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Analisi matematica. — Discreteness of the spectrum for some differential operators with
unbounded coefficients in Rn. Nota (*) di Giorgio Metafune e Diego Pallara, presentata
dal Socio G. Da Prato.

Abstract. — We give sufficient conditions for the discreteness of the spectrum of differential operators
of the form Au = −∆u + 〈∇F;∇u〉 in L2

µ(Rn) where dµ(x) = e−F (x) dx and for Schrödinger operators in

L2(Rn). Our conditions are also necessary in the case of polynomial coefficients.

Key words: Singular differential operators; Discrete spectrum; Schrödinger operators.

Riassunto. — Proprietà di spettro discreto per operatori differenziali con coefficienti illimitati in Rn. In
questa Nota si studiano operatori della forma Au = −∆u + 〈∇F;∇u〉 in L2

µ(Rn) con dµ(x) = e−F (x) dx , e

operatori di Schrödinger in L2(Rn). Si danno condizioni sufficienti affinché lo spettro di un tale operatore
differenziale sia discreto. Le condizioni trovate sono anche necessarie nel caso di coefficienti polinomiali.

1. Introduction

In this paper we study the discreteness of the spectrum of two strictly related second
order elliptic differential operators with unbounded coefficients on Rn. These opera-
tors are

A = −∆ +
n∑

i=1

@F
@xi

@
@xi

; B = −∆ + V ;

with F ∈ C 2(Rn) and V ∈ C (Rn). B is the classical Schrödinger operator, whereas A is
a special case of second order operators with (possibly) unbounded coefficients of the
first order terms. These operators are of interest when dealing with diffusion processes
on all of Rn in presence of a drift represented by the first order terms. Unlike the
case of bounded coefficients, only recently has that of unbounded ones been studied,
starting from the prototype of Ornstein-Uhlenbeck operators. Existence and regularity
of the associated semigroups that describe the underlying processes have been studied
both with stochastic (see [2]) and analytic tools (see [1, 10-13]).

To the operator A is canonically associated the measure dµ = e−F dx on Rn, which
is the (unique) invariant measure of the associated Markov process, and therefore it is
natural to study A in the Hilbert space L2(Rn; dµ), where it turns out to be self-adjoint
and non-negative. Moreover, due to the gradient structure of the coefficients of the first
order terms, the operator A is unitarily equivalent to B with V = (1=4)|∇F |2−(1=2)∆F .
Hence, we can deduce properties of A on L2(Rn; dµ) from those of B on L2(Rn; dx).

(*) Pervenuta in forma definitiva all’Accademia 3 settembre 1999.
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As regards Schrödinger operators, various conditions on V are known (see [3, 4, 16,
17]) guaranteeing the discreteness of the spectrum, and also a characterisation (see [15,
7]) based on quantitative capacity estimates. We give here a new simple condition for
positive potentials based on Sobolev embeddings, which turns out to be also necessary
for polynomial potentials V , a case of interest in quantum mechanics (see [8, 18]). In
particular, Theorem 3.5 confirms a conjecture of B. Simon’s (see [18, §6, Remark 5]).

Notation. We use L2 for L2(Rn) with respect to the Lebesgue measure. Similarly,
H k stands for the usual Sobolev space H k(Rn). By C k

0 , (0 ≤ k ≤+ ∞) we denote
the space of all C k-functions with compact support in Rn. The integration domain is
always understood to be Rn, if not otherwise stated. If E is a measurable subset of Rn,
we denote by |E | its Lebesgue measure. We denote by Q (c; d ) the open cube of Rn

with centre c and side d > 0.

2. Reduction to a Schrödinger operator

We consider the differential operator on Rn

Au = −∆u + 〈∇F;∇u〉 = −eF div
(
e−F∇u

)
;

with F ∈ C 2(Rn), and study the compactness of its resolvent operator in the weighted
Hilbert space

(2.1) L2
µ =

{
u : Rn → C : u measurable and

∫
|u|2 dµ <+ ∞

}
;

where dµ(x) = e−F (x) dx , endowed with the inner product (u; v)µ =
∫

uv dµ. We
introduce the Sobolev space

(2.2) H 1
µ =

{
u ∈ L2

µ : ∇u ∈ L2
µ

}

endowed with the inner product (u; v)1 = (u; v)
µ

+ (∇u;∇v)
µ

and we observe that
C ∞

0 is dense both in L2
µ and in H 1

µ .
We define the domain of A as follows

(2.3) D(A) =
{

u ∈ H 1
µ ∩ H 2

loc : Au ∈ L2
µ

}
⊂ L2

µ ;

clearly D(A) is dense in L2
µ
.

Proposition 2.1. The operator (A; D(A)) is self-adjoint and non-negative in L2
µ
.

Proof. The bilinear form a(u; v) = (∇u;∇v)µ, defined on H 1
µ × H 1

µ , is (weakly)
coercive on L2

µ and defines a self-adjoint, non-negative operator (L; D(L)) on L2
µ in the

following way

D(L) =
{

u ∈ H 1
µ : ∃f ∈ L2

µ such that a(u; v) = (f; v)µ; ’v ∈ H 1
µ

}
; Lu = f :

Let us prove that L coincides with A. By local elliptic regularity, D(L) ⊂ H 2
loc. If
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u ∈ D(L) and v ∈ C ∞
0 , integrating by parts the equality a(u; v) = (f; v)

µ
we obtain

−
∫

div
(
e−F∇u

)
v dx =

∫
f v dµ

and hence f = Au. This shows that D(L) ⊂ D(A) and that Lu = Au if u ∈ D(L).
Conversely, if u ∈ D(A) and f = Au, the equality a(u; v) = (f; v)µ clearly holds for
every v ∈ C ∞

0 (by integrating by parts) and, by density, for all v ∈ H 1
µ

. This concludes
the proof.

The analysis of the spectrum of A will be done by transforming it into a suitable
Schrödinger operator B = −∆ + V on L2, in the vein of [5] and [6]. We briefly
recall the definition and the basic properties of these operators. We assume that V
is real-valued, continuous on Rn and bounded from below and define B through the
bilinear form

b(u; v) =

∫
〈∇u;∇v 〉 + Vuv dx ;

u; v ∈ H =
{

u ∈ H 1 : |V |1=2u ∈ L2
}

. More precisely, we define

(2.4) D(B) =
{

u ∈ H : ∃f ∈ L2 such that b(u; v) = (f; v); ’v ∈ H
}

; Bu = f :

Arguing as in Proposition 2.1 it is easily checked that

D(B) =
{

u ∈ H ∩ H 2
loc : −∆u + Vu ∈ L2} ;

moreover, C ∞
0 is a core of (B; D(B)), i.e., B is essentially self-adjoint on C ∞

0 (see [7,
Corollary VII.2.7]).

Under additional hypotheses on the function F , the operator A is similar to a suitable
Schrödinger operator B. With the notation φ = e−F=2, we obtain that A is unitarily
equivalent to B when

V =
∆φ

φ
=

1
4
|∇F |2 − 1

2
∆F :

This is stated in the following proposition.

Proposition 2.2. If the function |∇F |2 − 2∆F is bounded from below in Rn, then the
operator (A; D(A)) is unitarily equivalent to the Schrödinger operator (B; D(B)) with V =

= (1=4)|∇F |2 − (1=2)∆F .

Proof. Let φ = e−F=2 and T : L2
µ → L2 the unitary map defined by Tf = φf . We

define the operator

Cu = TAT −1u

for u ∈ D(C ) = T (D(A)). Clearly C is unitarily equivalent to A and we show that
(B; D(B)) = (C; D(C )), with the stated choice of V . Since (B; D(B)) is essentially
self-adjoint on C ∞

0 it is sufficient to prove that Bu = Cu for all u ∈ C ∞
0 . For, a

straightforward computation gives for u ∈ C ∞
0

Cu = −∆u + 〈φ∇u;φ−1∇F − 2∇(φ−1)〉 +
[
〈∇F;φ∇(φ−1)〉 − φ∆(φ−1)]u :
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Moreover, since φ−1 = eF=2, we obtain

∇(φ−1) = (1=2)eF=2∇F; ∆(φ−1) = (1=2)eF=2∆F + 1=2〈∇F;∇(φ−1)〉;

so that φ−1∇F − 2∇(φ−1) = 0 and

〈∇F;φ∇(φ−1)〉 − φ∆(φ−1) = (∆φ)=φ = (1=4)|∇F |2 − (1=2)∆F :

This gives immediately Cu = Bu and concludes the proof.

Remark 2.3. We observe that under the hypotheses of the above theorem, C 2
0 is

a core also for (A; D(A)) since it is a core for (B; D(B)) and is invariant under the
map T .

Remark 2.4. Since the quadratic form (∇u;∇u)µ is non-negative, we obtain that∫
|∇u|2 + V |u|2 dx , with V = ∆φ=φ, is non-negative, too. However, the potential

V may be negative everywhere. For instance, take n ≥ 3, α ∈ (1 − n=2; 0) and
F (x) = −2α log(1 + |x |2); then φ(x) = e−F (x)=2 = (1 + |x |2)α and V (x) = α(1 +

+ |x |2)−2[(4α− 4 + 2n)|x |2 + 2n] is negative and bounded from below.
It may also happen that the quadratic form

∫
|∇u|2 + V |u|2 dx is non-negative on

C ∞
0 with V unbounded from below. An example is V (x; y) = y4 + 4x2y2−2x , coming

from F (x; y) = xy2 (see also item a) in Section 4).

3. Discreteness of the spectrum of Schrödinger operators

In this Section we study the compactness of the resolvent of the Schrödinger op-
erator −∆ + V , and give sufficient conditions if V is bounded from below, and a
characterisation when V is a positive polynomial. We recall that a characterisation
of the compactness of (−∆ + V )−1, for positive V , is due to A. M. Molcanov (see
[15] and [7, Theorem VIII.4.1]), a result rather difficult to handle, since it involves
explicit computations of capacities of arbitrary sets. V. Kondrat’ev and M. Shubin
have generalised Molcanov’s criterion to some Riemannian manifolds in [9], and have
also deduced from it some simpler sufficient conditions, including our Theorem 3.1.
However, it seems to be interesting to provide a direct proof of this result, based on
Sobolev embeddings. Notice that Theorem 3.1 embodies the classical case in which the
potential goes to + ∞ at infinity (see [16, Theorem XIII.67] and [3, Section 1.6] or
[4, Section 8]): we show that the result is still true if V →+ ∞ in a measure-theoretic
sense, as |x | →+ ∞.

If V is a potential and M > 0, we define EM = {x ∈ Rn : V (x) < M }. If x ∈ Rn

we set |x |∞ = maxi=1;:::;n|xi |, so that Q (c; d ) = {x : |x − c |∞ < d }. .

Theorem 3.1. Let B = −∆ + V be defined as in (2:4) and suppose that for every M > 0

(3.1) lim
|c|→+∞

|EM ∩ Q (c; 1)| = 0 :

Then B has compact resolvent in L2.
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Proof. We may suppose that V ≥ 0. Since D(B) is contained in H 1 and the
embedding of H 1(Q ) into L2(Q ) is compact for every cube Q , we have only to show

that for every ε > 0 there is a cube Q such that
∫

Rn\Q

|u|2 < ε for every u ∈ D(B)

with
∫

|u|2 + |Bu|2 ≤ 1.

Let u ∈ D(B) as above and observe that
∫

(|∇u|2 + V |u|2) ≤ 1. Fix ε > 0, set
M = ε−1 and take R > 0 such that if |c |∞ > R , then |EM ∩ Q (c; 1)| < ε. Clearly we
have

(3.2)
∫

Q (c;1)\EM

|u|2 ≤ ε

∫

Q (c;1)\EM

V |u|2 ≤ ε

∫

Q (c;1)
V |u|2 :

To estimate the integral over Q (c; 1) ∩ EM for |c |∞ > R , we take p = (2n)=(n − 2) if
n ≥ 3 and any p > 2 if n = 1; 2. By the Sobolev embedding we have

(∫

Q (c;1)
|u|p

)1=p

≤ C

(∫

Q (c;1)
|u|2 + |∇u|2

)1=2

with C independent of c . Then we have

∫

Q (c;1)∩EM

|u|2 ≤ |EM ∩ Q (c; 1)|1−2=p

(∫

Q (c;1)∩EM )
|u|p

)2=p

≤ C εγ
∫

Q (c;1)
(|u|2 + |∇u|2) ;

with γ = 1 − 2=p. From the above inequality and (3.2) we deduce that
∫

Q (c;1)
|u|2 ≤ ε

∫

Q (c;1)
V |u|2 + C εγ

∫

Q (c;1)
(|u|2 + |∇u|2)

hence, summing over a partition of cubes with centres c satisfying |c |∞ ≥ R ,
∫

|x|∞≥R

|u|2 ≤ ε

∫

|x|∞≥R

V |u|2 + C εγ
∫

|x|∞≥R

(|u|2 + |∇u|2)

and finally ∫

|x|∞≥R

|u|2 ≤ ε + C εγ

1 − C εγ
:

Let us point out a particular case of the previous result.

Corollary 3.2. If the potential V > 0 satisfies the condition

lim
|c|→+∞

∫

Q (c;1)
V −α = 0 ;

for some α > 0, then B has compact resolvent.

Proof. In fact we have EM = {x ∈ Rn : V −α(x) > M −α} and

|EM ∩ Q (c; 1)| ≤ M α

∫

Q (c;1)
V −α:
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Notice that there is no need for choosing cubes of side 1: in fact it is easy to see
that if (3.1) is satisfied for some d > 0, then it is satisfied for all d . We observe also
that condition (3.1) is not necessary even for n = 1, as can be checked comparing it
with Molcanov’s theorem (see the next section).

We now consider positive polynomial potentials. Such potentials are analysed in [8]
by a «volume counting» argument, which turns out to be equivalent to our condition
(3.1). Once a level M has been fixed, Fefferman considers the number N (M ) of cubes
of side M −1=2 centred at jM −1=2 (j ∈ Zn) contained in EM . From [8, Theorem II.3],
it follows that the spectrum of B is discrete if and only if N (M ) is finite for every
M > 0. Instead, we consider the measure of the intersection of EM with arbitrary cubes
of fixed side. For potentials V of the form

(3.3) V = f ◦ p ;

where p is a polynomial and f : R → R is a continuous function satisfying f (t ) →+ ∞
as |t | →+ ∞, we show that condition (3.1) is also necessary for the discreteness of
the spectrum of B. We need the following lemma, which shows that a control on the
supremum of the polynomial p can be deduced from an estimate of the measure of its
sublevels.

Lemma 3.3. Let d ∈ N and δ > 0; then there is constant C > 0 such that for every
M > 0

|{x ∈ Q : |p(x)| ≤ M }| ≥ δ =⇒ sup
x∈Q

|p(x)| ≤ CM

for every polynomial p of degree less than or equal to d and every unit cube Q ⊂ Rn.

Proof. It is sufficient to prove the existence of a constant C for the cube Q =

= Q (0; 1) since then the same constant works for every unit cube, by an elementary
translation argument. The linear dependence of the upper bound on M readily follows
replacing p with p=M , hence we take M = 1. If the statement is false for Q , there is a
sequence (qk) of polynomials of degree at most d such that |{x ∈ Q : |qk(x)| ≤ 1}| ≥ δ

and ‖qk‖Q := supx∈Q |qk(x)| →+ ∞. Then, the normalised polynomials pk = qk=‖qk‖Q

satisfy ‖pk‖Q = 1 and |{x ∈ Q : |pk(x)| ≤ εk}| ≥ δ, with εk = 1=‖qk‖Q → 0, and (up
to a subsequence) are uniformly convergent to a polynomial p with ‖p‖Q = 1. Setting
Fk = {x ∈ Q : |qk(x)| ≤ 1} and F = ∩k ∪r≥k Fr , we have F ⊂ {x ∈ Q : p(x) = 0} and
|F | = limk | ∪r≥k Fr | ≥ δ, whence |{x ∈ Q : p(x) = 0}| > 0 and therefore p ≡ 0, in
contrast with ‖p‖Q = 1.

Proposition 3.4. Let V be defined as in (3:3). If the operator B = −∆ + V has compact
resolvent then (3:1) holds.

Proof. If condition (3.1) does not hold, we can find M; δ > 0, a sequence of
pairwise disjoint cubes Q (ck; 1) and a positive number R such that

|EM ∩ Q (ck; 1)| = |{x ∈ Q (ck; 1) : |p(x)| ≤ R}| ≥ δ ’ k ∈ N :
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From the preceding lemma we infer that supx∈Q (ck ;1) |p(x)| ≤ L, hence the poten-
tial V is uniformly bounded on the sequence Q (ck; 1). Taking a non-vanishing
u ∈ C ∞

0

(
Q (0; 1)

)
, the sequence

(
uk(x)

)
=

(
u(x − ck)

)
is bounded in the graph norm

and is not relatively compact in L2, so that B cannot have compact resolvent.

Finally, we show that the spectrum of −∆ + V , V = f ◦ p, is discrete if and only
if the polynomial p is not independent of some variable, i.e. if and only if the only
constant vector c = (c1; : : : ; cn) such that

∑
i ci @p=@xi ≡ 0 is c = (0; : : : ; 0).

Theorem 3.5. Let B = −∆ + V with V defined in (3:3). Then the resolvent of B is

not compact if and only if there is a direction ω ∈ Rn such that
@p
@ω

≡ 0.

Proof. If
@p
@ω

≡ 0 then V is bounded on a strip parallel to ω and the resolvent

of B is not compact, by the argument of Proposition 3.4. Suppose now that B has
not compact resolvent. Proposition 3.4 yields the existence of a sequence of unit cubes
Q (ck; 1) ⊂ Rn, with |ck | →+ ∞, on which |p| is uniformly bounded. We write
ck = tkωk with |ωk | = 1 and we may assume (up to a subsequence) that ωk → ω, as
k → ∞. We show, by induction on n = dim Rn, that p is constant along the direction
ω. Without loss of generality, we may suppose that ω = (1; 0; : : : ; 0). Of course the
statement is true if n = 1.

First of all, we observe that for every d ∈ N and every multiindex α there is a
constant C such that the inequality

sup
Q

|Dαr | ≤ C sup
Q

|r |

holds for every polynomial r of degree at most d and every unit cube Q .
We write

p(x) =
m∑

j=0

xj
1qj (x2; : : : ; xn)

with qj polynomials in the variables x2; : : : ; xn and qm �≡ 0, and show that m = 0.
Suppose, by contradiction, that m > 0; differentiating (m − 1)-times with respect to x1

we obtain that the polynomial p1(x) = m!x1qm(x2; : : : ; xn) + (m−1)!qm−1(x2; : : : ; xn) is
uniformly bounded on the sequence

(
Q (ck; 1)

)
. Since qm �≡ 0, we can find a multiindex

α such that Dαqm is equal to a non-zero constant c . Then the polynomial

p2(x) = Dαp1 = c1x1 + r1(x2; : : : ; xn) ;

with c1 = cm!, would be uniformly bounded on the sequence
(
Q (ck; 1)

)
. Let us

write ωk = (ω1
k ;ω2

k ) ∈ R × Rn−1 with ω1
k → 1 and ω2

k → 0, as k → ∞. Since c1x1 is
unbounded on

(
Q (ck; 1)

)
, r1 �≡ 0 and the sequence (tkω

2
k ) is unbounded; moreover, the

polynomial ∇r1 is uniformly bounded on
(
Q (ck; 1)

)
(hence on the (n−1)-dimensional

unit cubes centred at tkω
2
k ), as one can see by differentiating p2 with respect the variables

x2; : : : ; xn. By the induction hypothesis we obtain that ∇r1 is independent of some
direction in Rn−1, say that of x2, and hence that r1(x2; : : : ; xn) = c2x2 + r3(x3; : : : ; xn).
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Observe now that c1x1 + c2x2 is unbounded on
(
Q (ck; 1)

)
since ω1

k → 1 and ω2
k → 0, as

k → ∞. We may therefore iterate the above procedure to obtain finally p2(x) = c1x1 +

+ · · · cnxn. However, this polynomial cannot be uniformly bounded on the sequence(
Q (ck; 1)

)
unless c1 = 0 (by the same argument as above). Therefore m = 0 and p is

independent of x1.

We end this section by considering briefly the case of potentials V = V+ − V−
not necessarily bounded from below. In order to regard V− as a small perturbation of
−∆ + V

+
we assume that the condition

(3.4) lim
|c|→+∞

∫

Q (c;1)
V p

− = 0

holds for p = n=2 if n ≥ 3 and for some p > 1 if n = 1; 2.
We refer to [17] for a discussion of various conditions that allow to apply pertur-

bation methods to general potentials and we only point out that (3.4) is a weak form
of the classical condition V− ∈ Ln=2.

Let ε > 0 and take u ∈ C ∞
0 ; since 2p′ = 2n=(n − 2) (n ≥ 3), using Sobolev

embedding, as in the proof of Theorem 3.1, we obtain from (3.4)

∫

Q (c;1)
V−|u|

2≤
(∫

Q (c;1)
V p

−

)1=p (∫

Q (c;1)
|u|2p′

)1=p′

≤ε

(∫

Q (c;1)
|∇u|2 + (V+ + 1)|u|2

)
;

for |c | sufficiently large. Using the boundedness of V− on compact sets of Rn we infer
that there is a constant C

ε > 0 such that the inequality
∫

V−|u|
2 ≤ ε

(∫
|∇u|2 + V+|u|

2
)

+ Cε

∫
|u|2

holds for every u ∈ C ∞
0 . By density, the same inequality holds if u ∈ D

(
(−∆ +

+ V+)1=2) =
{

u ∈ H 1 : |V+|
1=2u ∈ L2

}
. The quadratic form

q(u) =

∫
|∇u|2 + (V+ − V−)|u|2

is therefore closed and bounded from below on the domain D
(
(−∆ + V+)1=2) and

defines a semibounded, self-adjoint operator −∆ + V (see [3, Theorem 1.8.2]. We
generalise Theorem 3.1 in the following proposition.

Proposition 3.6. Assume that conditions (3:1) and (3:4) hold; then the operator −∆ + V
has compact resolvent.

Proof. By Theorem 3.1, −∆ + V
+

has compact resolvent and hence the embedding

of D
(
(−∆ + V+)1=2) (endowed with the graph norm) in L2 is compact. Since the

domain of the quadratic form of −∆+V is D
(
(−∆+V+)1=2), the statement follows.
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4. Applications and examples

Let us present some concrete examples of application of the results of the previous
sections.

a) Theorem 3.5 shows that the operators −∆ + x2y2 and −∆ +
[∑

i<j (xiyj −
−xj yi)

2]1=2
have discrete spectra in L2(R2) and L2(R2n), respectively, even though the

potentials do not tend to + ∞, as the variables go to ∞ (see [18] for different proofs).
Another example to which Theorem 3.5 applies and which seems to be worth men-
tioning is −∆ + |y − x2| in L2(R2).

Using Proposition 3.6, we can even construct polynomial potentials, unbounded
from below, such that the corresponding Schrödinger operators have compact resolvents.
In fact, we consider in R2 the polynomials V (x; y) = x2ky2 −x with k ≥ 2, and observe
that (3.1) holds and that {V < 0} = {(x; y) ∈ R2 : x > 0; |y| < x−k+1=2}. For
1 < p < k − 1=2 the integral

∫ x−k+1=2

−x−k+1=2
|V (x; y)|p dy

converges to 0 as x →+ ∞ and from this condition (3.4) easily follows. Proposition 3.6
yields the compactness of the resolvent of −∆ + V in L2(R2).

b) We come back now to the operator

Au = −∆u + 〈∇F;∇u〉 = −eF div
(
e−F∇u

)

of Section 2 and assume that the function |∇F |2 −2∆F is bounded from below in Rn.
By Proposition 2.2 the operator (A; D(A)) is unitarily equivalent to the Schrödinger
operator (B; D(B)) with V = (1=4)|∇F |2 − (1=2)∆F and hence we obtain the com-
pactness of the resolvent of (A; D(A)) in L2

µ if condition (3.1) is satisfied by V . We
specialise our results in the polynomial case.

Proposition 4.1. Let F be a polynomial such that |∇F |2 − 2∆F is bounded from below
in Rn. Then the resolvent of (A; D(A)) is not compact in L2

µ if and only if there is ω ∈ Rn,
|ω| = 1, such that F can be written in the form F (tω + z) = ctω + G (z), for all t ∈ R and
z ⊥ ω, where G is a polynomial in (n − 1) variables and c ∈ R.

Proof. We show that the stated representation of F holds if and only if
@V
@ω

≡ 0

and conclude, using Theorem 3.5.

If F (tω + z) = cω + G (z), it is immediate that
@V
@ω

≡ 0. Suppose, conversely, that

this last equality holds and assume that ω = (1; 0; : : : ; 0). We write

F (x) =
m∑

j=0

xj
1qj (x2; : : : ; xn)

with qj polynomials in the variables x2; : : : ; xn and qm �≡ 0. By assumption, the

polynomial (1=4)|∇F |2 − (1=2)∆F does not depend on x1. Comparing the coefficients
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of maximum degree of the variable x1 in (1=4)|∇F |2 and (1=2)∆F , one easily obtains
that m ≤ 1 and that q1 is constant.

c) Let us point out some one-dimensional examples. In this case it is easy to
state Molcanov’s characterisation of compactness, which reads as follows: the operator
B = −D2 + V , V ≥ 0, has compact resolvent in L2 if and only if

(4.1) lim
|c|→+∞

∫ c+d

c

V (x) dx =+ ∞; ’d > 0 :

Proposition 4.1 implies the discreteness of the spectrum of the operators −D2 + p(x)D
in L2

µ for every non-costant polynomial p. In particular, if p(x) = x2k−1, k ∈ N, the

measure d µ(x) = exp(−x2k=2k) dx is finite and, if k = 1, we obtain the one-dimensional
Ornstein-Uhlenbeck operator for which, however, the result is well-known.

Necessary and sufficient conditions for the compactness of the resolvent of the one-
dimensional operators −αD2 + βD have been proved also in [14] both in weighted
L2-spaces and in spaces of continuous functions, for general α;β. The methods in [14]
are different and do not extend to the multidimensional case. For example, let α ≡ 1
and F a primitive of β; if e−F ∈ L1, so that the measure dµ(x) = e−F (x) dx is finite,
the operator −D2 + βD has compact resolvent in L2

µ if and only if

lim
x→−∞

(∫ x

−∞
e−F (t ) dt

)(∫ x

0
eF (t ) dt

)
= lim

x→+∞

(∫ +∞

x

e−F (t ) dt

)(∫ x

0
eF (t ) dt

)
= 0 ;

a condition that turns out to be equivalent to (4.1) with V = (1=4)|F ′|2 − (1=2)F ′′,
even though this does not seem evident at first sight.
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