Definition 2.5. Let K be a number field and let L=K be a cyclic extension of degree n: A
cyclic algebra is a central simple algebra over K containing L.

Let now Gal(L=K ) the Galois group of L over K and let σ be a generator of
Gal(L=K ). We can choose an L-basis of A as follows: e0 = 1; ei = ei (i = 1; : : : ; n−1);
where e is an element of A inducing σ. Moreover, en = a ∈ L and since e = σ(a) =

= ae = en+1 = ea; we have σ(a) = a; so a ∈ K: The multiplication law for A is given
by eλ = σ(λ)e λ ∈ L: Thus A is determined up to isomorphism by L=K; a and σ:
We write A = (L=K;σ; a):

Denote with NL=K the reduced norm of L over K: There is the following Theorem
(see [13, 8.12.4 and 8.12.6])

Theorem 2.6. The algebra (L=K;σ; a) is isomorphic to a matrix algebra if and only if
a ∈ NL=K (L∗):
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There is an important result concerning tensor products which will be useful later:

Theorem 2.7. Let (L=K;σ; a) and (L=K;σ; b) be two cyclic algebras. Thus,

(L=K;σ; a) ⊗ (L=K;σ; b) ∼= (L=K;σ; ab) ⊗ M2(K ):

Proof. See [13, Theorem 8.12.4].

Remark 2.8. A quaternion algebra A = (d; e)K is always a cyclic algebra. If
√

d =∈ K
it contains the quadratic subfield L = K (

√
d ) and A = (L=K;σ; e) where σ is the

non trivial K -automorphism of L:

2.3. Matrix algebras.

From now on K denote a number field, L = K (δ); δ2 = d ∈ K and A = (d; e)K is
a quaternion algebra as in Definition 2.1. With “−” we denote the K -linear involution
of L: We have the following

Proposition 2.9. There is an injective homomorphism of K -algebras :

R : A −→ M2(L); a = x + yε2 �−→
(

x ey
y x

)
:

The algebra R(A) ∼= A is the K -subalgebra in M2(L) generated by the images of ε1 and ε2 :

R(ε1) =

(√
d 0

0 −
√

d

)
; R(ε2) =

(
0 e
1 0

)
:

Proof. By definition of A; we can identify A with L2 via x + yε2 �→ (x; y): The
injectivity of the homomorphism R is straightforward.

Remark 2.10. The norm N (a) of an element a ∈ A coincides with the determinant
det(R(a)):

2.4. Galois actions.

If E=F is a Galois field extension, we denote with Gal(E=F ) the Galois group of E
over F and with TrE=F ; NE=F the reduced trace and the reduced norm of E over F
respectively. The subalgebra M2(K ) ⊂ M2(L) is the fixed point set of the map induced
by the K -linear involution of L

L −→ L; x = a + bδ �−→ x = a − bδ a; b ∈ K:

From now on we denote it by

ρ : M2(L) −→ M2(L); M =

(
x y
z t

)
�−→ ρ(M ) = M =

(
x y
z t

)
:

Now we define a Galois action on M2(L) whose fixed points set is isomorphic to
A = (d; e)K :

Lemma 2.11. Let A = (d; e)K : Let L = K (
√

d ); n =

(
0 e
1 0

)
∈ M2(L): Then

(d; e)K
∼= M2(L)φ := {M ∈ M2(L) : φ(M ) = M }; with φ(M ) = nM n−1:
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Proof. We have

φ(
(

u v
z t

)
) =

(
t ez

e−1v u

)
:

The fixed points are the matrices
(

x y
y=e x

)
(x; y ∈ L):

which are just the elements of R(A).

In case e = NL=K (L∗)(u) for some u ∈ L it can be seen that the action we just
defined is equivalent to ρ; the standard one.

2.5. The corestriction of a central simple algebra.

In this section we introduce the corestriction of a central simple algebra which is a
crucial object in the construction of Mumford. We follow [11].

2.6. The twist of an algebra.

Let K be a Galois extension of Q and let A be a central simple K -algebra. For
any σ in the Galois group Gal(K=Q) let Aσ: be the ring A endowed with a K -algebra
structure given by

λ · a := σ−1(λ)a a ∈ Aσ; λ ∈ K:

Proposition 2.12. Let σ ∈ Gal(K=Q) and d; e ∈ K: Let A = (d; e)K , then

Aσ ∼= (σ(d );σ(e))K :

Proof. Let A = (d; e)K : Any element of A can be written as a = a0ε0 + · · · + a3ε3

and ai ∈ K : The multiplication in Aσ is given by

ε2
1 = eε0 = σ(e) · ε0; ε2

2 = σ(d ) · ε0; ε3 := ε1ε2 = −ε2ε1

and these are the relations defining the quaternion algebra (σ(d );σ(e))K :

2.7. The corestriction.

Let G = Gal(K=Q) = {σ1; : : : ;σn} : Let ZA be the K -algebra defined by ZA :=
:= Aσ1 ⊗K · · · ⊗K Aσn : We define now an action σ̃ : ZA → ZA of G on ZA :

σ̃(a1 ⊗ · · · ⊗ an) := b1 ⊗ · · · ⊗ bn; with bi = aj if σi|K
= (σσj )|K :

Definition 2.13. The corestriction of A is the Q-algebra of invariants :

CorK=Q(A) := Z Gal(K=Q)
A :

Remark 2.14. The corestriction CorK=Q(A) is a central simple algebra.

We prove now a general result that will be useful later.
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Theorem 2.15. Let K be an extension of Q and let V be a K -vector space of dimension
n on which G acts σ-linearly :

σ(λv) = (σλ)(σv) λ ∈ K; v ∈ V; σ ∈ G:

Then the space on invariants V G is a Q-vector space and V G ⊗Q K = V: In particular,
dimK V = dimQ V G :

The space V G is a Q- vector space by definition of σ-linearity. Fix now a basis of

V : V
ψ∼= K n: We define two different actions of G on K n:

i) σ · (x1; : : : ; xn) := (σ(x1); : : : ;σ(xn)); so (K n)G = Qn

ii) σ(x1; : : : ; xn) := ψ(σ(ψ−1(x1; : : : ; xn))):

We can write σx = Aσ(σ ·x) with Aσ ∈ GL(n; K ); x ∈ K n: The group G acts in an
obvious way on GL(n; K ): we write σM for the action on a matrix M ∈ GL(n; K ): It
turns out that {Aσ}σ∈G is a 1-cocycle in the Galois cohomology of G on GL(n; K ): In
fact a straightforward computation shows that A

σρ = Aσ

σAρ: Moreover, the following
result holds

H 1(G; GL(n; K )) = {1}

(see [12, Chapt. X, Prop. 3]). Thus the 1-cocycle {Aσ}σ∈G is a coboundary, that is,
there exists a matrix B ∈ GL(n; K ) such that Aσ = σBB−1; ’σ ∈ G:

One has

(B σB−1)σx = σ · x

and this means that the two actions are equivalent. Thus, V G ⊗Q K ∼= V:

Corollary 2.16. Let A be a central simple K -algebra with K a Galois extension of Q
and let CorK=Q(A) be the corestriction of A: There is an isomorphism

CorK=Q(A) ⊗Q K ∼= ZA:

3. The corestriction for a family of Mumford-type

In this section, under some assumptions on the quaternion algebra A = (d; e)K ;
we will make the construction of Mumford explicit by giving an isomorphism

CorK=Q(A)
∼=−→ M8(Q):

From now on we consider the case when K is an extension of Q of degree 3: Consider
the quaternion algebra A = (d; e)K ; with the assumptions

Q0) L = K (
√

d ) is a cyclic extension of Q of degree 6;
Q1) d ∈ Q; d < 0;
Q2) NK=Q(e) = wρ(w) for some w ∈ L; where ρ ∈ Gal(L=Q) is the element of order 2:

We write Gal(L=Q) = {id; τ; : : :; τ 5}; Gal(K=Q) = {id;σ;σ2}; Gal(L=K ) = {id; ρ}.
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We will prove the following:

Theorem 3.1. Under the assumptions Q0), Q1), Q2) there exist a matrix R ∈ M8(L)
and an endomorphism τ ∈ End(M8(L)), such that

i) CorK=Q(A) ∼= {M ∈ M8(L) : Rτ (M )R−1 = M };

ii) there exists an isomorphism Ψ : CorK=Q(A)
∼=−→ EndQ(V ); where V is the Q-subspace of

L8 of dimension 8 given by :

V := {x ∈ L8 : Rτ (x) = x}:

3.1. Remarks.

The K -algebra ZA defined in Section 2.6 is isomorphic to a matrix algebra under
our assumptions. In fact, by 2.6, 2.7 and 2.12 follows

Proposition 3.2. In case A = (d; e)K with d ∈ Q and NK=Q(e) = ww for some w ∈
∈ Q(

√
d ); we have ZA = M8(K ).

Note that this result doesn’t assure that also CorK=Q(A) is a matrix algebra. Proving
the Theorem 3.1 we will give an explicit isomorphism which shows that the corestriction
is isomorphic to M8(Q):

In order to prove Theorem 3.1 we need some definitions and lemmas.
By the assumption Q1) of Section 3, d ∈ Q; hence σ(d ) = d for all σ ∈ Gal(K=Q):

Then

Gal(L=Q) ∼= Gal(L=Q(
√

d )) × Gal(L=K ) ∼= {id;σ;σ2} × {id; ρ}:

We will identify the subgroup Gal(L=Q(
√

d )) of Gal(L=Q) with the quotient Gal(K=Q).
We will write

x := ρ(x) thus τ (x) = (σρ)(x) = (ρσ)(x) = σ(x) = σ(x);

note that τ is a generator of Gal(L=Q).

Lemma 3.3. The group Gal(L=Q) acts on M2(L)⊗3.

Proof. Define the action of the generator ρ of Gal(L=K ) in the following way

ρ · (m1 ⊗ m2 ⊗ m3) := nm1n−1 ⊗ σ(n)m2σ(n−1) ⊗ σ2(n)m3σ
2(n−1); n =

(
0 e
1 0

)
:

Then, define the action of σ ∈ Gal(K=Q) by σ ·(m1⊗m2⊗m3) := σ(m3)⊗σ(m1)⊗σ(m2):
We have to show that the action of σ commutes with the action of ρ: First of all

we note that ρσ = σρ (∈ Gal(L=Q)); thus the compositions

σ · (ρ·(m1 ⊗ m2 ⊗ m3)) = σ · (nm1n−1 ⊗ σ(n)m2 σ(n−1) ⊗ σ2(n)m3 σ
2(n−1)) =

=n(σρ)(m3)n−1 ⊗ σ(n)(σρ)(m1)σ(n−1) ⊗ σ2(n)(σρ)(m2)σ2(n−1)
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and

ρ · (σ · (m1 ⊗ m2 ⊗ m3)) = ρ · (σ(m3) ⊗ σ(m1) ⊗ σ(m2)) =

= n(ρσ)(m3)n−1 ⊗ σ(n)(ρσ)(m1)σ(n−1) ⊗ σ2(n)(ρσ)m2σ
2(n−1)

coincide.

Lemma 3.4.

ZA = A ⊗K Aσ ⊗K Aσ2 ∼= (M2(L)⊗3)ρ:

Proof. Since d ∈ Q; by 2.11 and 2.12 it follows that

Aσi ∼= (d; e)σ
i

K = (d;σi(e))K
∼= {m ∈ M2(L) : σi(n) m σi (n−1) = m}:

Thus there is an embedding of simple K -algebras: ZA ,→ (M2(L)⊗3)ρ: On the other
hand by 2.15 we have dimK (ZA) = dimK (M2(L)⊗3)ρ:

From the previous results we derive the following

Lemma 3.5. There is an isomorphism of Q-algebras

CorK=Q(A) ∼= (M2(L)⊗3)Gal(L=Q):

Proof. The action of Gal(L=Q)=Gal(L=K ) ∼= Gal(K=Q) on (M2(L)⊗3)ρ ∼= ZA

given in Lemma 3.3 coincides with the action of Gal(K=Q) on ZA which defines
CorK=Q(A):

We write now the action of Gal(K=Q) on (M2(L)⊗3)ρ in terms of matrix actions
in M8(L): To do this we need the condition Q2):

Lemma 3.6. i) There exists a matrix Q ∈ M8(L) with QQ = I such that the action of ρ
is given by

ρ : M8(L) −→ M8(L); M �−→ QM Q−1:

ii) There exists a matrix P ∈ M8(L) such that the action of σ is given by

σ : M8(L) −→ M8(L); M �−→ Pσ(M )P−1:

Proof. Consider the standard basis of L8; {f1; : : : ; f8}: As a standard basis for the
vector space (L2)⊗3 we take e111; e221; e212; e122; e222; e112; e121; e211; with eijk :=

ei ⊗ ej ⊗ ek; where {e1; e2} is the standard basis of L2: Then the isomorphism

L2 ⊗ L2 ⊗ L2 ∼= L8; e111 �→ f1; e221 �→ f2; : : : ; e221 �→ f8

induces an isomorphism

M2(L)⊗3 ∼=−→ M8(L):

The action of Gal(L=Q) on M2(L)⊗3 defines, via this isomorphism, an action of
Gal(L=Q) on M8(L) and CorK=Q(A) ∼= M8(L)Gal(L=Q) (see Lemma 3.5).
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To prove i), we note that the action of ρ on M2(L)⊗3 can be written in this way:

ρ · (m1 ⊗ m2 ⊗ m3) = T (m1 ⊗ m2 ⊗ m3)T −1; T := n ⊗ σ(n) ⊗ σ2(n):

The matrix T defines a L-linear map

T : (L2)⊗3 −→ (L2)⊗3; x1 ⊗ x2 ⊗ x3 �−→ (nx1) ⊗ (σ(n)x2) ⊗ (σ2(n)x3)

which acts on the basis eijk of (L2)⊗3 by:

e111 �−→ e222 e222 �−→ eσ(e)σ2(e)e111

e221 �−→ eσ(e)e112 e112 �−→ σ2(e)e221

e212 �−→ eσ2(e)e121 e121 �−→ σ(e)e212

e122 �−→ σ(e)σ2(e)e211 e211 �−→ ee122:

Thus the matrix in M8(L) corresponding to T ∈ M2(L)⊗3 is

B =

(
0 B1

B2 0

)

where B1; B2 are 4 × 4 blocks given by:

B1 =




NK=Q(e) 0 0 0

0 σ2(e) 0 0
0 0 σ(e) 0
0 0 0 e


;

B2 = NK=Q(e)B−1
1 =




1 0 0 0
0 eσ(e) 0 0
0 0 eσ2(e) 0
0 0 0 σ(e)σ2(e)


 :

The action of ρ on M ∈ M8(L) is thus given by: M �−→ BM B−1: If we replace B
by a matrix Q such that B−1Q = λI for some λ ∈ L; we obtain the same action:

QM Q−1 = (λB)M (λB)1 = BM B−1:

Now we use the assumption Q2) of Section 3, NK=Q(e) = ww to define

Q :=
(

0 w−1B1

wB−1
1 0

)
;

and we have B−1Q =

(
0 NK=Q(e)−1B1

B−1
1 0

)(
0 w−1B1

wB−1
1 0

)
=

(
w−1 0

0 w−1

)
:

It can be easily seen that QQ = I:
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As for ii), define S ∈ End((L2)⊗3) by

S : (L2)⊗3 −→ (L2)⊗3; x1 ⊗ x2 ⊗ x3 �−→ x3 ⊗ x1 ⊗ x2:

Thus we have:

(S (m1 ⊗ m2 ⊗ m3)S−1)(x1 ⊗ x2 ⊗ x3) = (S (m1 ⊗ m2 ⊗ m3))(x2 ⊗ x3 ⊗ x1) =

= S
(
(m1x2) ⊗ (m2x3) ⊗ (m3x1)

)
=

= (m3x1) ⊗ (m1x2) ⊗ (m2x3) =

=
(
m3 ⊗ m1 ⊗ m2

)
(x1 ⊗ x2 ⊗ x3):

In End((L2)⊗3) we have S (m1 ⊗ m2 ⊗ m3)S−1 = m3 ⊗ m1 ⊗ m2 : Now,

σ · (m1 ⊗ m2 ⊗ m3) = σ(m3) ⊗ σ(m1) ⊗ σ(m2) = S (σ(m1) ⊗ σ(m2) ⊗ σ(m3))S−1:

The matrix P ∈ M8(L) corresponding to S is easy to determine using explicitly the
action of σ: Se111 = e111; hence Pf1 = f1; Se221 = e122 hence Pf2 = f4 etc. Thus

P =

(
P11 P12

P21 P22

)
; P11 = P22 =




1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0


; P21 = P12 = 0:

3.2. Proof of Theorem 3.1.

As for i), we proved in Lemma 3.5 that

CorK=Q(A) ∼= (M2(L)⊗3)Gal(L=Q)

so the corestriction of A will be isomorphic to the Q-algebra of the invariants in M8(L)
under the action of ρ and σ as in Lemma 3.6. The Galois group Gal(L=Q) is cyclic
and it is generated by τ = ρσ ; so it suffices to take the invariants under the action of
that element. Let now R := PQ; with P; Q as in Lemma 3.6 i), 3.6 ii). The map

τ : M8(L) −→ M8(L); M �−→ Rσ(M )R−1

defines an action of Gal(L=Q) on M8(L) such that

(M8(L))Gal(L=Q) ∼= CorK=Q(A):

Now to prove part ii) it suffices to find a Q-subspace of L8 which is invariant under
the action on CorK=Q(A): Consider the Q-subspace

V := {x ∈ L8 : Rσ(x) = x}:
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One has CorK=Q(A) = {M ∈ M8(L) : Rτ (M ) = MR} and V = {x ∈ L8 : Rτ (x) = x}:
Thus CorK=Q(A) acts on V :

Rτ (Mx) = Rτ (M )τ (x) = MRτ (x) = Mx; (M ∈ CorK=Q(A); x ∈ V ):

This gives a map CorK=Q(A) −→ EndQ(V ) ∼= M8(Q): Since CorK=Q(A) is a simple
algebra, this map is injective and it is surjective for dimension reasons.

We derive the following result on the real points of the corestriction, which we will
be useful later in studying complex structures of our families.

Corollary 3.7. CorK=Q(A)(R) := CorK=Q(A)⊗QR ∼= {M ∈ M8(C) : QM Q−1 = M }:

Proof. We note that CorK=Q(A) ⊗Q R = (CorK=Q(A) ⊗Q K ) ⊗K R: On the other
hand, by 2.16 and 3.4 we have CorK=Q(A) ⊗Q K = ZA

∼= (M8(L))ρ:
Thus,

(CorK=Q(A) ⊗Q K ) ⊗K R ∼= (M8(L))ρ ⊗K R
∼= {M ∈ M8(L ⊗K R) : QM Q−1 = M }

∼= {M ∈ M8(C) : QM Q−1 = M }:

4. Explicit description

With the results of the previous sections we can explicite the construction of Sec-
tion 1.2. From now on we fix an embedding L ,→ C and an embedding K ,→ R:
Thus we can identify Gal(K=Q) = {id;σ;σ2} with Hom(K;R) and Gal(L=Q) =

= {id; τ; :::; τ 5} with Hom(L;C): Over C; we indicate with “-” the complex conju-
gation, which is the R-linear extension of the K -linear involution of L; also indicated
with “-”. We study now the condition M2) of Section 1.2 on the R-points of a
quaternion algebra A = (d; e)K satisfying the assumptions Q0), Q1), Q2) of Section 3:

M2) A ⊗K R ∼= H⊕H⊕ M (2;R):

Proposition 4.1. Let A = (d; e)K be a quaternion algebra satisfying Q0)-Q2) of
Section 3. Thus A satisfies the condition M2) if and only if

Q3) e < 0; σ(e) < 0; σ2(e) > 0; (e ∈ K ⊆ R):

Proof. The condition M2) means that the K -algebra A = (d; e)K is isomorphic to
the Hamilton’s quaternions when extended to R for two of the embeddings {id;σ;σ2}
and it is isomorphic to a matrix algebra for the last one. Recalling that d ∈ Q < 0
and Theorem 2.3, we need the condition Q3).

Let

A = (d; e)K = K ⊕ K ε1 ⊕ K ε2 ⊕ K ε3

be a quaternion algebra which satisfies the assumptions Q0)-Q3) of Section 3 and
Proposition 4.1. Under these assumptions we proved that A satisfies conditions M1),



204 f. galluzzi

M2) of 1.2. Thus we can construct a family of Mumford-type

M = {Xx : x ∈ Γ\G 0(R)=K 0}:

We want to study now the abelian varieties Xx = (V; Λ;α(g )hα(g )−1; E ) belonging to
M; where V is the Q-vector space V (of dimension eight) we found in Theorem 3.1.
In particular, we are going to determine the polarization E and the complex structures
given by α(g )hα(g )−1:

4.1. The vector space V .

In order to describe explicitly families of Mumford-type, we first parametrize V ⊂
⊂ L8: Let F = Q(

√
d ) = L<σ>; the fixed field of the subgroup < σ >⊂ Gal(L=Q):

We write N := NK=Q(e) = ww:

Proposition 4.2. There exists an isomorphism of Q-vector spaces :

Φ : F ⊕ L
∼=−→V; (f; l ) �−→

(
wf ;

σ2(e)
w

τ (l );
σ(e)
w

τ 3(l );
e
w
τ 5(l ); f; τ 4(l ); l; τ 2(l )

)
:

Proof. First of all we note that P : L8 → L8 is given by:

P : (x1; y1; y2; y3; x2; z1; z2; z3) �−→ (x1; y2; y3; y1; x2; z2; z3; z1);

and that

Q : (x1; y2; y3; y1;x2; z2; z3; z1) �→

�→
(

N
w

x2;
σ2(e)

w
z2;

σ(e)
w

z3;
e
w

z1;
w
N

x1;
w

σ2(e)
y2;

w
σ(e)

y3;
w
e

y1

)
:

We have QPτ (x) = x if and only if the following equations hold:

x1 =
N
w
τ (x2); x2 =

w
N

τ (x1);

y1 =
σ2(e)

w
τ (z2); y2 =

σ(e)
w

τ (z3); y3 =
e
w
τ (z1);

z1 =
w

σ2(e)
τ (y2); z2 =

w
σ(e)

τ (y3); z3 =
w
e
τ y1:

We can solve the last six equations by successive substitutions and we find that they
are consistent:

y2 =
σ(e)
w

τ 3(z2); y3 =
e
w
τ 5(z2); z1 = τ 4(z2); z3 = τ 2(z2);

so the solutions are parametrized by z2 ∈ L : As for the first two equations, using
ww = N we obtain x1 = wτ (x2); x2 = σ(x2): The solutions are (x1; x2) = (wx2; x2)
with x2 ∈ F (recall that τ (x2) = x2 for x2 ∈ F ):
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4.2. The polarization.

In 1.2 we considered the symplectic form E = E1 ⊗ E2 ⊗ E3 over C on the space
V1 ⊗V2 ⊗V3: The Q-vector space V we found in 3.1 is contained in L8: In the Proof
of Lemma 3.6 we chose the basis {eijk} for L8 ∼= L2 ⊗ L2 ⊗ L2 and w.r.t. this basis

(considered as a L-basis) of L8 the form is, up to a scalar multiple, the standard one

E =

(
0 I
−I 0

)
:

Let us consider now the isomorphism of 4.2 Φ : F ⊕ L
∼=→ V and the symplectic

form Φ∗E on F ⊕ L given by (Φ∗E )(x; y) := E (Φ(x); Φ(y)): This form, up to a scalar
multiple, gives us the polarization on F ⊕ L: With respect to the Q-basis of F ⊕ L;
given by

v1 = (1; 0); v5 = (0; e2);

v2 = (δ; 0); v6 = (0; δ);

v3 = (0; 1); v7 = (0; δe);

v4 = (0; e); v8 = (0; δe2);

we find by an easy computation

Φ∗E = c ·
(

E1 0
0 E2

)
with c = 2δw

(recall that NK=Q(e) = ww) where

E1 =

(
0 1
−1 0

)
and E2 = c ′ ·

(
0 E ′

−t E ′ 0

)
with E ′ =




T (e) T (e1) T (e2)
T (e1) T (e2) T (e3)
T (e2) T (e3) T (e4)




with

c ′ =
1

ww
∈ Q; T (x) : = TrK=Q = x + σ(x) + σ2(x);

e1 = eσ2(e); e2 = eσ2(e2);

e3 = e3σ(e); e4 = eσ2(e4):

Thus the polarization on F ⊕ L is given by
(

E1 0
0 E2

)
: We denote this form also

with E .

4.3. Complex structures on VR.

In this section we find the complex structures on VR given by the homomorphisms
α(g )hα(g )−1 ∈ Sp(VR; E ) ⊂ CorK=Q(A)(R): Before doing this we recall the construction
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of Mumford: he introduces on the 8-dimensional space VR := V ⊗Q R the complex
structures α(g ) h α(g )−1 where g ∈ G (R) and h is the homomorphism

h : S1 −→ SU (2) × SU (2) × SL(2;R) α−→ Sp(VR; E ) ⊂ CorK=Q(A)(R)

eiθ �−→
(

I2; I2;

(
cos θ sin θ

− sin θ cos θ

))
�−→ I2 ⊗ I2 ⊗

(
cos θ sin θ

− sin θ cos θ

)
:

Note that in this construction Mumford uses standard basis, while we used the basis
fixed in the Proof of Lemma 3.6 in all the explicit constructions of the Q-vector space
V ⊂ L8 and the algebra CorK=Q(A) ∼= M8(Q) . So, now we choose the same basis to

find h(S1) explicitly.

Proposition 4.3. The image of I2 × I2 × SL(2;R) in Sp(VR; E ) is given by the group

H = {M = I2 ⊗ I2 ⊗ M1 ∈ M2(C2)⊗3 : M1 =

(
a b

b=σ2(e) a

)
; detM1 = 1}:

Moreover, M1 ∈ SU (1; 1) ∼= SL(2;R) :

Proof. We assume the isomorphism M2(L)⊗3 ∼= M8(L): Consider the basis we fixed
in the Proof of Lemma 3.6 and write a matrix

M = I2 ⊗ I2 ⊗
(

a b
c d

)
∈ M2((C2)⊗3)

as an 8 × 8 matrix w.r.t. this basis. This matrix belongs to CorK=Q(A)(R) if and only
if it satisfies the condition of Corollary 3.7

CorK=Q(A) ⊗Q R ∼= {M ∈ M8(C) : QM Q−1 = M }

and it is easy to see that this happens if and only if it belongs to H: Moreover, since
σ2(e) > 0; the matrix

H =

(
1 0
0 −σ2(e)

)

defines a hermitian form of type (1; 1) and the matrix M1 =

(
a b

b=σ2(e) a

)
is such

that t M1HM1 = H: Thus, M1 ∈ SUH
∼= SU (1; 1) ∼= SL(2;R):

5. CM-fibers

We are going to study some special fibers of a family of Mumford-type, the CM-
fibers, where CM stands for “complex multiplication’’. A good reference for this topic
is [7].

5.1. Abelian varieties of CM-type.

A field L is a CM-field if it is an imaginary quadratic extension of a totally real
number field. If we embed L ,→ C; we can consider the conjugation map, x �→ x ,
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x ∈ L: We denote also with “-’’ the only automorphism in Aut (L=Q) which gives rise
to the complex conjugation after the embedding of L in C: Let L a CM-field of degree
2g over Q; and let S = Hom(L;C) the set of complex embeddings of L: A CM type
for L is a subset Σ of S such that S = Σ ∪ Σ:

Definition 5.1. A simple abelian variety X is of CM-type if there exists a field L
with L ,→ End(X ) ⊗ Q and [L;Q] ≥ 2 dim X: In this case dim(L) = 2 dim X; L ∼=
∼= End(X ) ⊗Q; and L is a CM-field, see [7, 1.3.1]. An abelian variety is of CM-type
if it is isogenous to a product of simple abelian varieties of CM-type.

The study of these varieties makes sense here since the presence of such fibers
characterize families of Mumford-type (see [9, Theorem 3]).

5.2. A non simple fiber.

Let us come back now to our explicit construction. By 4.2 we have that

V ∼= F ⊕ L with F = Q(
√

d ); L = K (
√

d )

and the fields L; F are CM-fields. We show explicitly that there is a complex structure
J on VR such that the abelian variety X = (V; Λ; J; E ) is of Mumford-type and is
isogenous to a non simple abelian variety of CM-type.

Proposition 5.2. Consider a family of Mumford-type M with the notations and the as-
sumptions of Section 4. The complex structure

J := I2 ⊗ I2 ⊗ i

(
1 0
0 −1

)

gives a non simple CM-fiber X = (V; Λ; J; E ) which is isogenous to the product of two abelian
varieties : X ∼ Y × C; where Y is a threefold of CM-type with End0(Y ) ⊇ L and C is
an elliptic curve of CM-type with End0(C ) = F:

Proof. By Proposition 4.3 we know that J ∈ H ⊆ M8(C): In particular, if we write
the matrix J w.r.t. the basis fixed in the Proof of Lemma 3.6 we obtain

J = diag(i; i;−i;−i;−i;−i; i; i):

Consider now the isomorphism of 4.2, Φ : F ⊕ L
∼=→ V and the Q-vector spaces

V 1 := Φ(L) ⊂ L6 and V 2 := Φ(F ) ⊂ L2: The action of L over V 1
R = Φ(L ⊗Q R)

commutes with the one of J|V 1
R

: In fact, w.r.t. the fixed basis, both act by diagonal

matrices on V 1
R :

Φ(λl ) = ∆(λ)Φ(l ) with ∆(λ) a diagonal matrix:

Similarly, the action of F over V 2
R commutes with the one of J|V 2

R
and this means that

J (V 1
R ) ⊆ V 1

R : Thus, we get X = (V; Λ; J; E ) ∼ Y × C where

Y = (V 1; J|V 1; E|V 1 ); C = (V 2; J|V 2; E|V 2 ):
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5.3. The threefold Y .

Now we want to investigate the structure of the CM-threefold Y = (V 1; J|V 1; E|V 1 )

with End0(Y ) = L: If we restrict the polarization E and the complex multiplication J to
V 1; (with the basis fixed in the Proof of Lemma 3.6) we obtain that the polarization
of Y is

E|Y = E|V 1 = E2

and that the complex structure is

J|Y = J|V 1 = i diag(1;−1 − 1;−1; 1; 1):

We get the following

Proposition 5.3. The CM type for Y is Σ = (id; τ; τ 2): In particular, Y is simple.

Proof. The isomorphism induced by the one of 4.2 is

L −→ V 1 ∼= Q6; l �−→
(
σ2(e)

w
τ (l );

σ(e)
w

τ 3(l );
e
w
τ 5(l ); τ 4(l ); l; τ 2(l )

)

and we see directly that the CM type for Y is the one of the statement. A classical
result for varieties of CM-type (see for example [7, 1.3.5.]) says that Y is simple if the
subgroup

H = {τ i ∈ Gal(L=Q) : τ i ◦ Σ = Σ}

is the identity. Thus, Y is simple, as one can verify directly.

Since Y is of CM-type, the polarization E|Y of Y has the form

E|Y (x; y) = TrL=Q(αxy)

for a suitable α = δη ∈ L ; η ∈ K (see for example [10, 210-213]). In this case we
have the following

Theorem 5.4. Let Y be a threefold of CM-type as in 5.3. Then the polarization of Y has
the form

E|Y (x; y) = TrL=Q(δηxy) with η = σ(e):

Proof. If we consider the L-basis of L6 given by the vectors {v3; : : : ; v8} of 4.2 we
obtain that, w.r.t. this basis, E|Y = E2 (see 4.2). Using the properties of the reduced
trace we can write the matrix E2 in this way

dE2 =

(
0 E ′

−t E ′ 0

)
with E ′ =




T (σ(e)) T (eσ(e)) T (e2σ(e))
T (eσ(e)) T (e2σ(e)) T (e3σ(e))
T (e2σ(e)) T (e3σ(e)) T (e4σ(e))


;

in fact, recalling the definitions of 4.2 we have for example

T (e4) = T (eσ2(e4)) = T (e4σ(e)):



corestriction of central simple algebras and families of mumford-type 209

We can obtain the remaining entries of the matrix by similar remarks. Consider now
the Q-basis of L (as in 4.2) given by

{1; e; e2; δ; δe; δe2}:

From the form of E2 we have

E2(ei; ej ) = 0; E2(ei; δej ) = T (ei+jσ(e)) 0 ≤ i; j;≤ 2:

On the other hand,

TrL=Q(δ η ei ej ) = TrL=Q(δ η ei+j ) = 0;

TrL=Q(δ η eiδej ) = dTrK=Q(η ei+j ):

We recall (see 1.2) that in a family of Mumford-type the polarization is taken up to
constants (in this case d ), thus we get the statement.

5.4. Families of Mumford-type with a given CM-variety as a fiber.

The results of the previous sections also give a method to produce a family of
Mumford-type with a given fiber of CM-type. In fact, we have the following

Theorem 5.5. If one has the following data

i) K = Q(e) a totally real cubic number field with e > 0; σ(e) < 0; σ2(e) < 0; with
< σ >= Gal(K=Q);

ii) L = Q(e; δ) a cyclic CM-field of degree six over Q with δ =
√

d ; d < 0 ∈ Q;
iii) NK=Q(e) = ww with w ∈ L;

iv) Y a threefold of CM-type with End0(Y ) = L and polarization given by E (x; y) =

= TrL=Q(σ(e)δxy);

v) C an elliptic curve of CM-type with End0(C ) = F = Q(δ):

Then Y × C is a fiber in a family of Mumford-type with quaternion algebra A =

= (d; e)K :

5.5. An example.

We give now an example of CM-variety that can be viewed as a fiber in a family of
Mumford-type. To do this, we recall how to construct a variety of CM-type starting
form a CM-field L: Let L be a CM-field of degree 2g and let Σ be a CM type for L: Let
O ∼= Z2g the ring of integers of L: The set Σ(O) = {(: : : ;σ(l ); : : : )σ∈Σ ∈ CΣ : l ∈ L}
is a lattice in CΣ ∼= Cg : We define XΣ to be the complex torus

XΣ := CΣ=Σ(O):

It can be proved that XΣ is an abelian variety (see [10, pp. 210-213]). Let now ζ = ζ7

be a primitive 7-th root of unity and let L be the field Q(ζ): The minimum polynomial
of ζ is

x6 + x5 + x4 + x3 + x2 + x + 1 = 0:
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The field K := Q(ζ + ζ−1) ⊂ L is a totally real cubic number field, the minimum
polynomial of ζ + ζ−1 is x3 + x2 − 2x − 1 = 0 and one has [L : K ] = 2; thus the
field L is a CM-field of degree six. The embeddings of L in C are given by

τl : L −→ C
τl (ζ) �−→ e2πil=7 l = 1; : : : ; 6:

As we fixed the embeddings, we can write Gal(L=Q) = {τ1; : : : ; τ6} and Gal(K=Q) =

= {τ1; τ2; τ3}: Consider now the hyperelliptic curve defined by y2 = x7 − 1; with
genus 3 = (7 − 1)=2: The Jacobian Y of this curve is an abelian threefold of CM-type
which is isogenous to XΣ = C3=Σ(OL) where Σ = {τ1; τ2; τ3} and OL is the ring of
integers of L: Let δ =

√
−7: The field L can be written also as L = K (δ) and δ can

be written as

δ = ζ + ζ2 + ζ4 − (ζ3 + ζ5 + ζ6):

We define a polarization E|Y on Y as

E|Y (x; y) = TrL=Q(αxy) α = ζ − ζ−1:

This polarization is also principal, as one can compute directly on the basis {1;ζ; : : :; ζ5}
of OL: We can write α = δη; with

η = 1=7(ζ − ζ−1)[ζ + ζ2 + ζ4 − ζ3 − ζ5 − ζ6]:

One can sees directly that Gal(L=K ) fixes η; so η ∈ K:

Theorem 5.6. Let C be an elliptic curve of CM-type with End0(C ) = Q(δ) and let be
Y the Jacobian of the hyperelliptic curve defined by y2 = x7 − 1 : Thus, Y ×C is a fiber in the
family M constructed with the algebra

A = (−7; τ 2(η))K ; < τ >= Gal(K=Q):

Proof. We have to verify conditions i)-v) of Theorem 5.5 for L; K; δ; η as defined
above. Conditions i), ii), iv), v) are verified by our construction of the fields L; K:

It suffices now to prove that NK=Q(τ 2(η)) = ww for some w ∈ L; where, if w =

= a + b
√
−7; w = a − b

√
−7: But NK=Q(τ 2(η)) = NK=Q(η) and an easy computation

shows that

NK=Q(η) = 1=49 = (1=7)(1=7):
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