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Equazioni a derivate parziali. — On the nodal set of the second eigenfunction of the
laplacian in symmetric domains in RN . Nota di Lucio Damascelli, presentata (*) dal
Socio A. Ambrosetti.

Abstract. — We present a simple proof of the fact that if Ω is a bounded domain in RN , N ≥ 2,
which is convex and symmetric with respect to k orthogonal directions, 1 ≤ k ≤ N , then the nodal sets
of the eigenfunctions of the laplacian corresponding to the eigenvalues λ2; · · · ;λk+1 must intersect the
boundary. This result was proved by Payne in the case N = 2 for the second eigenfunction, and by other
authors in the case of convex domains in the plane, again for the second eigenfunction.

Key words: Second eigenfunction; Nodal set; Maximum principle.

Riassunto. — Sull’insieme nodale della seconda autofunzione del laplaciano in un dominio simmetrico
di RN . Viene presentata una semplice dimostrazione del fatto che se Ω è un dominio limitato di RN ,
N ≥ 2, convesso e simmetrico in k direzioni ortogonali, 1 ≤ k ≤ N , allora gli insiemi nodali delle
autofunzioni del laplaciano corrispondenti agli autovalori λ2; · · · ;λk+1 hanno intersezione non vuota con
la frontiera del dominio. Questo risultato era stato dimostrato da Payne nel caso N = 2 per la seconda
autofunzione, e da altri autori nel caso di domini piani convessi, sempre per la seconda autofunzione.

1. Introduction and statement of the results

In this Note we consider the eigenvalue problem

(1.1)
{ −∆ϕ = λϕ in Ω

ϕ = 0 on @Ω

where Ω is a bounded domain (i.e. connected open set) in RN . We will denote the
sequence of the eigenvalues of (1.1) as 0 < λ1 < λ2 ≤ λ3 ≤ : : : where each eigen-
value is counted according to its multiplicity, and we will denote by ϕ1;ϕ2;ϕ3; : : : a
corresponding basis of eigenfunctions.

It is well known that the first eigenvalue λ1 is simple and that a corresponding
eigenfunction does not change sign in Ω. All the other eigenfunctions must change
sign and by the Courant’s Nodal Line Theorem [3] the eigenfunction ϕk corresponding
to the eigenvalue λk has at most k nodal domains, i.e. subdomains of Ω where ϕk

does not change sign. In particular any second eigenfunction ϕ2 has exactly two nodal
domains.

Let N = N
ϕ

= {x ∈ Ω : ϕ(x) = 0} be the nodal set of an eigenfunction ϕ of
problem (1.1). A conjecture about the topology of the second eigenfunction in the case
N = 2 (when the nodal set is a curve) is the following (see [8, 10, 11]):

* The eigenfunction ϕ2 cannot have a closed interior nodal curve.

(*) Nella seduta del 23 giugno 2000.
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In [9] Payne proved the conjecture in the case of a domain D ⊂ R2 convex and
symmetric with respect to a direction; then Lin [5] proved the conjecture when Ω ⊂ R2

is a bounded smooth convex domain which is invariant under a rotation with angle
2π p

q where p and q are positive integers. Later Melas [7] proved the validity of the

conjecture for a general bounded smooth convex domain in R2 and this result was
then extended in [1] to general bounded convex domains in R2. More precisely these
authors prove that the nodal line intersects the boundary at exactly two points.

In this paper we show that for any dimension N ≥ 2 and a bounded (possibly
nonsmooth) domain in RN which is symmetric and convex in several directions the
statement of the conjecture holds also for higher eigenfunctions. In particular in the
case of a domain in RN convex and symmetric in one direction we get again the result
of Payne [9] with a new elementary proof which does not use any regularity result
about the structure of the nodal set, as done in previous papers. More precisely we
prove the following result.

Theorem 1.1. Let Ω ⊂ RN , N ≥ 2, be a bounded domain, 0 < λ1 < λ2 ≤ λ3 ≤ · · · the
sequence of the eigenvalues of the laplacian in Ω and ϕj the eigenfunction corresponding to the
eigenvalue λj .

If Ω is symmetric and convex with respect to k orthogonal directions, 1 ≤ k ≤ N , and
Nϕj

= {x ∈ Ω : ϕj (x) = 0} is the nodal set of the eigenfunction ϕj , then Nϕj
∩ @Ω �= ∅ ,

2 ≤ j ≤ k + 1.

Of course if λ2 = λ3 = · · · = λk+1 this is again a result about the second eigen-
functions, but for general domains it is possible that the multiplicity of the second
eigenvalue is lower than k. As an example if we take the domain Ω = ΠN

i=1(− ai
2 ; ai

2 )

then the eigenvalues are the numbers λk1 ···kN
=

∑N
i=1

k2
i π

2

a2
i

, ki ∈ N\{0}, with associated

eigenfunctions

wk1 ···kN
=

(
2N

a1 · · · aN

) 1
2 N∏

i=1

sin
kiπ(xi + ai

2 )
ai

:

In this case, depending on the choice of the dimensions ai , the multiplicity of λ2

can be any number between 1 and N , and one can get simple eigenvalues λ2 < λ3 <
< · · ·λN +1.

Remark 1.1. When the Laplace operator is substituted by the operator −∆ − V (x)
the conjecture (*) is not in general true, see [6].

In the case when Ω is a smooth convex domain in the plane Lin [5] also proved
that the multiplicity of the second eigenvalue is at most two. Then Zhang [12] proved
that this is true for any smooth and simply connected domain in R2.

Our method gives a simple proof of this multiplicity result in the case of a planar
domain that need not to be convex, but which is convex and symmetric with respect
to two orthogonal directions. Moreover the proof shows that it is likely to conjecture
that the multiplicity of the second eigenvalue is at most N in domains in RN which
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are convex and symmetric with respect to N orthogonal directions (see Remark 2.1).
More precisely we prove the following theorem.

Theorem 1.2. Let Ω be a domain in R2 which is convex and symmetric with respect to 2
orthogonal directions, e.g. the xi-directions, i = 1; 2. Then the multiplicity of the eigenvalue
λ2 is at most 2 and the corresponding eigenspace is spanned by eigenfunctions each of which is
odd in one variable and even in the other.

2. Proofs

Throughout this section Ω will be a bounded domain in RN , N ≥ 2, convex in
a direction, that for simplicity will be assumed to be the x1-direction, and symmetric
with respect to the hyperplane T0 = {x ∈ RN : x1 = 0}. If t ∈ R we define

Σ−
t = {x ∈ Ω : x1 < t} ; t ≤ 0

Σ+
t = {x ∈ Ω : x1 > t} ; t ≥ 0

Tt = {x ∈ RN : x1 = t} ; t ∈ R

and we write Ω− = Σ−
0 , Ω+ = Σ+

0 .
Together with problem (1.1) we will consider the Dirichlet eigenvalue problem in

Ω− = Σ−
0

(2.1)
{ −∆ψ = µψ in Ω−

ψ = 0 on @Ω− = (@Ω− ∩ @Ω) ∪ (T0 ∩ Ω)

and the mixed boundary eigenvalue problem in Ω−

(2.2)





−∆ζ = νζ in Ω−

ζ = 0 on @Ω− ∩ @Ω

@ζ
@x1

= 0 on T0 ∩ Ω :

We will denote by µ1 ≤ µ2 ≤ µ3 : : : the sequence of eigenvalues of (2.1), each one
counted according to its multiplicity, with the associate pairwise orthogonal eigenfunc-
tions ψ1;ψ2;ψ3 : : : , while for problem (2.2) we will use the notations ν1 ≤ ν2 ≤ ν3 : : : ,
ζ1; ζ2; ζ3 : : : , for the corresponding eigenvalues and eigenfunctions.

Our proofs will be based on the simple remarks contained in the next lemma.

Lemma 2.1. (i) If (νk; ζk) is a pair eigenvalue-eigenfunction for (2:2) and ζ̃ k is the even
extension of ζk to Ω, i.e. ζ̃ k(x1; x ′) = ζk(−x1; x ′) if x = (x1; x ′) ∈ Ω+, then νk is an
eigenvalue λα(k) of problem (1:1) with associate eigenfunction ζ̃ k . In particular ν1 = λ1 and
ζ̃ 1 is a first eigenfunction.

(ii) If (µk;ψk) is a pair eigenvalue-eigenfunction for (2:1) and ψ̃k is the odd extension
of ψk to Ω, i.e. ψ̃k(x1; x ′) = −ψk(−x1; x ′) if x = (x1; x ′) ∈ Ω+, then µk is an
eigenvalue λ

β(k) of problem (1:1) with associate eigenfunction ψ̃k . In particular µ1 = λ
β(1)

with β(1) ≥ 2 so that λ2 ≤ µ1 and, up to multiplications by a constant, ψ̃1 is the only
eigenfunction for (1:1) corresponding to the eigenvalue λ

β(1) which is odd in the x1-variable.
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(iii) All the eigenvalues of (1:1) are given by the collections {µj}j , {νk}k , and if {ψj}j ,

{ζk}k are orthonormal bases in L2(Ω−) respectively for problem (2:1), (2:2), then the collection
{ 1√

2
ψ̃j}j ∪ { 1√

2
ζ̃ k}k is an orthonormal basis in L2(Ω) for problem (1:1).

Proof. (i) It is clear that since @ζk
@x1

= 0 on T0 ∩ Ω the even extension of ζk satisfies
(1.1) in Ω with λ = νk . Moreover the first eigenfunction ζ1 does not change sign in
Ω−, so that ζ̃ 1 does not change sign in Ω and it is therefore the first eigenfunction.

(ii) Since ψk = 0 on T0 ∩Ω, for i = 2; : : : N we have @ψk
@xi

=
@2ψk
@x2

i
= 0 on T0 ∩Ω,

and from the equation we get @2ψk
@x2

1
= 0 on T0 ∩ Ω. It follows easily that the odd

extension of ψk satisfies (1.1) in Ω, with λ = µk . Since ψ̃1 must change sign in Ω, its
eigenvalue (with respect to (1.1)), which is µ1, must be at least the second eigenvalue,
so that λ2 ≤ µ1 = λβ(1); moreover if ψ is another eigenfunction relative to λβ(1) which
is odd in x1, its restriction to Ω− is an eigenfunction for (2.1) with eigenvalue µ1, the
first eigenvalue, so it has to be a multiple of ψ1.

(iii) If ϕ is an eigenfunction and we define ϕ0(x1; x ′) = ϕ(−x1; x ′) for x =

= (x1; x ′) ∈ Ω, we can write ϕ as a sum ϕ = ϕs + ϕa of a symmetric part
ϕs = 1

2 [ϕ + ϕ0], even in x1, and an antisymmetric part ϕa = 1
2 [ϕ − ϕ0], odd in x1.

In this way we can generate each eigenspace of each eigenvalue by functions which are
either even or odd in the variable x1, whose restrictions to Ω− solve (2.2), respectively
(2.1), and the conclusion follows easily.

We now prove a theorem which will give us immediately the conclusions of Theo-
rem 1.1.

Theorem 2.1. Let k ≥ 2 and ϕ = ϕk be an eigenfunction for problem (1:1) corresponding
to an eigenvalue λk ≤ µ1, where µ1 is the first eigenvalue of problem (2:1). Then Nϕ∩@Ω �= ∅.

Proof. As in the proof of Lemma 2.1 we can write ϕ as a sum ϕ = ϕs + ϕa where
ϕs is even in x1 and ϕa is odd in x1 and each of them is either zero or an eigenfunction
with the same eigenvalue λk .

If ϕs = 0 then ϕ is odd in x1, its restriction to Ω− is a first eigenfunction for (2.1),
its nodal set is T0 ∩ Ω and there is nothing to prove.

Let us consider then the case when ϕs does not vanish, so that it is an eigenfunction
relative to λk . Suppose that

Nϕ ∩ @Ω = ∅
so that there is a neighborhood I of @Ω where ϕ has the same sign. This implies
that ϕs , which does not vanish and it is therefore an eigenfunction corresponding to
the same eigenvalue, has the same property. So it is enough to show that this is not
possible for symmetric eigenfunctions.

Let us suppose now by contradiction that ϕ is an eigenfunction corresponding to
an eigenvalue λk ≤ µ1 (k ≥ 2), which is even in the x1-variable and satisfies

(2.3) ϕ > 0 in I ∩ Ω

where I is a neighborhood of @Ω.
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Let Σ−
t be defined for t < 0 as in the beginning of this section, and for x = (x1; x ′)

in Σ−
t let xt = (2 t−x1; x ′) be the point obtained by reflecting x through the hyperplane

Tt and let ut (x) = u(xt ), x ∈ Σ−
t , be the reflected function.

By (2.3) if ε > 0 is sufficiently small we have for −ε < t < 0

(2.4) wt = ϕ− ϕt ≤ 0 ; wt �≡ 0 on @Σ−
t :

By hypothesis λk ≤ µ1, so that the first eigenvalue of the operator L = −∆−λk in Ω−

is greater than or equal to zero. Therefore if t < 0 the first eigenvalue of L is strictly
positive in Σ−

t and this implies that the operator L satisfies the maximum principle in
Σ−

t (see [2]). Since L wt = 0 in Σ−
t , we deduce from (2.4) that wt ≤ 0 in Σ−

t , and by
the strong maximum principle we get that if −ε < t < 0 then

(2.5) ϕ < ϕt in Σ−
t :

Since ϕ is even in x1 and must change sign in Ω it has to change sign in Ω−, and this
contradicts (2.5). In fact consider a point x0 = (s0; x ′) ∈ Ω− with ϕ(x0) < 0, and let
(a; s0) be the maximal interval of numbers s < s0 such that ϕ(s; x ′) < 0. If x = (a; x ′)
then ϕ(x) = ϕ0(x) = 0, while for t < 0 small we have that ϕt (x) = ϕ(xt ) < 0,
contradicting (2.5).

Proof of Theorem 1.1. Suppose that Ω is convex and symmetric with respect to
the directions x1; : : : ; xk , and let Ω−

i = {x ∈ Ω : xi < 0} and µ1(Ω−
i ) be the first

eigenvalue of the Dirichlet eigenvalue problem in Ωi . By Lemma 2.1 each µ1(Ω−
i ) is

an eigenvalue λγ(i), with γ(i) ≥ 2, for (1.1), while an associated first eigenfunction ψi in

Ω−
i gives, by odd reflection, an eigenfunction ψ̃i in Ω. Moreover each ψi , being a first

eigenfunction in the domain Ω−
i (which is symmetric in the xj -directions, j �= i), is even

in the other variables xj by Lemma 2.1 (i). So if j is different from i we have that ψ̃i

is L2-orthogonal to ψ̃j . This means that the eigenfunctions ψ̃i , i = 1; · · · k, correspond
to different eigenvalues, each one greater than the first. Therefore at least one of the
eigenvalues µ1(Ωi) must satisfy µ1(Ωi) ≥ λk+1 ( ≥ λj for each j = 2; : : : ; k + 1 ).
Applying Theorem 2.1 with the direction x1 substituted by the direction xi , we get that
for each j = 2; : : : ; k + 1, Nϕj

∩ @Ω �= ∅ .

Remark 2.1. Let Ω be a bounded domain in RN , convex and symmetric with respect
to the directions xi , i = 1; : : : ; N . By Lemma 2.1, applied in all the coordinate
directions, the eigenspace of the eigenvalue λ2 has a basis consisting of functions which
are either symmetric or antysymmetric with respect to each hyperplane Ti = {x ∈
∈ RN : xi = 0}, i = 1; : : : ; N . Moreover if such a function is odd with respect to a
variable xi , it is the only one with this property by Lemma 2.1 (ii) and its restriction
to Ω−

i is a first eigenfunction, so again by Lemma 2.1 (i), it is even in the other
variables; therefore it is orthogonal in L2(Ω) to other eigenfunctions which are odd
with respect to different variables. So there exist at most N independent eigenfunctions
which are odd in some variable xi , they are authomatically pairwise orthogonal, and the
remaining eigenfunctions in the previous basis are even with respect to all the variables
xi , i = 1; · · · ; N .
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Then if we could prove that a second eigenfunction cannot be even with respect
to all the variables xi , i = 1; : : : ; N we would obtain that the multiplicity of the
second eigenvalue in such domains is at most N . We conjecture that this is true in any
dimension, but we are able to prove it only when N = 2 (see the proof that follows).

Proof of Theorem 1.2. As already remarked we only have to show that a second
eigenfunction cannot be 2-symmetric, i.e. even with respect to the variables x1; x2.
Suppose now by contradiction that ϕ is a 2-symmetric second eigenfunfunction. We
will show, using an argument similar to that of Theorem 3.1 in [4], that ϕ has a sign
close to the boundary, which contradicts Theorem 1.1.

To begin with, we have that each connected component of the set Ω̃ = {x ∈ Ω :
ϕ(x) �= 0} intersects every cap Ω±

i , i = 1; 2. In fact if a component C of Ω̃ were
contained in some Ω−

i , say Ω−
1 , then the restriction of ϕ to that component would be

a first eigenfunction, i.e. the first eigenvalue, λ1(L; C ), of the operator L = −∆ − λ2

in C would be 0. Then C �= Ω−
1 because otherwise ϕ, being even in x1, would be

positive in Ω. So C would be a proper subset of Ω−
1 and since by Lemma 2.1 (ii)

we have that λ2 ≤ µ1, which implies that λ1(L; Ω−
1 ) ≥ 0, we would deduce that

λ1(L; C ) > λ1(L; Ω−
1 ) ≥ 0 = λ1(L; C ), a contradiction.

We want to show now that in a neighborhood of the boundary ϕ has the same
sign. Suppose, by contradiction, that this is not the case. By the Courant’s nodal line
theorem Ω̃ has two components. Then considering the component A1 where ϕ > 0,
for what we have just proved we can take four points in A1∩Ω±

i , i = 1; 2, and connect
them with a closed curve γ1 ⊂ A1 which is symmetric with respect to the coordinate
axes. By the Jordan Curve Theorem Ω \ γ1 has two components, and in the «exterior»
of γ1, i.e. in the component touching the boundary, there are points where ϕ < 0,
since we are supposing that ϕ has not the same sign close to the boundary. This means
that the component A2 of Ω̃ where ϕ < 0 is contained in the «exterior» of γ1. But
then, constructing as before a closed symmetric curve γ2 in A2, we can find points in
the «exterior» of γ2 where ϕ is positive, so there exists a component A3 of Ω̃ different
from A1, because A3 is contained in the exterior of γ2. This contradicts the Courant’s
Nodal Line Theorem, which states that there are at most two components of Ω̃. So ϕ

necessarily has the same sign in a neighborhood of the boundary, and this contradicts
Theorem 1.1.

Remark 2.2. When Ω = B(0; R) is a ball in RN it is well known that the multiciplity
of the second eigenvalue is exactly N and the corresponding eigenspace is spanned by
N eigenfunctions ϕ1; · · · ;ϕN , where ϕi is odd in xi and even in the other variables.
This follows also from our previous remarks.

In fact suppose that a second eigenfunction ϕ is even in all variables xi , i =

= 1; · · · ; N . Then ∇ϕ(0) = 0. We now take any direction ν and define, for
x ∈ Ω

ν
= {x ∈ Ω : x:ν < 0}, ϕν(x) = ϕ(xν), where xν is the reflection of x through

the hyperplane T
ν = {x ∈ Ω : x:ν = 0}. Then (−∆−λ2) (ϕ−ϕν) = 0 in Ων , so either

ϕ− ϕν = 0, which means that ϕ is symmetric with respect to Tν , or the restriction ψ

of ϕ− ϕν to Ων is an eigenfunction of the Dirichlet eigenvalue problem in Ων corre-
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sponding to the eigenvalue λ2. In this latter case necessarily ψ is the first eigenfunction
in Ων because by Lemma 2.1 the first eigenvalue in Ων is not less than λ2. But this
possibility is excluded, since in this case ψ would be positive (or negative) in Ων , and
by the Hopf’s lemma we would get that @ψ

@ν = 2 @ϕ
@ν < 0 on Tν , against the fact that

∇ϕ(0) = 0. So ϕ is symmetric with respect to all the hyperplanes passing through the
origin and it is therefore radial and this contradicts Theorem 1.1.

This means that in the basis for the eigenspace associated to λ2 considered in Re-
mark 2.1 there are only functions which are odd in some variable and there is at least
one. So λ2 is equal to µ1(Ω−

i ) for at least one i ∈ {1; · · · ; N }. Since each cap Ω−
i

can be transformed by a rotation into another cap Ω−
j , j �= i, we have that µ1(Ω−

i )
does not depend on i ∈ {1; · · · ; N } and must therefore be equal to λ2. The previous
construction gives then N independent eigenfunctions ϕ2 , : : :ϕN +1, where ϕj is odd
in the variable xj−1 and even in the other variables, which span the eigenspace of λ2.
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